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ABSTRACT
Most approaches for adaptive systems rely on models, par-
ticularly behaviour or architecture models, which describe
the system and the environment in which it operates. One of
the difficulties in creating such models is uncertainty about
the accuracy and completeness of the models. Engineers
therefore make assumptions which may prove to be invalid
at runtime. In this paper we introduce a rigorous, tiered
framework for combining behaviour models, each with dif-
ferent associated assumptions and risks. These models are
used to generate operational strategies, through techniques
such controller synthesis, which are then executed concur-
rently at runtime. We show that our framework can be used
to adapt the functional behaviour of the system: through
graceful degradation when the assumptions of a higher level
model are broken, and through progressive enhancement
when those assumptions are satisfied or restored.

Categories and Subject Descriptors
D2.1 [Software Engineering]: Requirements/Specifications

General Terms
Design, Reliability, Theory

Keywords
Adaptive systems, controller synthesis, planning, reliability

1. INTRODUCTION
Many approaches for adaptive systems make use of various

kinds of models, both in the design phase, and as an explicit
artefact used during execution to guide decision-making pro-
cesses. These models, these abstractions, are necessarily
idealisations of the system or world that they describe, cre-
ated with a certain purpose in mind [47]. The reasoning
behind such idealisation is well understood: a ‘complete’
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model would be intractable, both to create and to use com-
putationally; and, moreover, there is a tacit understanding
that the omitted detail is the very detail which is potentially
incompatible with the purpose of the model. In other words,
we make simplifying assumptions to ensure that the model
supports the purpose we have in mind.

Any model, then, introduces uncertainty [21] and risk into
the engineering process. We cannot be certain that our cho-
sen assumptions are valid (and will always hold), risking
undesirable consequences when the assumptions are broken.
One of the aims behind research in adaptive systems is to
mitigate this risk (arising from design-time uncertainty) by
making decisions with information available at runtime, par-
ticularly in difficult, unpredictable environments that are li-
able to change [4].

In particular, certain approaches for adaptive systems use
runtime representations of their operating environment [30,
22] and algorithmic techniques (e.g. planning [5, 44] and
controller synthesis [38, 18]) that can produce, from envi-
ronment models, operational strategies for the system to
achieve its goals. Such models are idealised because the al-
gorithmic complexity of dealing with a ‘complete’ model of
the real world would be prohibitive in time and space, and
because stronger assumptions can be relied upon to support
more sophisticated system goals. The stronger the assump-
tions are, the more enhanced functionality can be guaran-
teed. Conversely, very little can be guaranteed in a world
where ‘everything’ can go wrong.

Despite the important trade-offs involved in fixing envi-
ronment assumptions, existing work on adaptive systems
proposes designs in which only one environment model is
permitted [44, 18, 45, 20] hence fixing the level of risk to
be taken and the goals that can be achieved. Further, the
resulting system loses robustness with respect to invalid as-
sumptions: when the environment does not behave as as-
sumed, either the system fails completely or continues exe-
cuting but guarantees can no longer be provided.

In this paper we address the general question of how the
planning layer in adaptive systems should be designed to
support multiple environment models with different associ-
ated risk and guaranteeable levels of functionality, and how
such a design can be used to provide graceful degradation
and progressive functional enhancement at runtime accord-
ing to the validity of the assumptions each model makes.

We propose a general multi-tier modelling, planning and
enactment framework for adaptive systems and describe the
conditions under which it guarantees graceful degradation
and progressive enhancement. The framework is general in



various dimensions. First, it defines the relations that must
hold between tiers without fixing the specific techniques used
at each tier to automatically construct goal achievement
strategies, i.e. controllers. Secondly, it does not fix the
number of tiers required. Thirdly it supports both state-
sensing adaptive strategies such as in reactive plans [44] and
event-sensing strategies such as in [18], or combinations of
both.

Figure 1: Multi-tier control problem

The key requirements the framework imposes in order
to guarantee graceful degradation and progressive enhance-
ment are that (see Figure 1): (i) higher-level environment
models must be simulated by lower-level environment mod-
els, capturing a notion of idealisation of higher-level models;
(ii) higher-level controllers used to achieve enhanced func-
tionality must be simulated by controllers used at lower lev-
els, ensuring a consistent overall strategy; (iii) the runtime
infrastructure must be capable of detecting when an incon-
sistency between an environment model (in any tier) and the
runtime environment occurs; (iv) a sound automated replan-
ning procedure for each tier that is expressive enough to deal
with the system goals for its tier must be provided, allowing
progressive system enhancement after inconsistencies have
been detected.

The framework’s enactment procedure continuously mon-
itors the environment and concurrently executes a stack of
controllers giving priority to the controller of the uppermost
enabled tier. It continuously updates the current state of all
environment models based on monitored actions and sensed
state, disabling tiers should an inconsistency be detected.
At any point, to improve the provided functionality, a re-
planning attempt may be made for the lowest disabled tier.
Based on the current state of the enabled tier immediately
below, the state of the disabled tier is approximated and an
attempt is made to build a controller that will work despite
the uncertainty about the current state of the tier. Should
a controller exist, it is put into the controller hierarchy and
the tier is enabled.

In addition to an analytical validation of our approach,
providing theoretical results for graceful degradation and
progressive enhancement, we examine feasibility by instan-
tiating the framework with three different combinations of
goal types and synthesis algorithms. We show how the ad-
ditional constraints on synthesis imposed by the framework
can be achieved in general from multi-tier safety properties
and how liveness can also be incorporated. The last instanti-
ation also shows how very robust techniques such as reactive
plans can be combined with less robust but highly expressive
memory-based synthesis techniques.

The rest of the paper is summarised as follows. A mo-
tivating example is discussed in Section 2 and background
definitions are given in Section 3. The framework is pre-
sented in Section 4 and validation is presented in Section 5.
We then end with a discussion, related work and conclusions.

2. MOTIVATING EXAMPLE
We first motivate our work by considering the control

system for an automated warehouse that fulfils orders con-
sisting of a number of products selected from a wide range
stocked by the warehouse. One or more mobile robots move
products from the supplier area into their storage slots, and
fulfil the orders by collecting products into a bag or parcel
for delivery to the customer. Complete orders are moved to
the delivery area. Suppliers are obliged to supply the ware-
house with products, but supply issues or demand for some
products may mean that the warehouse runs out of stock. In
this case, it is permissible that incomplete orders are deliv-
ered. The warehouse is however obliged to store all products
that are supplied. Within the warehouse a number of tech-
nical issues can arise. Factors such as wheel slip can impact
the reliability of robot navigation, so that robots may arrive
in unintended locations. In addition, the product storage
slots can report an erroneous stock level, and can jam when
depositing an item on a robot.

We wish to build a strategy (C3) that guarantees the goal
property (G3) that the warehouse continually delivers com-
plete orders. This strategy would involve the robot’s visiting
all the appropriate storage slots for the products in an order,
taking an item from those slots, taking the complete order to
the delivery point, and also moving products from the sup-
ply area at relevant times to maintain stock. Such a strategy
makes various assumptions: (i) all products are (eventually)
in stock; (ii) the storage slots report the correct stock levels
and (iii) do not jam; and (iv) the robot moves reliably to all
necessary locations. The environment usually satisfies these
assumptions but can ‘win’ by breaking these assumptions in
exhibiting technical problems or by not supplying products.
This will cause C3 to fail from time to time.

However, there is a weaker goal (G2), which is that orders
with at least one product in stock are continually delivered.
The strategy (C2) for this goal makes weaker assumptions:
(i) one product is (eventually) in stock; (ii) one storage slot
reports the correct stock level and (iii) does not jam; and
(iv) the robot moves reliably to all necessary locations. The
environment can however continue to frustrate the system
with continual failure of the storage slots or the robot.

