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Requirements Engineering involves the elicitation of high-level stakeholder goals and their
refinement into operational system requirements. A key difficulty is that stakeholders typ-
ically convey their goals indirectly through intuitive narrative-style scenarios of desirable
and undesirable system behaviour, whereas goal refinement methods usually require goals
to be expressed declaratively using, for instance, a temporal logic. In actual software engi-
neering practice, the extraction of formal requirements from scenario-based descriptions
is a tedious and error-prone process that would benefit from automated tool support.
This paper presents an Inductive Logic Programming method for inferring operational re-
quirements from a set of example scenarios and an initial but incomplete requirements
specification. The approach is based on translating the specification and the scenarios into
an event-based logic programming formalism and using a non-monotonic reasoning sys-
tem, called eXtended Hybrid Abductive Inductive Learning, to automatically infer a set of
event pre-conditions and trigger-conditions that cover all desirable scenarios and reject all
undesirable ones. This learning task is a novel application of logic programming to require-
ments engineering that also demonstrates the utility of non-monotonic learning capturing
pre-conditions and trigger-conditions.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Requirements Engineering is an integral part of the software engineering life-cycle. It is concerned with the elicitation,
elaboration, specification, analysis and documentation of goals and requirements relating to an envisaged system. It aims to
bridge the gap between high-level goals conveyed by stakeholders (e.g. users, developers and decision makers), and low-
level operational system requirements. Some methods have been developed to support the elicitation and elaboration of
such requirements [11,12] but these focus on the refinement of high-level goals declaratively expressed in a temporal logic
[15]. The use of a temporal formalism enables the deployment of automated analysis and refinement tools, but is not directly
accessible to most stakeholders with a less technical background. In practice, stakeholders prefer to convey their goals
through more intuitive narrative-style scenarios of desirable and undesirable system behaviour [29] rather than temporal
assertions. Because scenarios are inherently partial descriptions about specific system behaviours, they leave requirements
implicitly defined. It is therefore necessary to synthesise declarative specifications of operational requirements that admit
the desired behaviours while rejecting the undesired ones. At present, the elicitation of declarative requirements from
scenario-based descriptions is a tedious and error-prone process that relies on the manual efforts of an experienced engineer
and would benefit from automated tool support.
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This paper provides an Inductive Logic Programming (ILP) approach [21] for extracting operational requirements from
example scenarios and an initial but incomplete system specification. The approach presented here extends the one intro-
duced in [1], which used a non-monotonic ILP system to learn a particular type of requirements, called event pre-conditions
[12], from example scenarios and a partial system specification. In this paper, we show how this technique can be extended
to learn another class of operational requirements called event trigger-conditions [12]. Intuitively, pre-conditions state that a
certain event should not happen in some situations, while trigger-conditions state that an event must happen in some other
situations.

The scenarios from which operational requirements are extracted represent examples of desirable and undesirable sys-
tem behaviour. Scenarios are sequences of events that can either occur in the environment or be performed by the system.
Desirable behaviour is represented by positive scenarios, which are sequences of events that are consistent with the system
specification. Undesirable behaviour is represented by negative scenarios, which are sequences of events that are not consis-
tent with the system specification. A partial system specification is also given as input to our approach in order to represent
any initial but incomplete knowledge of the envisioned system and its environment.

The task is to complete the specification by learning a set of missing event pre-conditions and trigger-conditions that
cover all of the positive scenarios, but none of the negative ones. To achieve this, we show how the partial specification and
scenarios can be expressed in Linear Temporal Logic (LTL) [15] and automatically transformed into an ILP representation
based on the Event Calculus (EC) framework [7,16] by means of a sound translation process. Because this representation
makes essential use of negation in formalising the effects and non-effects of actions, the resulting problem is inherently
non-monotonic. The main challenge is to learn general pre-conditions and trigger-conditions expressed not in terms of
specific sequences of actions, but expressed in terms of the relevant effects of those actions.

We show that, under the stable model semantics [5] for logic programs with negation, the stable models of the trans-
formed program correspond to the temporal models of the original specification. We then use the non-monotonic learning
system called eXtended Hybrid Abductive Inductive Learning (XHAIL) [23,24] to generalise the scenarios with respect to the
initial requirements specification. The abuctive component of XHAIL generates a ground unit explanation of the example
scenario. This preliminary explanation is then generalised by XHAIL’s inductive component to produce the final hypothesis.
In this way, XHAIL integrates assumption-based and generalisation-based inference within a coherent non-monotonic learn-
ing framework. The language bias of XHAIL is defined so as to allow the inference of pre-conditions and trigger-conditions.
We show that once the EC clauses learnt by XHAIL are translated back to LTL formulae, they provide a correct extension of
the given partial system specifications with respect to the given example scenarios.

The paper is organized as follows. Section 2 presents the relevant background material on Inductive Logic Programming,
XHAIL, Linear Temporal Logic, and the Event Calculus. Section 3 describes the main features of our approach and presents
some results on the soundness of the translation process of LTL requirements specifications into EC logic programs and on
the correspondence between LTL and EC extensions of the initial specification. Section 4 provides an illustrative case study
involving a Mine Pump controller, where event pre-conditions and trigger-conditions are simultaneously learned using the
XHAIL system. A summary and some remarks about related and future work conclude the paper.

2. Background

This section introduces the necessary background material. After a summary of general notation and terminology, we
describe the two logic-based formalisms used in our approach: Linear Temporal Logic, for expressing requirements specifi-
cations, and the Event Calculus for reasoning logically about action and change.

2.1. Notation and terminology

A term is either a constant, a variable or a compound term f (t1, . . . , tn) where f is a function symbol and ti is a term.
A literal is an atomic formula p(t1, . . . , tn), also called an atom or a positive literal, or its negation, not p(t1, . . . , tm), also
called a negative literal, where p is a predicate symbol, ti is a term and not is the negation as failure operator. We use
(not) p to refer to either the atom p or the negative literal not p of that atom. A clause is an expression of the form
φ ← ψ1, . . . ,ψn where φ is an atom (called the head atom) and ψi is a literal (called a body literal). A clause is ground if it
contains no variables. A clause is definite if all of its body literals are positive. The empty clause is denoted � and represents
the truth value false. A goal clause is a clause (← ψ1, . . . ,ψn) with an empty head. A logic program is set of clauses. A definite
logic program is a program in which all clauses are definite. A normal logic program is one in which the clauses are of the
form A ← B1, . . . , Bn , not C1, . . . ,not Cm where A is the head atom, Bi are positive body literals, and not C j are negative body
literals.

A (Herbrand) model I of a normal logic program, Π , is a set of ground atoms such that, for each ground instance G of
a clause in Π , I satisfies the head of G whenever it satisfies the body. A model I is minimal if it does not strictly include
any other model. Definite programs always have a unique minimal model. Normal programs may have instead one, none,
or several minimal models. It is customary to identify a certain subset of these models, called stable models, as the possible
meanings of the program. Given a normal logic program Π , the reduct of Π with respect to I , denoted Π I , is the program
obtained from the ground instances of Π by (a) removing all clauses with a negative literal not a in its body where a ∈ I
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and (b) removing all negative literals from the bodies of the remaining clauses. If I is the least Herbrand model of Π I then
I is said to be a stable model of Π as formalised in the definition below.

