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Abstract

An increasingly common solution for systems which are deployed in unpredictable

or dangerous environments is to provide the system with an autonomous or self-

managing capability. This capability permits the software of the system to adapt to

the environmental conditions encountered at runtime by deciding what changes

need to be made to the system’s behaviour in order to continue meeting the

requirements imposed by the designer. The chief advantage of this approach comes

from a reduced reliance on the brittle assumptions made at design time.

In this work, we describe mechanisms for adapting the software architecture of

a system using a declarative expression of the functional requirements (derived

from goals), structural constraints and preferences over the space of non-functional

properties possessed by the components of the system. The declarative approach

places this work in contrast to existing schemes which require more fine-grained,

often procedural, specifications of how to perform adaptations. Our algorithm for

assembling and re-assembling configurations chooses between solutions that meet

both the functional requirements and the structural constraints by comparing

the non-functional properties of the selected components against the designer’s

preferences between, for example, a high-performance or a highly reliable solution.

In addition to the centralised algorithm, we show how the approach can be applied

to a distributed system with no central or master node that is aware of the full

space of solutions. We use a gossip protocol as a mechanism by which peer nodes

can propose what they think the component configuration is (or should be). Gossip

ensures that the nodes will reach agreement on a solution, and will do so in a

logarithmic number of steps. This latter property ensures the approach can scale

to very large systems. Finally, the work is validated on a number of case studies.
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Chapter 1

Introduction

If you want to make a living flower, you don’t build it physically, with

tweezers, cell by cell. You grow it from the seed.

— Christopher Alexander [Ale79]

A
UTONOMOUS and self-managed systems are often deployed in contexts

where robustness in the face of a changing environment is required, and

where their ability to reduce the effort demanded of the programmer

leads to significant benefits. On the one hand, autonomous systems are useful

where contact between the operator and the system is undesirable or infrequent

for a reason specific to the domain. Examples include environments which are

dangerous to humans, and domains where extended communication delays make

close contact impractical. On the other hand, self-management reduces the

burden on programmers and maintainers—providing a benefit in time and cost—

by managing the inevitable change and the complexity of large-scale or highly

distributed systems in a devolved manner.

Thus the advancement of autonomous systems is closely bound to the progressive

devolution of responsibilities from the programmer to the system. In the simplest

21



22 Chapter 1. Introduction

case, this is evident in applications which are able to control some of their own

parameters in response to changes in context, using domain-specific algorithms.

For example, a JIT compiler may choose to optimise different tracts of code

depending on the actual behaviour at runtime, and a video streaming application

may adjust the compression and resolution of the video in response to network

congestion. Advanced systems allow the designer to give more general rules

specifying how the system is to react under certain circumstances. In most cases,

the designer explicitly states the results of adaptations within the space of possible

steady-state behaviours. In other words, it is incumbent upon the designer to

foresee each and every eventuality. Not only is this a complex task in itself, it is

not always possible to foresee future deployment contexts.

However, a greater level of autonomy can be provided by enabling the system

to respond to unpredicted changes in the environment. The response of the

system must of course be one which is valuable to the user, by, for example,

continuing to satisfy goals and constraints which encode the user’s intent. Hence

we believe a declarative, goal- and constraint-driven mechanism would be an

appropriate approach to self-adaptation. Such a mechanism would, by eliding the

encumbrance of explicit procedural specification of adaptive responses, enable the

system to derive solutions which the designer may not have envisaged. In addition,

the system would be able to adapt in response to a change of goal, something which

would otherwise have required significant extra effort.

One means to perform such adaptations would be to manipulate the behaviour

of the application at the language or algorithmic level, for example by adjusting

numerical parameters or by applying a mixin to extend the behaviour of an existing

class [SB98], or even by attempting to introduce a new version of a class [Dug05].

Such an approach would result in an adaptation mechanism which is specific to a

particular application domain or implementation language, and which may suffer

from having to deal with a multitude of peripheral issues such as preserving type

safety. In addition, the technique may not scale well because of the sheer number
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of artefacts which have to be managed at such a low level of abstraction.

Thus we observe, as others have done before [OGT+99, OMT98], that software

architecture fulfils the requirement for a higher level of abstraction to describe

and enact adaptations which are not specific to a particular domain. Indeed, the

study of self-adaptive and autonomous systems has emerged, in part, from a long

line of work on software architecture and component-based software engineering

(CBSE) [OGT+99]. Software architecture developed in recognition of patterns

in the use of certain imprecise terms and notations, such as “blackboard” or

“client-server”, to describe the design of the high-level structure of large pieces

of software, independent of implementation artefacts [SG96]. The recording and

formalisation of such knowledge has a didactic function, enabling the reuse of

previous successful designs; eases maintenance by constricting future changes

such that the overall design retains coherence; and takes computer science one

step further along the road of progressive abstraction.