There is an even weaker goal (G1) that can be maintained
with failing storage slots, which is that supplied products
are moved from the supply area to the storage slots. The
corresponding strategy (C1) assumes only that the robot can
move reliably between the supply area and the storage slots.

Suppose that the system is initially executing strategy C3,
and one of its assumptions is violated, such that G3 cannot
be achieved. A common solution is to monitor the environ-
ment and detect when the assumptions are violated [48, 39].
But what should the system do when a violation is detected?
How can it proceed from its current state? We would like
the system to be designed in such a way that it continues
from its current state with a strategy for the weaker G2, or,
in the worst case, ensures G1 is maintained until an engineer
can resolve the problem. In other words, the functionality



of the system should undergo graceful degradation when en-
vironmental assumptions are violated.

In this example, the assumptions of C3 are likely to hold
most of the time, and so, after a period of degraded function-
ality, we would like the system to attempt to start providing
G3 again, without needing to reset or stop the system com-
pletely. We call this process progressive enhancement.

Our objective in this work is to develop an approach for
adaptive systems that deals with multiple tiers of goals and
assumptions, giving multiple tiers of functionality.

3. BACKGROUND
We use labelled transition Kripke structures to describe

behaviour of the environment and the system. Transitions
are labelled with names of actions, some of which the system
can monitor or control. States have associated propositions
which also may be monitored by the system.

Definition 3.1. (Labelled Transition Kripke Structure)
A labelled transition Kripke structure (LTKS) is E = (S, A,
P, ∆, v : S → 2P , S0), where S is a finite set of states, A =
AC ] AM is the communicating alphabet which we assume
is partitioned into controlled and monitored actions, P is a
set of propositions, ∆ ⊆ (S×A×S) is a transition relation,
v : S → 2P is a valuation function for states, and S0 ⊆ S is
the set of initial states. A trace of E is π=s0, `0, s1, `1, · · · ,
where s0 is an initial state of E and, for every i ≥ 0, we
have (si, `i, si+1) ∈ ∆. We denote the set of infinite traces
of E by Tr(E).

In order to describe the enactment of controllers in later
sections, we introduce notation to describe possible updates
of the initial state of an LTKS

Definition 3.2. (LTKS Updates) Given an LTKS E =

(S,A, P,∆, v, S0) with A = AC ] AM , we write E
ac−→ for

ac ∈ AC if for all s ∈ S0 there exists (s, ac, s
′) ∈ ∆. Other-

wise we write E
ac

6−→. If am ∈ AM we (overload and) write

E
am−→ if there is s ∈ S0 such that there exists (s, am, s

′) ∈ ∆.

Otherwise we write E
am

6−→. If E
a−→ for a ∈ A then we

write E
a−→ E′ when an a action is taken from all states

with outgoing a transitions (i.e. E′ = (S,A, P,∆, v, S′0)
and S′0 = {s′|(s, a, s′) ∈ ∆ ∧ s ∈ S0}). We say that E
is consistent with a set of propositions V ⊆ P (denoted

E
V−→) if there is s ∈ S0 such that v(s) = V . We write

E
V−→ E′ when E′ has a reduced set of initial states with

respect to E based on V (i.e. E′ = (S,A, P,∆, v, S′0) where
S′0 = {s|s ∈ S0 ∧ v(s) = V }).

Definition 3.3. (Parallel Composition) Let M = (SM ,
AM , PM , ∆M , vM , SM0) and E = (SE, AE, PE ,∆E, vE,
SE0) be LTKSs with AM = AM

C ]AM
M and AE = AE

C ∪AE
M .

Parallel composition ‖ is a symmetric operator such that
E‖M is the LTKS E‖M = (S,AE ∪AM , PM ]PE ,∆,v, S0),
where S = {(se, sm) ∈ SE × SM |v(sm) ∩ PE = v(se) ∩ PM},
S0 = {(se, sm) ∈ S|se ∈ SE0 ∧ sM ∈ SM0}, v((se, sm)) =
vM (sm)∪vE(se), and ∆ is the smallest relation that satisfies
the rules below, where ` ∈ AE ∪AM :

E
`−→E′

E‖M `−→E′‖M
`∈AE\AM

M
`−→M′

E‖M `−→E‖M′
`∈AM\AE

E
`−→E′,M

`−→M′

E‖M `−→E′‖M′
`∈AE∩AM

We restrict attention to states in S that are reachable from
S0 using transitions in ∆.

Definition 3.4. (Simulation) Let ℘ be the universe of all
LTKSs with communicating alphabet A. Given E and F in
℘, we say that E simulates F , written E ≥ F , when (E,F )
is contained in some simulation relation R ⊆ ℘ × ℘ such

that for all ` ∈ A and (E,F ) ∈ R we have E
`−→ E′ implies

that there is F ′ such that F
`−→ F ′ ∧ ∀sE ∈ init(E′) · ∃sF ∈

init(F ′) · v′E(sE) = v′F (sF )∧ (E′, F ′) ∈ R.

We are interested in distinguishing controlled from moni-
tored actions and ensuring that when composing LTKSs, one
controller never blocks the other’s controlled actions. This
notion captured by interface automata [17] is used here for
LTKSs.

Definition 3.5. (Legal Environment) Given LTKSs E
and F defined over communicating alphabets AE and AF

that are partitioned into the sets (AEC , AEM ) and (AFC ,
AFM ) of controlled and monitored actions such that AEC =
AFM and AFC = AEM , we say that F is a legal environment
for E if for all (sE , sF ) ∈ E‖F it holds that ∆E(sE)∩AEM ⊇
∆F (sF ) ∩AFC and ∆E(sE) ∩AEC ⊆ ∆F (sF ) ∩AFM .

Control problems are typically defined over a simplified
form of LTKS in which the set of propositions is empty.

Definition 3.6. (Labelled Transition Systems) A Label-
led Transition System (LTS) is an LTKS E = (S, A, P, ∆,
v, S0), where P = ∅. We will sometimes refer to an LTS as
a tuple E = (S, A, ∆, S0).

The problem of controller synthesis is to automatically
produce a state machine that restricts the occurrence of ac-
tions it controls, based on its observation of the actions that
have occurred and the propositions it can sense from the
current state of the environment, so that when deployed in
a given environment a given goal holds. We do not prescribe
the logic used to describe goals nor the algorithms used to
solve control problems. Hence, we simply assume a satisfac-
tion relation |= for LTSs and the logic used to express goals.
We abuse notation referring to control problems for LTKS
when we are referring to the control problem resulting from
removing state valuations from the LTKS.

Definition 3.7. (LTS Control) Given a specification for
an environment in the form of an LTS E ∈ ℘ and a goal
G expressed in some logic L and a satisfaction relation |=⊆
℘×L, a solution for the LTS control problem E = 〈E,G〉 is
a deterministic LTS C such that C is a legal environment
for E, E||C is deadlock free, and E||C |= G.

4. MULTI-TIER CONTROL
We now define a general framework for adaptive systems

that supports graceful degradation and progressive enhance-
ment. We first explain the framework’s preconditions and
initialisation procedure, and then explain how it is executed
and finally discuss more formally its guarantees regarding
graceful degradation and progressive enhancement. A gen-
eral overview of the framework is given in Figure 2. The
overview is linked to the pseudocode in Figure 3 represent-
ing the runtime behaviour of the framework by means of the

A . . . M markers to aid the reader. The pseudocode in

turn uses definitions provided in this section.