Definition 2.1. A model I of Π is a stable model if I is the least Herbrand model of Π I where Π I is the definite program
Π I = {A ← B1, . . . , Bn | A ← B1, . . . , Bn, not C1, . . . ,not Cn is the ground instance of a clause in Π and I does not satisfy
any of the Ci}.

The definitions of entailment under stable model semantics is given below.

Definition 2.2. A program Π entails an expression E (under the credulous stable model semantics), denoted Π |� E , iff E is
satisfied in at least one stable model of Π .

2.2. Inductive Logic Programming and XHAIL

ILP is concerned with the computation of hypotheses H that generalise a set of (positive and negative) examples E with
respect to a prior background theory B . In this paper we consider the case when B and H are normal logic programs, E is
a set of ground literals (with positive and negative literals representing positive and negative examples, respectively), and
H satisfies the condition B ∪ H |� E under the stable model semantics. In other words, the examples E must be satisfied
in a stable model of B ∪ H . As formalised in the definition below, it is usual to further restrict the clauses in H to a set of
clauses HS called a hypothesis space.

Definition 2.3. Given a normal logic program B , a set of ground literals E , and a set clauses HS, the task of ILP is to find a
normal logic program H ⊆ HS, consistent with B such that B ∪ H |� E . In this case, H is called an inductive generalisation
of E w.r.t. B and HS.

To implement our methodology, we used the XHAIL system [24], which is one of relatively few ILP systems designed for
non-monotonic ILP. It is based on a three-phase Hybrid Abductive Inductive Learning (HAIL) approach [23] which operates
by constructing and generalising a preliminary ground hypothesis K , called a Kernel Set of B and E . This notion can be
regarded as a non-monotonic multi-clause generalisation of the Bottom Set concept used in several well-known monotonic
ILP systems [19,20]. Like these monotonic ILP systems, XHAIL heavily exploits language and search bias when constructing
and generalising a Kernel Set in order to bound the ILP hypothesis space.1

The XHAIL language and search bias mechanisms are based upon the tried-and-tested notions of compression and mode
declarations as used, for example, in Progol [19]. The compression heuristic favours hypotheses containing the fewest num-
ber of literals and is motivated by the principle of Occam’s razor (which, roughly speaking, means choose the simplest
hypothesis that fits the data). Mode declarations provide a convenient mechanism for specifying which predicates may ap-
pear in the heads and bodies of hypothesis clauses and for controlling the placement and linking of constants and variables
within those clauses.

As defined in [19], a mode declaration D is either a head declaration of the form modeh(r, s) or a body declaration of
the form modeb(r, s), where r is an integer, called the recall, and s is a ground literal called the scheme, possibly containing
so-called placemarker terms of the form +t , −t and #t , which must be replaced by input variables, output variables, and
constants of type t , respectively. The recall is used to bound the number of atoms each mode declaration can contribute to
a hypothesis clause. Where this is not important, an arbitrary recall is denoted by an asterisk ∗.

As explained in [24], XHAIL computes hypotheses using a non-monotonic abductive interpreter to implement the three
stages of the HAIL approach. In the first phase, the head declarations are used to abduce the head atoms of the Kernel Set.
In the second phase, the body atoms of the Kernel Set are computed as the successful instances of queries obtained from
the body declaration schemas. In the third phase, the hypothesis is computed by searching for a compressive theory that
subsumes the Kernel Set, is consistent with the background knowledge, covers the examples and falls within the hypothesis
space.

2.3. Linear temporal logic

Several logic-based formalisms have been proposed for modeling event-based systems [6,9,25]. Among these, LTL [15] is
widely used and is supported by analysis techniques and tools such as model checking [14]. The language of LTL includes
a finite non-empty set of Boolean propositions P , Boolean connectives ¬,∧ and → and temporal operators © (next), �
(always), and U (strong until). A well-formed LTL formula is constructed such that:

• ff and tt, representing truth and falsity respectively, are formulae

1 Further details about XHAIL can be found in Oliver Ray’s paper Non-monotonic Abductive Inductive Learning elsewhere in this issue.
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• an atomic proposition p is a formula
• if φ and ψ are formulae then so are: ¬φ, φ ∧ ψ , φ → ψ , ©φ, �φ, and φ U ψ .

Other formulae are introduced as abbreviations: φ ∨ψ abbreviates ¬(¬φ ∧¬ψ) and φ ⇔ ψ abbreviates (φ → ψ)∧ (ψ → φ).
The formula �φ abbreviates ¬�¬φ, and φ W ψ abbreviates (�φ)∨ (φ U ψ). We use (¬)p to refer to either the proposition
p or the negation ¬p of that proposition. Also, we use ©i to denote i consecutive applications of the © operator. We further
assume P to be partitioned into two sets Pe and P f denoting event and fluent propositions respectively. The semantics of
an LTL formula can be defined with respect to a structure called a Labelled Transition System (LTS) [28].

Definition 2.4. A labelled transition system T is a tuple (S, L, s0, R) where S is a finite non-empty set of states, L is a
finite non-empty set of labels, called the alphabet, s0 is a subset of S , called the set of initial states, and R ⊆ S × L × S is a
non-empty set of transition relations.

An input for an LTS T is a finite sequence of the form 〈l1, l2, . . . , ln〉 where li ∈ L. A path σ in T is a (possibly infinite)
sequence of states and transitions (i.e. s0 Rl1 s1 Rl2 s2, . . .) such that for each i � 0 there is a transition relation (si, li+1, si+1) ∈
R, with label li+1. An input 〈l1, l2, . . . , ln〉 is said to be accepted by T if there is a path σ = s0 Rl1 s1, . . . , sn−1 Rln sn in T
where, for all 0 � i < n, (si, li+1, si+1) ∈ R. Note that, for a given path (resp. input), the index of a state (resp. event) is
referred to as its position in that path (resp. input).

An LTL model M is a pair 〈T , V 〉 consisting of an LTS, T , and a valuation function, V , that assigns to each fluent
proposition an arbitrary set of pairs of path, in T , and positions in the path. The events, however, are not specified in
V as their truth is implicitly determined by the transitions.

Definition 2.5. Given an LTL language with propositions P = Pe ∪ P f , an LTL model M is a pair 〈T , V 〉 where T is an LTS
with events Pe and V is a valuation function V : P f ⇒ 2A , where A = {(σ , i) | σ is a path in T and i is a position in σ }.

The satisfiability of an LTL formula in a model M is defined with respect to positions in a given path.

Definition 2.6. Given an LTL language with propositions P = Pe ∪ P f , an LTL model M = 〈T , V 〉 and a path σ in T , the
satisfaction of an LTL formula φ at a position i � 0 of the path σ , denoted σ , i |� φ, is defined inductively as follows:

• σ ,0 �|� e for any event proposition e ∈ Pe
• σ , i |� e iff e is the ith label in the path σ , where e ∈ Pe and i � 1
• σ , i |� f iff (σ , i) ∈ V ( f ), where f ∈ P f
• σ , i |� ¬φ iff σ , i �|� φ

• σ , i |� φ ∧ ψ iff σ , i |� φ and σ , i |� ψ

• σ , i |� ©φ iff σ , i + 1 |� φ

• σ , i |� �φ iff ∀ j � i. σ , j |� φ

• σ , i |� φ U ψ iff ∃ j � i. σ , j |� ψ and ∀i � k < j. σ ,k |� φ.