These benefits are achieved by treating the application as a composition of

(smaller) blocks of software, called components, independently of who created the

component, and in what language [Szy98]. In most cases, these components are

explicitly marked with the services and functions that they provide and the services

that they are dependent upon. Ideally, components are ignorant of their software

context and only loosely coupled. Connectors bind provisions to requirements,

making component interaction explicit, and may also encapsulate interaction-

specific behaviour. Also, the physical location of components is hidden by the

connector abstraction so that interaction may take place within the same host or

across the expanse of the internet.

The separation of gross design structure from implementation provides a conve-

nient abstraction in which to describe the evolution of a system over time, as the

components of the system are replaced [MKM06]. In recent research, the focus

has switched from static design-time evolution to evolution at runtime, moving
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architecture from a design discipline to a unit of adaptation within a feedback

loop. Medium to large-scale adaptations can be expressed as addition, removal or

replacement of components and connectors in the system (some of which may not

have been available previously), largely free of domain-specific knowledge and the

myriad difficulties encountered when manipulating implementation-level artefacts.

One must however be aware of the state of the computation being performed by the

components so that, for example, replacements can be made without disrupting the

correct operation of the system.

Many self-adaptive systems use the architectural model of the application to

perform adaptations at runtime [CGI+08]. However, most of these systems [GS02,

Che08] encode adaptations in a procedural manner not befitting our objective of a

goal-driven approach. In addition, these systems assume a centralised adaptation

controller with a complete model of the system architecture, disregarding the

potential for components to be distributed over a network. Even when centralised

manipulation of a distributed system is feasible, it suffers from a dependency on

the reliability and performance of the central node, severely restricting the ability

of the technique to handle large systems [IMTA05].

We take as our starting point a three-layer conceptual model (described in

Chapter 3) which uses experience gained in the robotics field [Gat98] to provide

a framework for developing autonomous systems. Our work is concerned with the

middle layer which uses the plans generated from goals by the uppermost layer

to construct and subsequently modify a (potentially distributed) configuration of

components. These components implement the application behaviour and reside

in the bottom layer of the model.

While we primarily aim to develop an automatic mechanism for assembling and

re-assembling1 configurations on the basis of the functional capabilities required

1We see no significant difference between construction and repair — both must transform the
system to meet its objectives — and avoid treating the problems so differently as others have done
before.
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by the system’s plan, it is also beneficial to consider non-functional issues

such as structural constraints which limit configurations to those falling within

an architectural style, or constraints over the non-functional characteristics of

the components employed in the configuration [PW92]. Structural constraints

provide the ability to direct the assembly process to produce solutions within

an architectural style, which may reflect solutions which are known to work or

may aid the user in understanding the configurations which have been generated.

Structural constraints also provide a flexible way to encode certain kinds of

domain-specific requirements, such as avoiding configurations which are known

to be peculiarly unreliable.

Other non-functional (NF) concerns, such as performance, security, cost and

reliability, can be used to guide the assembly process, if made explicit. In a

system which relies on the programmer to specify the exact procedures and rules

which control adaptation, NF information is used only implicitly as the programmer

makes a design-time choice between components and configurations. Indeed,

NF properties are often the primary reason for selecting one reconfiguration over

another. For example, in a client-server system, one may wish to duplicate the

server component to improve the average response time, but this must be balanced

against the cost inherent in creating another server. Where NF information is

explicit, it is usually used only as the impetus to invoke an adaptation procedure

[GS02]. By making this information explicit within the framework of automatic

assembly, the system can make those decisions previously made at design-time

and can heed updated information as it becomes available.

Our work is relevant to a wide range of application areas including unmanned

vehicles (robotics), embedded and mobile systems, service-oriented and client-

server systems and networks. These domains all demand high (continuous)

availability in the face of highly dynamic environments or rapidly evolving user

requirements. However, many of our examples come from the robotics and mobile

computing domains, where the interaction between the system and the physical
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world is particularly acute.

1.1 Requirements

The observations made hitherto lead us to the following five requirements which

drive the work described in this thesis:

1. Declarative autonomy. Granting a system autonomy implies the provision of

a decision-making capacity with minimal relation to a human supervisor. Turning

such autonomy to the problem of architectural adaptation implies that the system

must make its own choices about the best changes to apply in order to adapt,

and the space of such choices is diminished the more the user sets out particular

solutions. Hence, it is preferable to have the designer prescribe the minimum in

relation to specific solutions, and concentrate on the requirements which a solution

will uphold. Such requirements (constraints) are declarative in nature. Adapting

to a change in the requirements is also eased by their explicit declaration.