Figure 2: Framework

4.1 Preconditions and Initialisation
The framework requires initialisation through human in-

tervention: a set of environment models and goals must
be provided. The environment models are expected to be
ranked in terms of the degree of idealisation of the envi-
ronment they represent. We assume that the environment
modelM0 is the least idealised model of the environment and
require that environment models further up the hierarchy al-
low strictly less behaviour. This can be formally captured
via a simulation relation, Mi ≥ Mj for i < j. Note that
in order to simplify presentation we require environment
models to have the same communicating alphabets parti-
tioned identically into controlled and monitored actions. In
summary, the less idealised the environment model is, the
more behaviour (in terms of unexpected actions and non-
determinism) may arise.

Each tier (0 ≤ i ≤ n) has an associated goal (Gi) to
be achieved by the system assuming that the environment
conforms to the environment model for that tier (Mi).

Each tier introduces a control problem Ei = 〈Mi, Gi〉 to
be solved. However, there is an additional constraint: each
controller must be simulated by controllers in lower tiers
(Ci ≥ Cj for i ≤ j). Intuitively, this requires that a con-
troller at a higher tier never do something that a controller
of a lower tier would not do, thus ensuring that if a controller
at a higher tier must be stopped, because the assumptions
for its tier are discovered to not hold, decisions made by it
up to that point have been consistent with lower tier con-
trollers. In other words, it allows for graceful degradation,
falling back to lower tier controllers when needed.

The requirement that the controller hierarchy preserve
simulation may make solving the set of control problems

Ei = 〈Mi, Gi〉 more difficult. In particular the existence of
a solution for each Ei does not in general guarantee that
there exists a solution for each Ei that also preserves sim-
ulation between controllers. In Section 5 we discuss how
this can be achieved for a variety of controller synthesis and
planning algorithms. Note that an alternative, näıve re-
quirement would be that higher-level goals entail lower-level
goals (Gi =⇒ Gj for j ≤ i). However, this requirement is
too weak as different tiers may chose different strategies to
achieve lower-level goals.

We assume that the environment models and goals for
tiers 1 to n are provided by engineers. However, tier 0 is set
automatically (lines 2 and 3) to solve the control problem
E0 = 〈M0, true〉 where M0 is the most general environment
model (an LTKS where states represent all possible results
of sensing the environment and all states are connected for
all actions). M0 is guaranteed to simulate any M1 manually
provided. The controller C0 used to solve E0 is the most
permissive controller, i.e. one that allows any controlled
action at any point in time. C0 is guaranteed to not restrict
the possible solutions of E1 as it will simulate any controller.

We assume a planning operation (line 8 and Definition 4.1)
that is executed bottom-up through the tiers (lines 6-10).
The operation attempts to build a controller that solves the
control problem in a tier while being simulated by the con-
troller for the tier immediately below.

Definition 4.1. (Planning Operation) The planning op-
eration applied to tier i > 0 either returns null or a con-
troller Ci such that it is a solution to the control problem
Ei = 〈Mi, Gi〉 and Ci ≥ Ci−1.

Note that the initialise procedure does not require that
the planning operation be successful for all tiers (line 10).
It is possible that the system starts in a degraded mode and
later and progressively enhances its behaviour as controllers
for higher tiers are built.

The algorithm in Figure 3 avoids, for simplicity, explicit
treatment of synchronisation between the Enactor and Plan-
ner processes. We assume an implementation of the Planner
which minimises the locking time of S so as not to block the
Enactor’s execution. One such implementation would be
that S is only locked once a viable plan has been built and
at the end of the execution of the Enactor’s while block. To
avoid interference, the new controller is inserted only if S has
not changed while the Planner was computing the controller
(i.e. no sensed or actuated actions).

4.2 Framework Execution
We now describe how the framework is executed. The key

data structure the framework relies upon is called the frame-
work state. It contains the environment models M0, . . . ,Mn

which have their initial states updated as controlled actions
are actuated or changes in the runtime environment are
sensed. The structure also contains controllers C0, . . . , Cn

which are used to decide which controlled action to take and
whose initial states are also updated. In addition, the data
structure records the current functional level (q) of the sys-
tem (i.e. the highest level for which the runtime environment
is believed to conform to the environment model).

Definition 4.2. (Valid Framework State) We define the
framework state as a tuple (M0, . . . ,Mn, C0, . . . , Cn, q) where



1 initialise(M1 ... Mn, G1 ... Gn)
2 M0 = Planner.getModel0();
3 C0 = Planner.getController0();

4 s = ((M0, M1 ... Mn), (C0), 0); A

5 q = 0;
6 do
7 q++;

8 Cq = Planner.plan(s, q); L

9 s.setController(Cq, q); D

10 while (c 6= null && q ≤ n);

11 s.setFuncLevel(q); E

12 fork enactor();
13 fork planner();
14
15 planner()
16 while (true)
17 q = s.getFuncLevel();
18 if (q < n)
19 Mq = s.getModel(q);
20 Mq+1 = s.getModel(q+1);
21 states = Mq+1.getStatesSimulatedBy(Mq);
22 if (! states.empty())
23 Mq+1.setInitStates(states);

24 Cq+1 = Planner.plan(s, q+1); L

25 if (Cq+1 6= null)

26 s.setController(Cq+1, q+1); D

27 s.setModel(q+1, Mq+1); M

28 s.setFuncLevel(q+1);
29
30 enactor()
31 while (true)
32 if (s.getFuncLevel() ≥ 1)

33 v = runtime.senseState(); I

34 s = (s . v); H

35 if (s.getFuncLevel() ≥ 1)

36 am = runtime.senseAction(); I

37 if (am 6= null)

38 s = (s . am); H

39 else
40 Cq = s.getController(s.getFuncLevel());

41 ac = Cq.pickEnabledContAction(); J

42 if (ac 6= null)

43 runtime.actuate(ac); K

44 s = (s . ac); H

Figure 3: Framework’s runtime behaviour

Mi are the environment models and Ci are the controllers
with 0 ≤ i ≤ n, and 0 ≤ q ≤ n. We say that a frame-
work state is valid (with respect to goals G0, . . . , Gn) if for
all 0 ≤ i ≤ q the following hold: i) Ci is a solution to
Ei = 〈Mi, Gi〉, ii) Mj ≥Mi for 0 ≤ j ≤ i, and iii) Cj ≥ Ci

for 0 ≤ j ≤ i. We say that an framework state is providing
functional level i if i = q.

Succinctly, the enactment of the controller stack stored
in the framework state is performed by executing all con-
trollers concurrently whilst prioritising the decision of higher
tier controllers. The Enactor executes a loop in which the
runtime environment is sensed (lines 33 and 36) or actuated
upon (line 43) and the framework state is updated accord-
ingly (lines 34, 38 and 44).

The framework state update operation (S . x where x
represents either a monitorable action or sensed runtime en-
vironment state) updates each environment model and con-
troller in the data structure and, crucially, decrements the
functional level q appropriately to capture the highest level
for which the sensed behaviour is consistent with the envi-
ronment model.

Definition 4.3. (Framework State Update) Let S = (M0,
. . . , Mn, C0, . . . , Cn, q) be a valid framework state. An up-
date of S for x (denoted S . x) where x is an action a or
a valuation V is a framework state S′ such that S′ = (M ′0,
. . . , M ′n, C

′
0, . . . , C

′
n, q
′) where 0 ≤ q′ ≤ q is the largest q′

such that Mq′
x−→, and where Mj

x−→ M ′j and Cj
x−→ C′j

for 0 ≤ j ≤ q′, and Mj = M ′j and Cj = C′j for q′ < j ≤ n.