An LTL formula φ is said to be satisfied in a path σ iff it is satisfied at the initial position, i.e. σ ,0 |� φ. Similarly, a set of
formulae Γ (also called a theory) is said to be satisfied in a path σ if each formula ψ ∈ Γ is satisfied in the path σ . Given
the above notions of satisfiability, we can now give a formal definition of a model of an LTL theory.

Definition 2.7. Let M = (T , V ) be an LTL model and Γ be an LTL theory. M is said to be a model of Γ , denoted |�M Γ , iff
Γ is satisfied in every path σ in T .

Definition 2.8. Let Γ be a LTL theory, φ a LTL formula and M = 〈T , V 〉 an LTL model. The formula φ is said to be entailed
by Γ , written Γ |�M φ, iff φ is satisfied in each path σ in T that satisfies Γ .

2.4. Event calculus

The Event Calculus (EC) formalism [7] is particularly well-suited for reasoning about events and their effects over time
[27] using logic programming techniques such as ILP. Its ontology is close enough to existing types of event-based require-
ments specifications to allow them to be mapped automatically into logical representations that can be used as a back-end
to existing requirements engineering representational methods. In particular, an EC language includes three sorts of terms:
event terms, fluent terms, and time terms. While time is represented by the non-negative integers 0,1,2, . . . , the event and
fluent sorts are defined according to the domain being modelled. In this paper, we assume the EC language to include an
additional sort called scenarios. The EC ontology includes the basic predicates happens, initiates, terminates and holdsAt. The
atomic formula happens(e, t, s) indicates that event e occurs at time-point t in a given scenario s, while initiates(e, f , t, s)
(resp. terminates(e, f , t, s)) means that, in a given scenario s, if event e were to occur at time t , it would cause fluent f to
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be true (resp. false) immediately afterwards. The predicate holdsAt( f , t, s) indicates that fluent f is true at time-point t in
a given scenario s. The formalism includes also an auxiliary predicate, clipped, and three additional predicates impossible,
attempt and triggered. The predicate clipped(t1, f , t2, s) means that, in a given scenario s, an event occurs which terminates
f between times t1 and t2. The predicate impossible(e, t, s) means that in scenario s, event e cannot be performed at time
t , the predicate attempt(e, t, s) states that in scenario s, event e may be attempted at time t , and triggered(e, t, s) indi-
cates instead that in scenario s, event e has been triggered at time point t . Whereas the predicate attempt expresses the
concept of a possible transition, the predicate triggered (resp. impossible) defines transitions that must (resp. cannot) occur.
Their distinction is clearly captured by the translation function given in Section 3.2 for constructing EC programs from LTL
requirement specifications.

An EC program includes domain-dependent axioms describing which actions initiate and terminate which fluents, which
fluents are initially true, which events are attempted, and rules defining the impossibility and the triggering conditions of
event occurrences. It also contains a narrative, which describes a course of events that may be attempted at specific time
points and in specific scenarios, and a set of domain-independent axioms which govern the interactions between the EC
predicates:

clipped(T1, F , T2, S) ← happens(E, T , S), terminates(E, F , T , S), T1 < T < T2. (1)

holdsAt(F , T2, S) ← happens(E, T1, S), initiates(E, F , T1, S), T1 < T2,not clipped(T1, F , T2, S). (2)

holdsAt(F , T , S) ← initially(F , S),not clipped(0, F , T , S). (3)

happens(E, T , S) ← attempt(E, T , S),not impossible(E, T , S). (4)

happens(E, T , S) ← attempt(E, T , S), triggered(E, T , S). (5)

impossible(E2, T , S) ← triggered(E1, T , S), E1 �= E2. (6)

← impossible(E, T , S), triggered(E, T , S). (7)

The three axioms (1)–(3) describe general principles for deciding when fluents hold or do not hold at particular time-
points.2 They formalise the commonsense law of inertia which states that a fluent that is true remains to hold until a
terminating event occurs and vice versa. The two axioms (4) and (5) capture the semantics of event pre-conditions and
event trigger-conditions respectively. The rule (4) states that an event E cannot happen if its pre-conditions are not satisfied
(i.e. impossible is true). The rule (5), on the other hand, declares that an event E must happen if its trigger-conditions have
been satisfied. The rule (6) indicates that if an event e is triggered at time point t in scenario s then all other events must
be impossible at that time point in that scenario. The last rule (7) captures the semantic relationship between trigger-
conditions and pre-conditions.3 It states if an event e is impossible at time point t in scenario s, then it cannot be triggered
at t in s.

3. The approach

In this section we show how ILP can be used to extend a partial system specification using information from a given set
of scenarios. The learning problem is formalised in terms of an LTL specification. The given specification and scenarios are
transformed, by means of a sound translation, into a non-monotonic ILP problem using an EC formalisation which is then
used to find a set of requirements that together with the partial specification account for the example scenarios.

3.1. Problem Description

Our aim is to develop an approach for extending an incomplete system specification with two types of operational
requirements, namely event pre-conditions and trigger-conditions using information provided by user-defined scenarios. Sce-
narios are sequences of events with a positive or negative label, according to whether it is possible or impossible for the
last event in the sequence to occur after the previous events have occurred. Initial knowledge of the system is given by a
partial system specification expressed in a restricted LTL syntax. Since LTL is used to represent system behaviours and their
effects on the system and its environment, it is assumed that each fluent f ∈ P f is associated with two disjoint sets I f and
T f called the f -Initiating set and f -Terminating set of event propositions respectively. Moreover, only a special class of LTL
models are considered in which the labelled transition system T has a single initial state and the valuation function V is
defined to capture the dependencies between fluent propositions and event propositions. For convenience, the notation E I f

is used to represent the disjunction
∨

e∈I f
e of f -Initiating events, and ET f for the disjunction

∨
e∈T f

e of f -Terminating
events. S0 is instead used to represent the set of fluents f ∈ P f that are true in the initial system state s0.

2 Axioms (1)–(3) axioms are identical to those presented in [27] apart from the extra argument S for representing scenarios. Axioms (4)–(7) extend the
formalism in [27] to support trigger-conditions and pre-conditions.

3 These axioms can be made more realistic by restricting trigger-conditions and pre-conditions to system events, as opposed to environmental events
over which the system has no control. However, for brevity, details are omitted.
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A system specification describes the interactions between events relationship between events and fluents of the system
and environment. As formalised in Definition 3.1 below, it contains initial state axioms (8)–(9), specifying the fluent proposi-
tions that are true (resp. false) in the initial state; persistence axioms (10)–(11), formalising the common-sense law of inertia
that any fluent will remain true (resp. false) until a terminating (resp. initiating) event occurs that causes it to flip truth
value; effect axioms (12)–(13), which describe the effect a set of f -Initiating and f -Terminating events has on a fluent f ;
and finally a set of pre-condition axioms (14), and a set of trigger-condition axioms (15), describing the conditions under which
an event cannot occur and must occur, respectively.4

Definition 3.1. A system specification is an LTL theory consisting of

• a positive initial state axiom representing all fluent propositions that are true in S0 (if any).
∧

f i∈S0

f i (8)

• a negative initial state axiom representing all fluent propositions that are not true in s0 (if any).
∧

f j∈(P f −S0)

¬ f j (9)

• a pair of persistence axioms for each fluent proposition f ∈ P f .