The enactor procedure actually first senses the runtime
environment state and updates the framework state, then it
senses if any monitorable actions have occurred and updates
the framework state. Then if no monitorable actions have
occurred it picks a controlled action to actuate. It is impor-
tant to note that the controlled action is chosen based on the
actions that the controller on tier q allows (lines 40 and 41).
Thus, priority is given to the highest tier controller for which
the corresponding environment model is in a consistent state
with the runtime environment.

Thus, the framework is designed to support situations
in which the assumptions made in the various environment
models do not hold.

Definition 4.4. (Inconsistency) An inconsistency occurs
when the runtime environment is not simulated by the en-
vironment model of tier i and the system is running at a
functional level q ≥ i. Definition 4.3 detects inconsistency
between environment models and runtime environment when
(i) a monitored action ` occurs for which no outgoing tran-

sition from the current Mq state exists (i.e. Mi

`

6−→) or
when (ii) the sensed state (V ⊆ P ) of the environment is
inconsistent with the propositions of the current state of the

environment model (i.e. Mi

V

6−→).

When an inconsistency is detected, the Enactor will dis-
able the tier by lowering the functionality level to a q′ < i
and continue executing with a degraded service in which Cq′

is used to decide which actions to take and hence only goals
up to Gq′ will be guaranteed.

Note that as M0 and C0 are the most general environment
and controller models and G0 is true, it is always the case
that setting q = 0 yields a valid framework state.

The proposed framework supports progressive functional
enhancement by attempting to create new controllers for
tiers above the current functional level q (see planner in
Figure 3). The framework does not prescribe when replan-
ning must be attempted. In principle this can be done at any
time, however in practice replanning may be associated with
a clock or with heuristics related to environment modelling.

One difficulty of replanning is that once a tier i has been
disabled (i.e. q < i), the current state of the environment
model Mi has since then not been updated (see Defini-
tion 4.3). Thus, the current initial state of Mi is invalid.
This problem is solved by replanning bottom-up.

Consider the case in which the system is providing func-
tional level i − 1. In order to replan, the current state of
the environment according to Mi is re-established using the
current state of model Mi−1 and the fact that Mi−1 is re-
quired to simulate Mi. The Planner computes the largest
possible initial set of states for Mi such that Mi−1 simu-
lates Mi (lines 19 and 23). Recall that as tier 0 can never
be disabled, replanning is always performed for tiers 1 and
above.



Definition 4.5. (Initial State Inference) Let M = (S,A,
P, ∆, v, S0) and N be environment models. We say that M ′

is the result of inferring the initial states of M based on N
(denoted M ↓ N) if M ′ = (S,A, P,∆, v, S′0) is the LTKS
with the largest set of initial states such that N ≥M .

If the initial states for tier i can be inferred from tier
i − 1 then the Planner is used to solve the control problem
for level i as in Definition 4.1 (line 24). If successful, the
framework state is updated with new versions of Mi and Ci

(lines 26-27). In addition, the functional level of the system
is incremented by one (line 28).

Definition 4.6. (Framework State Enhancement) Let S =
(M0, . . . , Mn, C0, . . . , Cn, q) be a valid framework state with
q < n. If M ′q+1 = Mq+1 ↓ Mq and C′q+1 are the result of
replanning tier q + 1 for a framework state (M0, . . . ,M

′
q+1,

. . . ,Mn, C0, . . . , Cn, q) then state enhancement results in
(M0, . . . ,M

′
q+1, . . . ,Mn, C0, . . . , C

′
q+1,. . . , Cn, q + 1)

As indicated above, there is no guarantee that the func-
tional level will be enhanced when attempting to replan. It
may be impossible to infer the initial state of the next en-
vironment model up or there may not be a solution to the
resulting control problem for that tier. Should either be the
case, the framework state simply remains unchanged and no
enhanced functionality is provided.

4.3 Framework Properties
It is possible to prove that the framework correctly pro-

vides graceful degradation and progressive enhancement. A
proof is beyond the scope of this paper, however it is relevant
to describe the framework’s properties, the assumptions it
relies upon and discuss their implication1. The key result is
stated (informally) as follows:

Theorem 4.1. (Graceful Degradation) If the initial frame-
work state has a functional level q and the runtime environ-
ment exhibits behaviour π consistent with Mi with i < q
(i.e. π ∈ Tr(Mi)) then all goals up to level i are satisfied
(i.e. π |= Gj for all 0 ≤ j ≤ i).

Theorem 4.1 relies mainly on the fact the update opera-
tion (Definition 4.3) preserves state validity (Definition 4.2)
and particularly the functional level is set to exclude any
higher-level controller or environment model that cannot
follow the behaviour of the runtime environment. The key
assumption required for the proof is that the framework ex-
ecutes fast enough so as to never block its environment. In
other words we adopt the synchronous hypothesis [9] which
is commonplace in literature for reactive systems (e.g. [29])
and is appropriate in the context of architecture-level adap-
tation for which this framework is proposed.

Progressive enhancement relies on the fact that if the frame-
work state is valid and providing functional level i, a suc-
cessful replanning procedure (Definition 4.6) at tier i + 1
yields a valid framework state. The result follows straight-
forwardly from the definitions (Definition 4.1 and 4.6). Once
replanned, Theorem 4.1 is applicable from the resulting frame-
work state. As expected, replanning provides guarantees
from the point of replanning onwards and not from the start
of the execution of the system.

1For the reader’s convenience an Appendix with more a for-
mal exposition and proof sketch can be found in [1].

5. VALIDATION
In this section we aim to show the applicability of our

framework, by showing that it can support in practice a va-
riety of existing synthesis techniques, which differ in terms of
expressiveness and robustness. We do not focus on compu-
tational complexity or scalability because—beyond the fact
that each new tier introduces a further control problem—
these are properties that emerge from the choice of expres-
sive power of the languages used to express goals at each tier
and the corresponding synthesis procedures needed to solve
the resulting control problems.

We also aim to show that the additional requirements that
the framework imposes, chiefly the simulation requirement
between environment models and between controllers, can
be accommodated in a systematic and modular way, even
when the specific synthesis techniques used were not de-
signed to support these additional requirements.

Finally, we demonstrate how our framework can provide
a rigorous means to endow such synthesis techniques, which
may not have been developed with adaptive systems in mind,
with graceful degradation and progressive enhancement.

We discuss three instantiations of the framework, and
apply them to the problem domain taken from the exam-
ple in Section 2. Firstly we apply backward propagation
[41] to synthesise controllers for three tiers of safety goals,
where the uppermost is a bounded liveness goal. We as-
sume no state sensing capabilities (the environment models
are LTSs). Secondly, we replace the technique in the up-
permost tier with generalised reactivity (GR(1)) [37, 18] to
synthesise a controller for a liveness goal, while retaining
backward propagation for the safety goals in two lower tiers.
Finally, we replace the technique in the lowest tier with reac-
tive planning [42, 44], retaining backward propagation and
GR(1) for the two other tiers. Reactive planning requires
that we allow sensing.

Figure 4: Transporting products.

The problem domain is as follows (Figure 4). A robot
moves between three locations, and in certain locations the
robot can pick up or put down objects (products). We do
not explicitly model the passive objects that picking and
putting manipulate. The robot is capable of sensing whether
pick and put actions succeed or fail, but it has no capacity
for sensing its location. We wish to build a controller for
this robot that satisfies various requirements. Broadly our
objective is to have the robot move between locations w
and e, picking and putting at the appropriate moments. In
addition there are two safety requirements that are aimed
at preserving the physical integrity of the robot and the
environment: i) picking should not be performed at putting
locations and vice-versa, and ii) the robot should not pick if
it is holding a product, nor put if it is not holding a product.

The assumptions required to achieve these goals differ.
For example, succeeding in transporting products requires
reliable move, pick and put operations. Avoiding picking at



put locations requires reliable inference of the robot’s cur-
rent whereabouts. We define three tiers of models, where
the upper tier (tier 3) supports our transportation objective,
and the lower tiers support reduced functionality related to
physical safety.

Each instantiation is arranged in the same three tiers, with
some minor adjustments relating to the synthesis technique
employed. Although we describe the tiers top-down, the
framework is agnostic as regards methodology. The designer
may start with a realistic model and progressively idealise
it (bottom-up) towards satisfying a set of stronger goals, or
start with a strong goal and progressively weaken it (top-
down) towards something that can be satisfied in more re-
alistic models. Nevertheless, as previously noted, once the
models and goals are in place, synthesis happens bottom-up.

In all cases we discuss the domain models and goals in-
formally but also accompany these descriptions with Finite
State Processes (FSP) expressions [33] to describe domain
models and safety goals formally, and Fluent Linear Tempo-
ral Logic (FLTL) expressions [24] to formally describe more
expressive goals. Note that the FSP and FLTL are included
only to illustrate the input to the synthesis tools used, hence
background on these languages is not included.

5.1 Backward Propagation
In the first instantiation of the framework, we use back-

ward propagation [41] implemented in LTSA [2] to generate
controllers for three tiers of safety goals, where the goal for
the uppermost tier is a bounded liveness property.

The backward propagation algorithm synthesises a con-
troller by removing paths from the domain model LTS that
lead to the error state. The error state is introduced by
composition of the model with observer automata encoding
the safety properties.

The backward propagation technique does not necessarily
ensure that (individually generated) controllers satisfy the
simulation requirement of our framework. Thus for each tier
of the hierarchy we use the controller generated for the tier
below to restrict the domain model through parallel compo-
sition. This ensures that the upper controller does not in-
clude any behaviour that is not present (i.e. is unsafe) in the
lower controllers. This approach is only complete when us-
ing a synthesis technique that guarantees that the generated
controllers are maximal (that is, they contain all strategies
for achieving their goal), because a non-maximal controller
would restrict the upper controller more than strictly neces-
sary. Such is the case for safety properties.

5.1.1 Tier 3 Model (Most Idealised)
We start by modelling the problem domain at the most

idealised level, before considering more realistic models. The
GOOD_MAP is an idealisation of how the environment is ex-
pected to behave. The controlled actions are move, pickup
and putdown, while the other actions indicate how the envi-
ronment can respond. In particular, moving in some direc-
tion (east or west) is certain to lead to the correct location
(w, m, or e). For example, moving east from location w me-
ans the robot will arrive in location m. In addition, pickup
and putdown can only succeed in certain locations.

GOOD_MAP = (arrive[’w] -> MAP[’w]),
MAP[’w] = (move[’e] -> arrive[’m] -> MAP[’m]

| move[’w] -> arrive[’w] -> MAP[’w]
| putdown -> putsuccess -> MAP[’w]

| pickup -> fail -> MAP[’w]),
MAP[’m] = (move[’e] -> arrive[’e] -> MAP[’e]

| move[’w] -> arrive[’w] -> MAP[’w]
| putdown -> putfail -> MAP[’m]
| pickup -> fail -> MAP[’m]),

MAP[’e] = (move[’e] -> arrive[’e] -> MAP[’e]
| move[’w] -> arrive[’m] -> MAP[’m]
| putdown -> putfail -> MAP[’e]
| pickup -> success -> MAP[’e]).

The model of the (uncontrolled) robot is reused (without
changes) in all tiers. We compose the map with a simple
model of the robot to produce the idealised domain model.

ROBOT =
(move[Direction] -> arrive[Locations] -> ROBOT

| pickup -> {success,fail} -> ROBOT
| putdown -> {putsuccess,putfail} -> ROBOT).

||GOOD_DOMAIN = (ROBOT || GOOD_MAP).

5.1.2 Tier 3 Goals
Our primary requirement in this scenario is that the robot

repeatedly puts and picks. We encode this as a bounded
liveness property and find a controller using the same mech-
anism as with the other safety goals.

The overall goal is encoded as BOUNDLIVE, which states
that before the current time bound has been reached (ENDED),
there must have been successful pickup and putdown ac-
tions. The goal relies on the definition of two fluents. For
example, BEEN_PICKING becomes true after success and false
after reset. The COUNT process counts controlled actions, up
to the specified bound (MaxTime), at which point ended must
happen.

fluent BEEN_PICKING = <success, {reset}>
fluent BEEN_PUTTING = <putsuccess, {reset}>
fluent ENDED = <ended, reset>
ltl_property BOUNDLIVE = [](ENDED ->

(BEEN_PICKING && BEEN_PUTTING))
const MaxTime = 6
COUNT = COUNT[0],
COUNT[i:Times] = (CONT -> count[i] -> COUNT[i+1]

| ended -> reset -> COUNT),
COUNT[MaxTime+1] = ERROR.

We then synthesise a controller, hiding the arrive actions
as these are not actions the robot can monitor. As a result,
the controller will have to infer the current location from the
occurrence of other actions, while nonetheless satisfying the
goal. We use the idealised GOOD_DOMAIN since the bounded
liveness goal cannot be achieved in the non-ideal domains.
The LEVEL2_CONTROLLER is added to the safety goal to ensure
that the LEVEL3_CONTROLLER achieves the goals of, and can
be simulated by, the lower controllers.

||LEVEL3_SAFETY = (COUNT || RUNNING || BOUNDLIVE ||
LEVEL2_CONTROLLER).

deterministic ||SOGD3 =
(GOOD_DOMAIN||LEVEL3_SAFETY)\{arrive[Locations]}.
controller ||LEVEL3_CONTROLLER = (SOGD3)

fluents {...} controls {CONT,ended}.

The controller is then synthesised using an algorithm that
performs backward propagation from the error state.

5.1.3 Tier 2 Model
The next environment model, BAD_MAP, is less idealised,

and describes the possibility that moving in a certain di-



rection does not always lead to the expected location2. In
this model, due to the middle location being sunken, moving
out of the middle may not be successful and moving into it
may lead to an acceleration that makes the robot overshoot
its intended location. Later, when the arrive action is hid-
den, BAD_MAP will have a non-deterministic outcome for each
move. The BAD_DOMAIN simulates the GOOD_DOMAIN, as our
framework requires.

BAD_MAP = ...
MAP[’w] = (move[’e] ->

(arrive[’m] -> MAP[’m] |
arrive[’w] -> MAP[’w])

|move[’w] -> ...
||BAD_DOMAIN = (ROBOT || BAD_MAP).

5.1.4 Tier 2 Goals
The non-determinism of robot movements means that even-

tually reaching either location cannot be guaranteed and
thus product transportation cannot be achieved. However,
as movements predictably never make the robot go in the
opposite direction locations can be sufficiently approximated
to avoid picking at the put location and vice versa.

fluent AT[x:Locations] = <arrive[x],
{move[Direction],reset}>

ltl_property NO_PICK_W = [](pickup -> !AT[’w])
ltl_property NO_PUT_E = [](putdown -> !AT[’e])

Again we restrict the environment of this controller using
the controller from the tier below in order to ensure sim-
ulation, and we hide arrive actions making move actions
non-deterministic.

||LEVEL2_SAFETY = (NO_PICK_W || NO_PUT_E
|| LEVEL1_CONTROLLER).

deterministic ||SOBD2 =
(BAD_DOMAIN || LEVEL2_SAFETY)\{arrive[Locations]}.
controller ||LEVEL2_CONTROLLER = (SOBD2)

fluents {} controls {CONT}.