�( f → f W ET f ) (10)

�(¬ f → ¬ f W E I f ) (11)

• a pair of f -Initiating and f -Terminating effect axioms for each fluent proposition f ∈ P f .

�(E I f → f ) (12)

�(ET f → ¬ f ) (13)

• a set of pre-condition axioms (possibly empty).

�
( ∧

0�i�n

(¬) f i → ©¬e

)
(14)

• a set of trigger-condition axioms (possibly empty).

�
( ∧

0�i�m

(¬) f i → ©e

)
. (15)

A scenario is a finite sequence of events 〈e1, . . . , en〉 that describes a system’s hypothetical behaviour from its initial
state by specifying which events are initiated by the system in response to events occurring in the environment. A positive
scenario, denoted 〈e1, . . . , en〉+ , allows the user to state that there should be at least one path in a model of the system
specification where 〈e1, . . . , en〉 is accepted as an input. A negative scenario, denoted 〈e1, . . . , en〉− , allows the user to state
that there should be no paths in any model of the system specification where 〈e1, . . . , en〉 is accepted as an input. These
notions are formalised by associating each scenario with an LTL formula, called a scenario property, as defined below.

Definition 3.2. A scenario is

• either a positive scenario of the form

〈e1, . . . , em〉+ representing the property
∧

1�i�m−1

©iei ∧ ©mem (16)

• or a negative scenario of the form

〈e1, . . . , en〉− representing the property
∧

1�i�n−1

©iei → ©n¬en. (17)

4 Note that the notion of pre-condition used in this paper differs from the standard terminology, in the sense that the negation of the antecedent of our
pre-condition axioms corresponds to the pre-condition for the event occurring.
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Because the property associated with a positive scenario is expected to hold in at least one path of a model, it will be
called an existential scenario property and denoted as spex . Since the property associated with a negative scenario is expected
to hold in all paths of a model, it will be called a universal scenario property, and denoted as spu . For convenience, scenarios
will often be identified with their associated property.

Given the above formalisation, we can now define the task of learning pre-conditions and trigger-conditions.

Definition 3.3. Let Spec be a system specification, M = 〈T , V 〉 be a model of Spec, Scen be a set of universal scenario
properties {spui

} and existential scenario properties {spex j
}. A set Pre ∪ Trig of pre-condition and trigger-condition axioms is

a correct extension of Spec with respect to Scen iff

• Spec ∪ Pre ∪ Trig |�M spu for each spui
∈ Scen

• Spec ∪ Pre ∪ Trig �|�M ¬spex for each spex j
∈ Scen.

Intuitively, finding a correct extension of a given specification with respect to given existential and universal scenario
properties means refining the models of the original Spec by removing unwanted or undesirable traces. Given a model
M = (T , V ) of a specification Spec, adding a pre-condition axiom to Spec has the effect of removing from T all those (sub-
)paths that satisfy the prefix of the pre-condition and have as subsequent transition one labelled with the event in the
consequence of the pre-condition axiom. On the other hand, adding a trigger-condition axiom to the Spec means removing
from T all those (sub-)paths that satisfy the prefix of the trigger-condition and have as subsequent transitions those labelled
with an event different from the event in the consequence of trigger-condition axiom.

3.2. Translating LTL specifications into EC logic programs

In order to apply ILP to the task of learning correct extensions, the LTL system specification and scenario properties of
the form defined above are translated into EC normal logic program, where the sorts of event and fluent are given by the set
Pe of event propositions and the set P f of fluent proposition of the LTL language; time points correspond to the positions
in the paths of a model M , and a scenario constant is introduced for every universal and existential scenario property in
Scen. The translation of a system specification Spec into such a correspond EC program Π is formally defined below.

Definition 3.4. Given a system specification Spec expressed in LTL, the corresponding logic program Π = τ (Spec) is defined
as the program containing the following clauses:

• the fact initially( f i, S) for each fluent f i appearing in a positive initial state axiom of the form
∧

f i∈S0
f i

• the fact initiates(ei, f , T , S) for each f -Initiating event ei ∈ I f appearing in an f -Initiating effect axiom of the form�(E I f → f )
• the fact terminates(ei, f , T , S) for each f -Terminating event ei ∈ T f appearing in a f -Terminating effect axiom of the

form �(ET f → ¬ f )
• the clause impossible(e, T , S) ← ∧

0�i�k(not)holdsAt( f i, T , S) for each pre-condi-tion axiom of the form

�
( ∧

0�i�k

(¬) f i → ©¬e

)

• the clause triggered(e, T , S) ← ∧
0�i�l(not)holdsAt( f i, T , S) for each trigger-condition axiom of the form

�
( ∧

0�i�l

(¬) f i → ©e

)

• the EC core axioms (1)–(7).

Note that negative initial state axioms (9) and persistence axioms (10) and (11) of an LTL specification are all implicitly
captured by the stable model interpretation of the EC core axioms. Moreover, the semantics of the temporal operator � is
captured by the implicit universal quantification over the time variable T that appears in the initiates and terminates facts
and in the impossible and triggered rules. Theorem 3.1 below states that the translation τ is sound, i.e. for any path σ in a
given model M of Spec there is a corresponding narrative Nar such that the program Π = τ (Spec) ∪ Nar satisfies the same
fluent and event formulae as in σ .

Theorem 3.1. Given an LTL language with propositions P = Pe ∪ P f , let Spec be a system specification in the given language and M =
〈T , V 〉 a model of Spec. Let σ = s0 Re1 s1, . . . , sn−1 Ren sn be a path in T and let Nar be the set of facts of the form attempt(ei, i − 1, σ )

for each event ei in σ . Let Π be the EC logic program Π = τ (Spec) ∪ Nar with a unique stable model I . Then, for any position j � 0
we have that σ , j |� e iff happens(e, j − 1, σ ) ∈ I , for any event e ∈ Pe, and σ , j |� f iff holdsAt( f , j, σ ) ∈ I , for any fluent f ∈ P f .
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Proof. The proof is by structural induction on position j in σ . We consider two base cases for j = 0 and j = 1. The first
base case is to cover the satisfiability of fluent propositions in the initial state (i.e. at position 0) and the second is to cover
the satisfiability of event propositions which start from position 1. Let Π I be the reduct of program Π , so that I is its
minimal (Herbrand) model.

Base cases

(1) j = 0:
The case σ ,0 |� e iff happens(e,−1, σ ) ∈ I is trivially true. By Definition 2.6 of satisfiability, σ ,0 �|� e for any e ∈ Pe;
also for any e ∈ Pe , no ground atom happens(e,−1, σ ) is in I , since the time constant −1 is outside the scope of the
EC time sort T .
We show that σ ,0 |� f iff holdsAt( f ,0, σ ) ∈ I . We consider the “if case” first. σ ,0 |� f implies f ∈ S0.5 Hence the
program Π , and therefore I , contains the ground atom initially( f , σ ). Moreover, clipped(0, f ,0, σ ) /∈ I since there is no
t , 0 < t < 0. Then Π I contains the ground clause holdsAt( f ,0, σ ) ← initially( f , σ ) and therefore holdsAt( f ,0, σ ) ∈ I . We
now consider the “only if” case. Reasoning by contradiction, we assume that σ ,0 �|� f . Hence, f does not appear in the
positive initial state axiom of Spec, and therefore Π does not contain the ground atom initially( f , σ ). Moreover, since
no happens(e,−1, σ ) is in Π , for any e ∈ Pe , then Π I does not contain ground definitions of holdsAt( f ,0, σ ). Hence
holdsAt( f ,0, σ ) /∈ I , giving a contradiction.