5.1.5 Tier 1 Model (Most Realistic)
The least idealised environment model, VERY_BAD_MAP, al-

lows movements to lead to any location and also includes
the possibility that the pickup and putdown actions fail in
the locations where they are meant to succeed (locations e
and w respectively). The VERY_BAD_DOMAIN simulates the
BAD_DOMAIN.

VERY_BAD_MAP = ...
MAP[’w] = (move[Directions] ->

arrive[x:Locations] -> MAP[x]
| pickup -> {success,fail} -> MAP[’m] ...

||VERY_BAD_DOMAIN = (ROBOT || VERY_BAD_MAP).

5.1.6 Tier 1 Goals
The tier 2 goal cannot be achieved under the weaker as-

sumptions of tier 1 as location cannot be reliably inferred.
However, avoiding picking (putting) when holding (not hold-
ing) a product is still possible in this harsher environment.

fluent PICKED = <success, putsuccess>
ltl_property PICKONCE = []!(PICKED && pickup)
ltl_property PUTONCE = []!(!PICKED && putdown)
||ALTERNATE = (PICKONCE||PUTONCE).

Having defined LEVEL1_SAFETY goal, we can now synthe-
sise a controller that is safe in VERY_BAD_DOMAIN.
2This can be due to wheel slip, or, in the case of our Nao H25
humanoid robot, which performs trilateration using visually-
identified landmarks, due to camera noise, unstable motion,
and an obscured line of sight.

5.1.7 Degradation & Enhancement
The resulting hierarchy of controllers provides a control

system in which the most demanding bounded liveness goal
(picking and putting) can be achieved if the environment
encountered at runtime is compliant. If the runtime envi-
ronment behaves as the BAD_DOMAIN or VERY_BAD_DOMAIN,
the system is nonetheless guaranteed to achieve its safety
goals. In other words, the system makes a best effort, given
the uncertainty about the runtime environment.

In order to observe how the controller stack operates de-
grades and enhances its functional level we simulated the
composition of Enactor(S) with various environments. We
used a model checker to generate traces that lead to Enactor
states in which service was degraded. These traces, when the
runtime environment is the VERY_BAD_DOMAIN, reveal situa-
tions where the tier 3 environment is unable to follow. One
such trace is arrive.w, move.e, arrive.w, count.0, move.e,
arrive.w, count.1, pickup, fail. In this case, the tier 3 con-
troller expects that after performing two move.e actions that
the robot will be in location e, and so pickup must succeed.
In fact, the non-determinism in the VERY_BAD_DOMAIN me-
ans that the robot is in location w and pickup must fail. At
this point the Enactor disables the LEVEL3_CONTROLLER and
continues with level 2.

At some later stage, the Enactor may attempt to achieve
its level 3 goal again. Interestingly, as the initial state of
the GOOD_DOMAIN is unknown and little can be inferred from
the current state of BAD_DOMAIN, the resulting controller for
tier 3 needs to be quite smart. In fact, replanned controllers
for tier 3 try to infer, through a series of recovery actions,
what their current location is before attempting to achieve
their goals as they would have, having known their current
location. For example, the new level 3 controller can start
by performing putdown because the success or failure of this
action reveals to the controller whether it is in location e or
not. Such recovery strategies are built automatically by the
planner.

5.2 Generalised Reactivity
In our second instantiation of the framework, we take

the three tiers of models as given in instantiation 1 and we
change the synthesis technique in tier 3 from backward prop-
agation to GR(1) [37]—an expressive subset of linear tem-
poral logic that includes liveness—implemented in MTSA
[18]. This technique allows us to specify liveness properties
without a bound which may be useful if the bound is un-
known and also may be computationally convenient if the
bound is known to be high. On the downside, if there is a
low bound, the additional computational complexity of solv-
ing GR(1) goals (polynomial) against backward propagation
(linear) results in a significant overhead.

Replacing the bounded liveness goal and backward propa-
gation technique of tier 3 with GR(1) and the MTSA synthe-
sis algorithm is straightforward. As before, the controller for
tier 3 is computed based on the composition of GOOD_DOMAIN
and the controller for tier 2. This is complete because con-
trollers for tier 1 and 2 are maximal. We discuss maximality
further in Section 5.4.

Although GR(1) limits the controllers above the tier in
which it is used, graceful degradation and progressive en-
hancement work in the same manner as with backward prop-
agation. If the level 3 controller throws an exception, then
execution continues with the level 2 controller. Likewise



when attempting to resume level 3, GR(1) is capable of gen-
erating recovery actions from a choice of starting states, as
happens with backward propagation.

5.3 Reactive Planning
In our final instantiation, we retain tiers 2 and 3 from the

second instantiation, and change the synthesis technique in
tier 1 from backward propagation to the more robust reac-
tive planning [44], again implemented in LTSA.

Although reactive planning uses the same core algorithm
as backward propagation (for safety properties), it differs in
that it envisages a different enactment mechanism which,
in addition to performing controlled actions and monitor-
ing uncontrolled actions, also directly senses propositions
about the environment to determine the current state. More
specifically, the enactment mechanism we adopt (see Figure
3) uses sensing to verify that the valuation of sensed vari-
ables (in the runtime environment, not any model) matches
the valuation in the current inferred (model) states. Note
that this scheme differs from the traditional reactive plan
enactment mechanism [42], which does not retain the model
at runtime and consequently is stateless.

In this instantiation we assume that the system, rather
than sensing the success or failure of pickup and putdown
actions, can sense if it is holding a product. Thus, the re-
sulting controller will be robust to unexpected events such as
the accidental dropping of a product, or manual intervention
placing a product into the robot’s hand.

In order to transform our pure LTS model for tier 1 into an
LTKS, required to perform reactive planning, we must label
the states with valuations of the sensed variables. Space
limitations prevent us from giving the full details here, but
the essential aspect is that fluents (in this case holding) are
defined to label the LTKS according to what can be sensed.

The enactment mechanism for reactive plans, in contrast
to backward propagation and GR(1), can raise exceptions
in two situations: when an unexpected monitored action oc-
curs, and when the valuation of sensed variables does not
match the valuation of the inferred current state. When
attempting to resume operation in this tier, the sensed vari-
ables can be used to narrow down the set of possible starting
states.

As no actions are performed “blindly”, reactive plan en-
actment is robust with respect to the unexpected impact
of actions on the environment. The limitation of reactive
planning is that the goals which can be achieved without
“remembering” what the system has done are limited. In
contrast, the GR(1) technique used in tier 3 infers the state
of the world from the history of controlled and uncontrolled
actions that have occurred, without checking at runtime the
correspondence of the inferred state with the runtime state.
Such approaches are less robust as they risk taking decisions
based on an incorrect assumption about what the current
state of the world is.

These two techniques had not, up to now, been combined
even in an ad hoc fashion. Our framework provides a gen-
eral mechanism for combining these and other techniques
and in this particular case results in a hybrid approach
that addresses the limitations of both while retaining their
strengths.

A critical aspect for the use of reactive planning in our
framework is that the underlying LTKS (rather than a rep-
resentation in the form of a condition-action table) is avail-

able. This is necessary to restrict the environment of the tier
above (level 2), so that the controllers meet the simulation
requirement. Further effort may be required to use reac-
tive planning tools (e.g. [10]) that do not make this LTKS
available in our framework.

5.4 Discussion
The demonstration shows how our framework can com-

bine synergistically and support the use of different con-
troller synthesis and planning techniques, particularly to
handle graceful degradation and progressive enhancement
even when these synthesis techniques were not developed
specifically to address the challenges present in engineering
adaptive systems. It also shows that the construction of
the controller stack can be engineered in a modular fashion
thereby avoiding an increase of complexity in the synthesis
algorithms used in each tier.