(2) j = 1:
We show that σ ,1 |� e iff happens(e,0, σ ) ∈ I for any event e. We consider the “if case” first, and assume that σ ,1 |� e,
for an arbitrary event e. Then there is a transition s0 Res1 in σ . This means that the antecedents of any precondition in
Spec of the form (14) for the event e are false at position 0, and the antecedents of any trigger-condition in Spec of the
form (15) for the event e are true at position 0. By the previous base case, the same holds for the corresponding set
of EC pre-condition and trigger-condition clauses, respective. Therefore, impossible(e,0, σ ) /∈ I and triggered(e,0, σ ) ∈
I . Hence, given the rules (4) and (5) in Π I and the fact that attempt(e,0, σ ) ∈ I , by assumption, we can conclude
that happens(e,0, σ ) ∈ I . We consider now the “only if” case. Assume that happens(e,0, σ ) ∈ I and that, reasoning by
contradiction, σ ,1 �|� e. Since e is not satisfied at position 1 of σ , Π does not contain the fact attempt(e,0, σ ). From
attempt(e,0, σ ) /∈ I it follows that happens(e,0, σ ) /∈ I which leads to a contradiction.
We show that σ ,1 |� f iff holdsAt( f ,1, σ ) ∈ I . We assume that σ ,1 |� f for an arbitrary fluent f . This implies
that f is either (a) initially true (i.e σ ,0 |� f ) and no f -Terminating event occurs at 1 or (b) has been initiated
by an f -Initiating event at 1. Consider the case (a). f true in the initial state implies that Π I contains the atom
initially( f , σ ). Moreover, since σ ,1 �|� eT f for any terminating event eT f then, by the first base case, happens(eT f ,0, σ ) /∈
I and thus clipped(0, f ,1, σ ) /∈ I . Π I contains in this case the ground clause holdsAt( f ,1, σ ) ← initially( f , σ ). Hence,
holdsAt( f ,1, σ ) ∈ I .
We now consider the (b) case. We have that σ ,1 |� eI f , therefore happens(eI f ,0, σ ) ∈ I . Given that only one event
can be true at any single position in a path, we know that σ ,1 �|� e′ for any e′ ∈ Pe − {eI f } including any f -
terminating event. Hence, happens(eT f ,0, σ ) /∈ I for any terminating event eT f . This implies that clipped(0, f ,1, σ ) /∈
I and holdsAt( f ,1, σ ) ← initiates(eI f , f ,0, σ ),happens(eI f ,0, σ ),0 < 1 is in Π I . Since initiates(eI f , f ,0, σ ) ∈ I also
holdsAt( f ,1, σ ) ∈ I . The proof of the “only if” case is similar.

Induction Hypothesis (IH):
We assume that for any position k, 0 � k � j − 1 and for any event e and fluent f , we have σ ,k |� e iff happens(e,k −

1, σ ) ∈ I , and σ ,k |� f iff holdsAt( f ,k, σ ) ∈ I . We want to show this is true for position k = j.

We want to show that σ , j |� e iff happens(e, j − 1, σ ) ∈ I . We consider the “if case” first and assume that σ , j |� e. This
means that a transition s j−1 Res j exist in σ . Then the antecedent of any precondition in Spec of the form (14) for the event
e is false at position j − 1, and the antecedents of any trigger-condition in Spec of the form (15) for the event e is true at
position j − 1. Given that the program Π contains pre-condition and trigger-condition clauses on e, by (IH) their respective
antecedents are also satisfied at time point j − 1 in σ . Then impossible(e, j − 1, σ ) /∈ I for all pre-condition clauses on e and
triggered(e, j −1, σ ) ∈ I . Now given that attempt(e, j −1, σ ) ∈ I , we can conclude that happens(e, j −1, σ ) ∈ I . We now need
to show the “only if” case. We assume that happens(e, j − 1, σ ) ∈ I and, reasoning by contradiction, that σ , j �|� e. Since e is
not satisfied at position j of σ , Π does not contain the fact attempt(e, j − 1, σ ). Therefore, happens(e, j − 1, σ ) /∈ I which is
a contradiction.

We need to prove that σ , j |� f iff holdsAt( f , j, σ ) ∈ I . We consider the “if case” first and assume that σ , j |� f . Then
either (a) σ ,0 |� f and σ ,k �|� eT f for all 1 � k � j and f -Terminating events eT f , or (b) σ ,k |� eI f , for some k such
that 1 � k � j and for all l, with k < l � j, σ , l �|� eT f for all f -terminating events. If (a) is the case, then we know that
initially( f , σ ) ∈ I and for all 0 � k � j, σ ,k �|� eT f . Then by (IH) happens(eT f ,k − 1, σ ) /∈ I , for all 0 � k � j, and therefore

clipped(0, f ,k, σ ) /∈ I . The transformed program Π I would therefore include holdsAt( f , j, σ ) ← initially( f , σ ) and hence
holdsAt( f , j, σ ) ∈ I .

5 Our Spec is assumed to be complete on its initial state.
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We consider case (b). Given that an f -Initiating event has occurred at some k, with 1 � k � j (i.e. σ ,k |� eI f ) then,

by (IH), happens(eI f ,k − 1, σ ) ∈ I . Moreover, since no f -Terminating event occurs at any l with k < l � j, Π I does not
contain any atom of the form attempt(eT f , l − 1, σ ) and therefore happens(eT f , l − 1, σ ) /∈ I . This means that the ground

atom clipped(k − 1, f , j, σ ) /∈ I . Thus, Π I contains the ground rule

holdsAt( f , j, σ ) ← initiates(eI f , f ,k − 1, σ ),happens(eI f ,k − 1, σ ),k − 1 < j.

Hence, holdsAt( f , j, σ ) ∈ I .
We consider now the “only if” case and assume that holdsAt( f , j, σ ) ∈ I . We want to show that σ , j |� f . Reasoning

by contradiction, suppose that σ , j �|� f . Hence either (a) f is initially false and has not been initiated at any position k,
with 0 � k � j, or (b) for any position k where f is true, with 0 � k � j − 1, there is a later position l, with k < l � j such
that σ , l |� eT f . We first consider the case (a). Since σ ,0 �|� f , initially( f , σ ) /∈ I . Furthermore, because σ ,k �|� eI f for any
f -Initiating event in Pe happens(eI f ,k − 1, σ ) /∈ I . Thus, under the stable model semantics holdsAt( f , j, σ ) /∈ I which is a
contradiction.

Consider now the (b) case and let k be the last position in σ such that σ ,k |� f where 0 < k < j − 1 and such that there
is a later position l where k < l � j where σ , l |� eT f for some f -Terminating event eT f . Then by (IH) happens(eT f , l −1, σ ) ∈
I and hence clipped(k − 1, f , j, σ ) ∈ I . Thus under the stable model semantics the following ground rules are omitted in Π I :

holdsAt( f , j, σ ) ← initially( f , σ ),not clipped(0, f , j, σ )

holdsAt( f , j, σ ) ← initiates(eI f , f ,k − 1, σ ),happens(eI f ,k − 1, σ ),not clipped(k − 1, f , j, σ )

Hence, holdsAt( f , j, σ ) /∈ I which is a contradiction. �
The following corollary states the soundness of the translation with respect to a set of paths.

Corollary 3.1. Let Spec be a system specification and let M = 〈T , V 〉 be a model of Spec. Let Σ = {σh | 1 � h � m} be a set of paths in T .
Let Nars be the set of narratives obtained from each σh of the form attempt(ei, i −1, σh) for each event ei in σh. Let Π = τ (Spec)∪Nars
be the EC logic program with (unique) stable model I . Then for each σh and for any event e ∈ Pe and position j � 0, we have σh, j |� e
iff happens(e, j − 1, σh) ∈ I; and for any fluent f ∈ P f , we have σh, j |� f iff holdsAt( f , j, σh) ∈ I .

3.3. Learning requirements using ILP

ILP is concerned with the task of learning a hypothesis H that explains a set of examples E with respect to a background
theory B . In the context of learning requirements, we are given a partial specification B and a set of scenarios E , and the
task is to learn a set H of operational requirements such that B ∪ H |� E (under the stable model semantics). In the EC
formalism, event pre-conditions are represented as clauses with impossible in the head and holdsAt literals in the body

impossible(e, T , S) ← (not) holdsAt( f1, T , S), . . . , (not)holdsAt( fn, T , S) (18)

while event trigger-conditions are represented as clauses of the form

triggered(e, T , S) ← (not) holdsAt( f1, T , S), . . . , (not) holdsAt( fm, T , S). (19)

Hence, the task of learning requirements is the process of generating hypotheses of the form above from a partial specifi-
cation and a set of scenario properties which, respectively, comprise the background and examples. The function τ can be
used to translate an initial LTL specification into an ILP theory. To fully define the inductive learning task a corresponding
translation from scenario properties to ILP example must be specified. As shown in the definition below, scenario proper-
ties contribute to the background theory as well as to the examples. The translation depends on the event for which the
pre-condition (resp. trigger-condition) axiom is to be learnt. In what follows, it is assumed that pre-conditions (resp. trigger-
conditions) axioms are to be learnt for the last event of each universal scenario and existential scenario property. Therefore,
each universal scenario property produces a sequence of facts stating that certain events do happen followed by the fact that
some particular event should not (resp. another event must) happen immediately afterward, and each existential scenario
property simply states that a certain sequence of events does happen.

Definition 3.5. Given a system specification Spec and a set Scen consisting of universal and existential scenario properties,
the EC translation τ (Spec, Scen) is the pair (B, E) of EC programs constructed as follows:

• For each universal scenario property spu = (
∧

1�i�n−1 ©iei → ©n¬en) in Scen.
. E includes n − 1 facts of the form happens(ei, i − 1, spu) with 1 � i � n − 1.
. E includes 1 fact of the form not happens(en,n − 1, spu).
. B includes n facts attempt(ei, i − 1, spu) with 1 � i � n.
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• For each existential scenario property spex = ∧
1�i�k ©iei in Scen.

. E includes k facts of the form happens(ei, i − 1, spex) with 1 � i � k.

. B includes k facts of the form attempt(ei, i − 1, spex) with 1 � i � k.
• B includes all facts and rules in τ (Spec).

As shown in the definition above, given a partial specification Spec and a set of scenario properties Scen, the translation τ
gives a corresponding EC program consisting of a background theory B and a set of examples E where (B, E) = τ (Spec, Scen).

The utility of the transformation is demonstrated by Theorem 3.2, which shows that τ can be used to compute correct
extensions via non-monotonic ILP. In particular, given a partial specification Spec, set of scenario properties Scen, the cor-
responding EC programs (B, E) = τ (Spec, Scen), the hypothesis space H S is defined as the set of clauses of the form (18)
and (19). Theorem 3.2 states that, given a set Scen of universal and existential scenario properties, any non-monotonic ILP
solution to this problem can be translated back into a correct LTL extension of the initial Spec with respect Scen.

Theorem 3.2. Let Spec be a system specification, let Scen be a set of universal and existential scenario properties such that Spec �|� spui

for all spui
∈ Scen, and Spec �|� ¬spex j

for all spex j
∈ Scen. Let (B, E) = τ (Spec, Scen) be the corresponding EC program, and let HS

be the set of clauses of the form (18) and (19)—i.e. the set of all EC pre-condition and trigger-condition rules. Then, for any inductive
generalisation H of E w.r.t. B and HS, the corresponding set Pre ∪ Trig = τ−1(H) of LTL pre-condition and trigger-condition axioms is
a correct extension of Spec with respect to Scen.

Proof. Given Pre ∪ Trig = τ−1(H), we want to show that Spec ∪ Pre ∪ Trig |� spui
and Spec ∪ Pre ∪ Trig �|� ¬spex j

for each spui

and spex j
in Scen.

Consider the second case first.
Suppose that Spec∪Pre∪Trig |� ¬spex j

, for some existential scenario property spex j
of the form

∧
1�k�m j−1 ©kek ∧©m j e.

This means that Spec ∪ Pre ∪ Trig does not contain a path of the form σex j = s0 Re1 s1, . . . , sm j−1 Resm j . So Spec ∪ Pre ∪ Trig
includes a precondition for an event eh , with 1 � h � m j − 1, or for e.

Assume Spec ∪ Pre ∪ Trig includes a precondition for an event eh . Consider Spec to include such a pre-condition. Then
the path σex = s0 Re1 s1, . . . , sh−1 Reh sh would also not exist already in the model M , which is inconsistent with our given
initial assumption. Therefore, Pre ∪ Trig includes a precondition on eh where the antecedent is satisfied at state sh−1 of
σex and therefore σex |� ©h¬eh . Now, the program Π = (B ∪ H) is equal to τ (Spec ∪ Pre ∪ Trig) ∪ Nars with respect to the
path(s) associated with the properties in Scen. So by Corollary 3.1 we have that B ∪ H |� happens(ek,k − 1, spex j

) where
1 � k � h − 1, B ∪ H |� happens(ek,k − 1, spex j

) where h + 1 � k � m j − 1, B ∪ H |� happens(e,m j − 1, spex j
) and B ∪ H |�

not happens(eh,h − 1, spex j
), which is in contradiction with the fact that B ∪ H |� E .

Then Spec ∪ Pre ∪ Trig includes a precondition for e. Consider Spec to include such a pre-condition. Therefore the path
s0 Re1 s1, . . . , sm j−1 Resm j would also not exist already in the model M , which is inconsistent with our given initial assump-
tion. Moreover, Pre ∪ Trig includes a precondition on e. Consider the sub-path s0 Re1 s1, . . . , sm j−2 Resm j−1 in which e does
not occur. Now, the program Π = (B ∪ H) is equal to τ (Spec ∪ Pre ∪ Trig) ∪ Nars with respect to the path(s) associated
with the properties in Scen. So by Corollary 3.1 we have that B ∪ H |� happens(ek,k − 1, spex j

) where 1 � k � m j − 1 and
B ∪ H |� not happens(e,m j − 1, spex j

), which is in contradiction with the fact that B ∪ H |� E .
We now show that Spec ∪ Pre ∪ Trig |� spui

for all spui
in Scen.