The main limitation enforced by the modular bottom-up
planning procedure is that, in order for the approach to be
complete, the controller for the tier below must be maximal
(i.e. encodes all possible strategies for achieving its goal).
This is always possible when the lower tier has a safety prop-
erty, but it is not always possible for liveness goals. This
means that attempting to build a controller on top of one
that achieves a liveness goal may fail due to the fact that the
strategy used for liveness is inconsistent with the higher tier
goal even though a different strategy for liveness would have
allowed a controller for the higher-level goal. Note however
that this incompleteness does not mean that tiers cannot be
stacked on top of liveness goals. If the Planner can build
a controller for the next tier up graceful degradation and
progressive enhancement are guaranteed.

Although it is likely that in many practical applications
safety properties will be expected to be achieved in the lower
(more robust) tiers, we believe that more sophisticated com-
plete synthesis techniques will have to be specifically tai-
lored to allow stacking tiers on top of liveness properties.
The lack of limitations on lower-tier safety properties allows
flexible treatment of different kinds of safety properties such
as those related to physical integrity of human life, of the
system itself or other environment agents, or required and
nice-to-have properties.

6. RELATED WORK
Our work in this paper touches on a range of related top-

ics. We cannot give an exhaustive list here, but in the fol-
lowing we summarise some of the related work.

Our work concerns techniques for synthesising behaviour,
a broad field that draws from program synthesis (e.g. [34]),
model driven development (e.g [25, 8, 49, 32]), planning
(e.g. [42, 10, 44]) and supervisory control (e.g. [37]).

Our framework, to be instantiated, relies on the exten-
sive work that has been developed in the areas of discrete
event planning [42, 10, 44] and supervisory control [37, 18]
which has focused on augmenting the expressiveness of goals
that can be automatically achieved and the complexity of
building strategies for achieving them (e.g. [28]). We are
bound by these results, which have been shown to allow ap-
plication of these techniques in practice (e.g. [31]). Other
planning-based approaches, particularly within the area of
adaptive systems, include PLASMA [45], which employs re-
active planning for architectural assembly, and others that
use planning for architecture [6, 16, 35].



More broadly, the central feature of our framework is its
ability to deal with enhancement and degradation of func-
tionality when assumptions are broken. This relies on some
means to monitor assumptions as in the work of Welsh et al.
[48], and on appropriate recovery action. In much work (e.g.
[40, 44]) this consists of switching to redundant alternative
implementations of components, or applying alternative se-
quences of actions, as in the recent work by Carzaniga et
al. [12]. In the context of behaviour synthesis it can involve
rolling back recent actions, or generating a new strategy that
includes extra recovery actions [6]. The common theme is
however that there is a single requirement to be met, whereas
we admit the possibility of a range of stronger and weaker
requirements (cf. [49, 7, 27]) to deal with uncertainty, an
approach envisaged in the SEAMS roadmap [14].

Degradation and enhancement based on service quality
(e.g. [13]) has been studied extensively. Notably, for adap-
tive systems, Ghezzi et al. [23] mixes design-time analysis of
a behavioural model with runtime decision-making that con-
siders the probability of achieving the system requirements.
When a requirement is under threat, a form of graceful
degradation is allowed, by omission of optional functionality
(while inclusion could be considered an enhancement). This
approach is in the same spirit as ours in that a mechanism
for detecting divergence between the runtime environment
and the environment model is in place and replanning mech-
anisms are used to degrade and enhance. Nonetheless, the
environment model is structurally fixed and only rates and
probabilities of transitions are monitored. Our framework
could be applied in order to handle violation of functional
(as opposed to quantitative) assumptions.

The notion of replanning as a way of dealing with un-
certainty has been studied in the planning community. For
instance in [11], replanning occurs when a plan, based on a
partial model or a weaker goal, is deemed to be improvable
through the acquisition of new information. However, the
notion of multiple tiers with clear guarantees on the goals
achievable at each tier based on the tier’s assumptions has
not been developed.

Runtime monitoring of behaviour models has been studied
extensively [3]. Our approach is multi-tier and is made pos-
sible by having all active controllers execute concurrently. In
contrast, in [36] the case when system requirements change
is addressed by automatically identifying the states in which
it is safe to switch to a new controller. Zhang and Cheng
[50] verify that manually specified transitions between states
in the old and new controllers are safe.

Our approach was motivated by the desire to avoid setting
fixed assumptions by adopting a single domain model. How-
ever, an alternative to the hierarchy of models we have pro-
posed here is to use feedback from executing the controller
to revise the model itself [19]. Two existing approaches
(our previous work [43], which used inductive learning, and
that of Epifani et al. [20], which used Bayesian estimation)
took a probabilistic view of the environment and updated
those probabilities according to observations (such as de-
tected inconsistencies). The hierarchy of models we propose
here could be seen as distinct discretisations of the underly-
ing (unknown) probabilistic environment model. This sug-
gests there is fruitful work to be done in combining the ap-
proaches, for instance, by enabling the approach of Epifani,
which cannot alter the structure of the model, to switch
between structurally different models.

Note that our work is orthogonal to the extensive work
on continuous control and planning which also has a place
in adaptive systems (particularly robotic ones). Continu-
ous control typically establishes a feedback loop where con-
trol decisions are made solely based on sensing of the envi-
ronment’s state and are used to achieve short term goals.
Hybrid and discrete controllers are typically built on top
of these techniques. In these higher layers the controller
can be seen as a feedforward control where it can antici-
pate the result of controlled actions and, hence, is able to
plan in advance the necessary operations in order to achieve
longer term goals (e.g. [26, 46]). This is also the principle
behind the three-layer reference model for adaptive system
[30], where our work would be situated in the goal manage-
ment layer. In the MAPE-K reference model [15], our work
would sit in the analyse or plan components.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a framework for the plan-

ning and enactment layers of reactive systems. The frame-
work supports simultaneously multiple control problems each
with its own set of environment assumptions and goals to
be achieved. These tiers allow the engineering of adaptive
systems to deal with multiple levels of risk, gracefully de-
grading services when environment assumptions are found
not to hold and progressively enhancing services when pos-
sible, in the hope that stronger assumptions will hold again.

We have demonstrated how the framework can be instan-
tiated for different combinations of properties (e.g. safety
and liveness) and synthesis algorithms, in particular show-
ing that additional constraints introduced by the framework
can be systematically addressed and do not introduce fur-
ther computational complexity. Finally, we have demon-
strated how the framework can be used to combine synergis-
tically rather different approaches such as reactive planning
(a robust memoryless control approach for safety proper-
ties based on state-based sensing) and GR(1) (an expressive
non-robust memory-based approach for liveness properties).

We believe that the framework lays the foundations and
opens a research agenda for exploring multi-tier control frame-
works for adaptive systems. There are a number of broad
avenues of future work that the approach presented in this
paper puts forward. Firstly, we believe the embedding of
the tool chain for the different instantiations presented into
a real sensing and actuating adaptive system is the next
logical step in the evaluation of the approach. In addition,
further generalisation is of particular interest. For instance,
exploring weaker requirements than a total ordering of en-
vironment models (e.g. tree structures) should be possible
and useful in various settings. In addition, a framework
to support both qualitative and quantitative assumptions is
essential to integrate much of the work that has been devel-
oped for planning and enactment of adaptive systems, and
also to support more sophisticated adaptive degradation and
enhancement.
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APPENDIX
A. FRAMEWORK PROPERTIES

The aim of this section is to articulate more formally what
the framework guarantees in terms of degradation and en-
hancement and also to sketch the key elements of a proof of
such guarantees. To do so, we describe in a homogeneous
semantic setting the behaviour of the framework discussed
above together with the behaviour of the runtime environ-
ment in which the framework is executed. We use, as a
semantic domain, labelled transition systems, which are a
simplified form of LTKSs in which the set of predicates is
empty.