Reasoning by contradiction, we assume that Spec ∪ Pre �|� spui
for some spui

of the form
∧

1�l�ni−1 ©lel → ©ni ¬e. This
means that the model of Spec ∪ Pre ∪ Trig includes the path s0 Re1 s1, . . . , sni−1 Resni . Now, the program Π = (B ∪ H) is equal
to τ (Spec ∪ Pre ∪ Trig) ∪ Nars with respect to all path(s) associated to the scenario properties in Scen. By Corollary 3.1 we
have that B ∪ H |� happens(el, l − 1, spui

) where 1 � l � ni − 1 and B ∪ H |� happens(e,ni − 1, spui
), which is in contradiction

with the fact that B ∪ H |� E . �
In other words, for a given B and E , any inductive solution of the form (18) and (19) once translated back into LTL

and added to the original partial specification will have the effect of eliminating all paths in T which violate all spui
while

maintaining at least one path satisfying the corresponding spex j
properties.

4. Case study: A Mine Pump control system

This section presents an extension of the case study used in [1] as an application of the learning approach proposed in
this paper to a event-driven system involving a Mine Pump Controller [8]. This is a system that is supposed to monitor and
control water levels in a mine, to prevent water overflow. It is composed of a pump for pumping mine-water up to the
surface and sensors for monitoring the water levels and methane percentage. The pump must be activated once the water
has reached pre-set high water level and deactivated once it reaches low water level. Moreover, the pump must be switched
off if the percentage of methane in the mine exceeds a certain critical limit.

An initial partial system specification Spec is given along with a set of universal and existential scenario properties,
written in an LTL language with fluent propositions P f = {pumpOn, criticalMethane,highWater} and event propositions
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Pe = {turnPumpOn, turnPumpOff , signalAlarm, signalNotAlarm, signalCriticalMethane, signalNotCriticalMethane, signalHighWater,
signalLowWater}. The specification includes information about the initial state of the system, persistence axioms, effect
axioms and a single trigger-condition axiom, all formalised as follows:

(¬criticalMethane ∧ ¬pumpOn ∧ ¬highWater) (20)

�(criticalMethane → (criticalMethane W signalNotCriticalMethane)) (21)

�(¬criticalMethane → (¬criticalMethane W signalCriticalMethane)) (22)

�(pumpOn → (pumpOn W turnPumpOff )) (23)

�(¬pumpOn → (¬pumpOn W turnPumpOn)) (24)

�(highWater → (highWater W signalLowWater)) (25)

�(¬highWater → (¬highWater W signalHighWater)) (26)

�(signalCriticalMethane → criticalMethane) (27)

�(signalNotCriticalMethane → ¬criticalMethane) (28)

�(signalHighWater → highWater) (29)

�(signalLowWater → ¬highWater) (30)

�(turnPumpOn → pumpOn) (31)

�(turnPumpOff → ¬pumpOn) (32)

�(criticalMethane ∧ pumpOn → ©turnPumpOff ). (33)

Eq. (20) defines the negative initial state of the system, Eqs. (21)–(26) specify the persistence axioms and Eqs. (27)–(32)
define the effect axioms and finally Eq. (33) specifies a trigger-condition axiom. Note that because all fluents are assumed
to be initially false, the specification does not include a positive initial state axiom.

A consistent set of positive and negative scenarios for this system are given by the following formulae:

spu1
= 〈signalCriticalMethane, signalHighWater, turnPumpOn〉− (34)

spu2
= 〈signalCriticalMethane, signalAlarm〉− (35)

spu3
= 〈signalLowWater, turnPumpOn〉− (36)

spex1
= 〈signalNotCriticalMethane, signalHighWater, turnPumpOn〉+. (37)

Applying the translation τ to the specification and scenario properties above results in an ILP theory B composed of the EC
core axioms and the following clauses:

initiates(signalCriticalMethane, criticalMethane, T , S).
terminates(signalNotCriticalMethane, criticalMethane, T , S).
initiates(signalHighWater,highWater, T , S).
terminates(signalLowWater,highWater, T , S).
initiates(turnPumpOn,pumpOn, T , S).
terminates(turnPumpOff ,pumpOn, T , S).
triggered(turnPumpOff , T , S) ← holdsAt(criticalMethane, T , S),holdsAt(pumpOn, T , S).

attempt(signalCriticalMethane,0, spu1
). attempt(signalHighWater,1, spu1

).
attempt(turnPumpOn,2, spu1

). attempt(signalCriticalMethane,0, spu2
).

attempt(signalAlarm,1, spu2
). attempt(signalLowWater,0, spu3

).
attempt(turnPumpOn,1, spu3

). attempt(signalNotCriticalMethane,0, spex1
).

attempt(signalHighWater,1, spex1
). attempt(turnPumpOn,2, spex1

).

In addition, the translation produces the following set of ILP examples (for convenience, only the literals containing system
events are shown here as the environmental events are trivially explained by the prior theory):

not happens(turnPumpOn,2, spu1
). not happens(signalAlarm,1, spu2

).
not happens(turnPumpOn,1, spu3

). happens(turnPumpOn,2, spex1
).

In order for XHAIL to learn pre- and trigger-conditions, the following mode declarations are used.
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modeh(∗, impossible(#event,+time,+scenario))

modeh(∗, triggered(#event,+time,+scenario))

modeb(∗,holdsAt(#fluent,+time,+scenario))

modeb(∗,not holdsAt(#fluent,+time,+scenario)).

(38)

These mode declarations ensure the hypothesis space HS consists of clauses of the form (18) and (19) with atoms
impossible(e, T , S) and triggered(e, T , S) in the head and literals of the form (not) holdsAt(e, T , S) in the body.

When applied to the inputs B , E and M , XHAIL computes the smallest size of abductive explanation and returns 27
minimal explanations each containing 3 atoms. One of these is the set Δ =

triggered(turnPumpOff ,2, spu1
)

triggered(signalAlarm,1, spu2
)

triggered(turnPumpOff ,1, spu2
)

impossible(turnPumpOn,1, spu3
).

(39)

The abductive computation of the predicate triggered makes use of the rule (6) of the EC core axioms. This enables the
explanation of not happen(turnPumpOn,2, spu1

) in E in terms of the abductive assumption triggered(turnPumpOff ,2, spu1
) for

the event turnPumpOff different from the system event turnPumpOn. Similarly for the other triggered abductive assumptions.
The following set K 1 is generated from the above abductive explanation.

triggered(turnPumpOff , X1, X2) ← holdsAt(criticalMethane, X1, X2),

not holdsAt(pumpOn, X1, X2),not holdsAt(highWater, X1, X2).

triggered(turnPumpOff , X1, X2) ← not holdsAt(criticalMethane, X1, X2),

not holdsAt(highWater, X1, X2),not holdsAt(pumpOn, X1, X2).
(40)

impossible(turnPumpOn, X1, X2) ← holdsAt(criticalMethane, X1, X2),

holdsAt(highW ater, X1, X2),not holdsAt(pumpOn, X1, X2).

Similarly, the following set K 2 is computed as an alternative explanation.

triggered(turnPumpOff , X1, X2) ← holdsAt(criticalMethane, X1, X2),

not holdsAt(pumpOn, X1, X2),not holdsAt(highWater, X1, X2).

triggered(turnPumpOff , X1, X2) ← holdsAt(criticalMethane, X1, X2),

not holdsAt(pumpOn, X1, X2),not holdsAt(highWater, X1, X2).
(41)

triggered(signalAlarm, X1, X2) ← holdsAt(criticalMethane, X1, X2),

holdsAt(highWater, X1, X2),not holdsAt(pumpOn, X1, X2).