First, we give an invariant of the execution of the frame-
work which is the basis for the remainder of the results in
this section.

Theorem A.1. Let S be a valid framework state for goals
G0, . . . , Gn. If S′ is the result of updating S according to an
action or sensed state, then S′ is a valid framework state for
goals G0, . . . , Gn.

It is straightforward to show that the update operation
(Definition 4.3) preserves state validity. This theorem re-
lies on the fact that there is a simulation relation between
environment models and also between controllers, and the
fact that the functional level is set to exclude any higher
level controller or environment model that cannot follow the
sensed state, sensed action or actuated action.

We now define an LTS that models the behaviour of the
Enactor. The states of the LTS represent valid framework
states. The transitions of this LTS model framework state
updates (i.e. . ).

Definition A.1. (Enactor Behaviour) Let s = (M0, . . . ,
Mn, C0, . . . , Cn,max) be a valid framework state. and AC ,
AM , P represent the sets of monitored actions, controlled
actions and sensed propositions of the framework. We define
Enactor(s) to be the smallest LTS (S,A,∆, S0) such that
S0 = {s}, A = AC ∪ AM ∪ 2P , and (s1, a, s2) ∈ ∆ if and
only if s2 = (s1 . a).

It is relevant to ask if the definition above is a sound ab-
straction of the code in Figure 3. The key point to note here
is that a state of Enactor(s) can have outgoing transitions
representing monitored and controlled actions; however, the
code actually senses and actuates in sequence. This is not
a problem if the synchronous hypothesis [9] is used which
assumes that the system is fast enough to actuate so as to
never block the environment. This is a common assumption
in the design of reactive systems [29] that makes even more
sense in architectural adaptation strategies. The Enactor
code (see Figure 3) executes very cheap update operations
when not sensing monitored actions, hence the synchronous
hypothesis is reasonable in this setting. Note however that
the execution time of the Planner is not negligible as plan-
ning operations are time consuming. We assume reasonably
engineered implementation of the Planner which minimises
locking time of S so to not block the Enactors execution.
One such implementation would be that S is only locked
once the a viable plan has been built and at the end of the
execution of the Enactor’s while block. To avoid interfer-
ence and breaking the invariant of framework state validity,
only if S has not changed while the Planner was computing

the controller (i.e. no sensed or actuated actions) the new
controller is inserted.

We are interested in properties about the composition
of Enactor(s) with its runtime execution environment E,
which we will assume is an LTS that has transition labels
modelling controlled and monitored actions (i.e. AC and
AM ) and state sensing (2P ).

In addition these properties must refer to conformance of
the runtime execution behaviour to the user-provided envi-
ronment models. Hence, we interpret LTKS environment
models as LTSs by means of sem(Mi).

Definition A.2. (LTS Semantics of LTKS) Given an LTKS
M = (S,A, P,∆, v, S0) with controlled actions AC and mon-
itored actions AM , the LTS semantic interpretation of M ,
denoted sem(M) is the smallest LTS M = (S′, A′,∆′, v′, S′0)
where S0 = {E}, A = AC ∪ AM ∪ 2P , and (s1, a, s2) ∈ ∆ if

and only if (s1
a−→ s2) or (s1 = s2 ∧ a = v(s1)).

Now we give a result that states that the Enactor when
executing in a runtime environment that exhibits behaviour
consistent with the environment model of tier i guarantees
all goals up to that level. In other words, if Enactor(s)
composed in parallel with its runtime execution E exhibits
behaviour that is consistent with sem(Mi), then the goals
G0 through Gi are satisfied.

Theorem A.2. Let S = (M0, . . . , Mn, C0, . . . , Cn, q) be
a valid framework state for goals G0, . . . , Gn and let E be an
LTS representing the behaviour of the runtime environment.
If π ∈ Tr(E||Enactor(S)) and π ∈ Tr(sem(Mi)) for some i
such that 0 ≤ i ≤ q then π |= Gj for all 0 ≤ j ≤ i.

The proof of this theorem follows from Theorem ?? and
the fact that all controllers up to tier i are solutions to the
control problem of their tier (see Definition 4.1). Note that
a related result can be stated if the LTS E representing the
runtime environment conforms to a human-provided envi-
ronment model Mi (i.e. sem(Mi) ≥ E). In this case, all
traces E||Enactor(S) are guaranteed to be traces of Mi (i.e.
Tr(E||Enactor(S)) ⊆ Tr(sem(Mi))) and thus satisfy goals
up to Gi.

However, a subtle but important issue worth discussing
further is the fact that Theorem ?? is for infinite traces.
This is required to support liveness properties. However,
the requirement means that if the Enactor is deployed in
a runtime environment that can prevent infinite traces no
guarantees can be given. Hence, relevant questions are i)
what characteristic should an environment have to guarantee
infinite traces when composed with the Enactor? and ii) do
these characteristics restrict applicability of the result?

If E is a legal environment (see Definition 3.5) of the En-
actor then all traces of E||Enactor(S) can be guaranteed
to be extensible to infinite ones. Being a legal environment
requires, on the one hand, that E should not block Enactor-
controlled actions, an expectation that is not limiting (it is
akin to assuming that the controller will always be able to
perform a controlled action, which is not the same as assum-
ing that the expected consequence of that controlled action
will occur). On the other hand, the Enactor should not
block monitored actions in E but this is trivially satisfied
by definition of the update operation . which is defined for
all actions and valuations (see Definition 4.3).

Indeed, the notion of legal environment guarantees that
“outputs” of one component are not blocked by the other.



However, it provides no guarantee that an “input” expected
by a component will be provided. In other words, a deadlock
is possible because E is waiting for Enactor(S) to perform
a controlled action while Enactor(S) is waiting for a mon-
itored action to occur. The following scenario exemplifies
this: the Enactor is waiting for monitored actions that Mq

assumes possible but in fact are not in possible in E. In
addition, the Enactor refuses to perform any controlled ac-
tion as Cq deems it convenient (to achieve Gq) to wait for
a monitored action from E. Further, E has only controlled
actions enabled. In this case, a deadlock ensues as the E.

Fortunately, there is a methodological workaround for this
type of scenario and it corresponds to a typical strategy
in adaptive systems: timeouts. If the system is equipped
with a timeout event that signals lack of activity on the
environment side this would be interpreted as an unexpected
monitored action that evidences that E does not conform to
Mq. Thus, Enactor would proceed, gracefully degrading to
a more permissive level where a controlled action can be
taken.

To present a result on progressive enhancement we first
must show that if the framework state is valid and providing

functional level i, a successful replanning procedure (Defini-
tion 4.6) at tier i + 1 yields a valid framework state. The
result follows straightforwardly from the definitions (Defini-
tion 4.1 and 4.6).

Theorem A.3. Let S be a valid framework state for goals
G0, . . . , Gn providing functional level i < n. If replanning
tier i + 1 is successful then the resulting framework state is
valid.

Once replanned, Theorem ?? is applicable from the re-
sulting framework state. Note, however, that replanning
provides guarantees from the point of replanning onwards
and not from the start of the execution of the system: Sup-
pose a finite trace α is exhibited by E||Enactor(S) and α
is not a valid finite trace of Mi (thus the framework is pro-
viding a degraded functional level, below i). Assume that
after α the current framework state is S′ and that of the
environement is E′. If we now observe an infinite trace β by
E′||Enactor(S′) where β is a valid infinite trace of M ′i , it is
not true that αβ |= Gj for all 0 ≤ j ≤ i, only that β |= Gj

for all 0 ≤ j ≤ i.