Both are generalised to give the following maximally compressive hypotheses H1 =
triggered(turnPumpOff , X1, X2) ← not holdsAt(highWater, X1, X2).

impossible(turnPumpOn, X1, X2) ← holdsAt(criticalMethane, X1, X2). (42)

and H2 =
triggered(turnPumpOff , X1, X2) ← holdsAt(criticalMethane, X1, X2),

triggered(turnPumpOff , X1, X2) ← not holdsAt(highWater, X1, X2). (43)

triggered(signalAlarm, X1, X2) ← holdsAt(criticalMethane, X1, X2),holdsAt(highWater, X1, X2),

corresponding to the correct extensions

�(¬highWater → ©turnPumpOff )

�(criticalMethane → ©¬turnPumpOn)
(44)

stating that the pump should not be turned on whenever the methane level is critical; and that it should be turned off
whenever the water level is not above the threshold, and

�(criticalMethane → ©turnPumpOff )

�(¬highWater → ©turnPumpOff )

�(criticalMethane ∧ highWater → ©signalAlarm)

(45)
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stating that the pump should be turned off whenever the methane level is critical or whenever the water level is not
high.

Any computed solution is guaranteed to be correct with respect to the given set of scenario properties. However, the
choice among the possible sets of correct extensions is left to the engineer.

5. Related work

Other automated reasoning techniques have increasingly been used in requirements engineering [3,4,10,25]. Among these,
the work most related to our approach is [10], where an ad-hoc inductive inference process is used in which high-level goals,
expressed as temporal formulae, are derived from manually attuned scenarios provided by stakeholders. Each scenario is
used to infer a set of goal assertions that explains it. Then each goal is added to the initial goal model, which is then
analyzed using state-based analysis techniques (i.e. goal decomposition, conflict management and obstacle detection). The
inductive inference procedure used in [10] is mainly based on pure generalisation of the given scenarios and does not take
into account the given (partial) goal model. It is therefore a potentially unsound inference process by the fact that the
generated goals may well be inconsistent with the given (partial) goal model. Our approach, on the other hand, allows
the goals to be expressed as part of the background knowledge for the learning, thus constraining the system to produce
only those requirements that are consistent with the given goals. Our learned required preconditions can therefore be
automatically added to the existing goal model.

The work in [3] also proposes the use of inductive inference to generate behaviour models. It provides an automated
technique for constructing LTSs from a set of user-defined scenarios. The synthesis procedure uses grammar induction to
derive an LTS that covers all positive scenarios but none of the negative ones. The generated LTS can then be used for
formal event-based analysis techniques (e.g. check against the goals expressed as safety properties). Our approach, on the
other hand, uses the LTSA toolset [14] to generate the LTS models directly from (synchronous) goal models, so our LTS
models are always guaranteed to satisfy the given goals.

The ILP task defined in this paper is somewhat related to some earlier work in [18] and [17], where the ILP systems
Progol5 and Alecto were applied to the learning of domain-specific EC axioms. Like XHAIL, these procedures employ an
abductive reasoning module to enable the learning of predicates distinct from those in the examples—an ability that is
clearly required in this application. However, unlike XHAIL, they do not have a well-defined semantics for non-definite pro-
grams and their handling of negation is rather limited [24]. In fact, the inability of Progol5 and Alecto to reason abductively
through nested negations means that neither of these systems can solve the case study presented in this paper. Some re-
lated approaches for inferring action theories from examples are presented in [13] and [22], which reduce learning in the
Situation Calculus to a monotonic ILP framework. These approaches work by pre- and post-processing the inputs and out-
puts of a conventional Horn Clause ILP system. This technique is very efficient, but is not as general as our own approach.
An alternative method for nonmonotonic ILP under the stable model semantics is proposed in [26], but cannot be used in
our case study because it assumes the target predicate is the same as the examples. [26] also includes a thorough review of
previous work on non-monotonic ILP.

6. Conclusion and future work

This paper presents a method for extending a partial system specification with event pre-conditions and trigger-
conditions from information provided by user scenarios using ILP. This involves transforming the initial specification and
scenarios from an LTL representation into an EC logic program which is then used by a non-monotonic ILP system to learn
the missing requirements. By exploiting the semantic relationship between LTL and EC, the approach provides a sound ILP
computational “back-end” to a temporal formalism familiar to Requirements Engineers.

The approach could be adapted to learning partial system descriptions from example. This would correspond to learning
initiates and terminates EC rules. In this way we would be able to provide support for the computation of system specifica-
tions from scenarios, as well as operational requirements, allowing the stakeholders to convey such descriptions purely in
terms of narrative-style scenarios of system behaviours, rather than LTL representations.

Furthermore, within the context of learning triggers, the above approach can be adapted to learn trigger-conditions di-
rectly from scenarios rather that the core axiom (6). In such cases, we would define other forms of universal and existential
scenario properties. For instance, a universal scenario property for a trigger-condition would be (

∧
1�i�n−1 ©iei → ©ne)

meaning that any sub-path that satisfies the prefix
∧

1�i�n−1 ©iei should immediately be followed by the event e. An

existential universal scenario could be of the form (
∧

1�i�m−1 ©iei ∧ ©m¬e) meaning that there is at least one path that
satisfies the prefix and in which e is not triggered immediately afterwards. In this case, the learning would compute a set
of trigger-conditions that cover all universal scenario properties of the above form and is consistent with those captured by
the existential one. Clearly, the translation function described in Definition 3.5 would need to be adjusted to capture the
different semantics in the EC program between the translation of universal scenario property described above and the pos-
itive existential scenario property of the form (16). Similarly, it would need to reflect the difference between the existential
scenario property described above and the negative universal scenario property of the form (17). Furthermore, additional
core axioms may be required to distinguish between events occurring due to a trigger-condition being satisfied (i.e. captured
by the EC rule (5)) and ones which can occur merely because of their possibility (i.e. captured by the EC rule (4)).
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It is assumed in this paper that scenarios are provided by stakeholders. Current work involves integrating ILP and model
checking techniques, for instance those presented in [2,11], such that undesirable scenarios are generated automatically
using model checking tools. A current assumption of the approach described in this paper is that the scenarios provided
to the ILP technique are complete in the sense that events appearing in the sequence are the only events that occur. An
area for future research is to relax these assumptions and learn operational requirements from incomplete scenarios that
satisfy a given specification. Furthermore, system specifications are assumed to be asynchronous. By that we mean that
the specification is expected to be satisfied at every position in a path of an LTL model. In goal-oriented requirements
engineering approaches, system specifications are usually represented synchronously, i.e. the specification is assumed to
hold at certain time points rather than positions. We therefore aim to extend the approach to handle learning synchronous
specifications as well as asynchronous ones. Future research also includes extending the specification with other forms of
operational requirements such as postconditions which capture additional conditions on fluents that must (not) hold as
a consequence of executing event e written as �(e → ∧

1�i�n(¬) f ). Finally, a main focus of interest is to incorporate
user-defined goals in the learning process to guarantee that the learnt requirements satisfy the stakeholders’ goals.
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