2. Accounting for explicit NF properties. Whereas the designer’s knowledge

about non-functional properties may have been implicit in procedural approaches,

here we require an explicit treatment so that the declarative adaptation mechanism

can consider the impact of its choices on the NF characteristics of the resulting

configuration. Where different choices are possible, this NF information can guide

the adaptation mechanism to choose the most desirable configuration for the

current context. This extends the problem into the realm of optimisation within

the space of NF properties.

3. Enforcing explicit structural constraints. A particular case of a global

non-functional constraint is that of architectural style. Since this is singularly

relevant in architectural adaptation, we are interested in approaches that enforce

the preservation of a style, and more generally, arbitrary structural constraints.
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An unrestricted language for structural constraints also permits the encoding of

domain-specific rules about the inclusion or exclusion of particular combinations

of components.

4. Adaptation safety. Modifying a running system is a delicate task. While

adaptation at the architectural level hides some of the difficulties, there remain

complex restrictions on when and where it is safe to perform an adaptation, lest

the application be jeopardised by, for example, inconsistency in the internal state

of running components.

5. Decentralisation. A centralised controller places too much responsibility on

a single physical host, requiring it to be reliable and provide high performance.

Centralisation may also make inefficient use of the network capacity by having

every node transmit its full state to the central controller. We are interested in

solutions for architectural assembly that are readily distributed, providing fault

tolerance and scalability.

In addition to these five hard requirements, we need to consider techniques that

scale well and exhibit performance characteristics appropriate to the application

domain. For example, in a robotics domain, adaptations should be computed and

applied in a few seconds, since this is the time scale in which the environment can

be expected not to change significantly. Other domains may be more or less strict,

but by choosing an approach with better performance, a wider range of applications

can be catered for.

The range of approaches which could meet these requirements is broad, and so it

is necessary to make additional assumptions which lead to a particular solution.

These assumptions include the existence of a repository of components which are,

or can be, described in terms of provided and required interfaces, and of a mapping

between functional requirements and interfaces. Moreover, we expect interfaces

to form a well-structured, “clean” ontology for the domain so that names can be

relied upon for matching provisions and requirements. A detailed description of
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our assumptions is given in Section 4.1.

1.2 Contributions

The primary contribution of this work is to provide a declarative (and largely

automated) technique for adapting to changing environments and goals through

assembly and re-assembly of component configurations. These configurations

are derived from the abstract functional capabilities required in order to achieve

some goal by a configuration assembler, situated in the middle layer of the

three-layer model. The assembly process consists of a search within the space

of configurations for those which meet both the functional requirements and

additional structural constraints.

We have further developed strategies for making choices between configurations on

the basis of arbitrary non-functional properties, which allow the designer to express

preferences between NF properties (such as attempting to maximise performance

at the cost of reliability) and hence between configurations. This is achieved

by evaluating sets of functionally-equivalent components using utility functions.

Rather than restricting the search space (and losing adaptation opportunities), this

places solutions in a partial order so that the system can make the best choice

in a given context. We also have assessed the impact of structural properties and

non-functional preferences on the performance of reconfiguration, showing that it

can outperform generalised constraint solving in many cases.

The second major contribution of the work is a new protocol based upon gossip

[DGH+87] which allows the assembly process to be distributed across a network

of peer nodes in order to reduce reliance on a centralised configuration assembler.

Gossip removes the need for a central node that has a complete view of the system,

as the peer nodes of the network come to agreement on the solution. Again, we

have investigated the performance of the protocol, and found that the time taken
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to derive solutions is a logarithmic function of the number of nodes, allowing the

approach to scale to very large systems. In addition, the protocol has redundancy

so that the loss of messages or nodes can be tolerated.

In order to provide a complete approach for assembly and adaptation within the

three-layer model, we have integrated the assembly algorithms with the necessary

procedures for applying configuration changes. The first of these is a mechanism

for preserving the application state of replaced components. The second is an

implementation of the tranquility protocol [VEBD06b] extended to handle multiple

component replacements and decentralised operation. Tranquility is a kind

of change protocol used to ensure the safety of the running application while

architectural changes are applied.

Chapter 3 describes the reification of the three-layer model, which was undertaken

as joint work. It is not a major contribution of this thesis, although it does provide

the context for the other contributions.

Much of the work has been presented in various publications including [SHMK07,

SHMK08, HSMK09, SHMK10], but the constraints of publication are such that this

thesis should be regarded as the definitive exposition. The first of these [SHMK07]

outlines reactive planning (Chapter 3.1) and the dependency analysis of Chapter 4.

The second [SHMK08] describes the algorithm of Section 4.2.3 and its application

to some case studies. [HSMK09] describes the implementation of planning using

the Labelled Transition Analyser and its LTL syntax (Chapter 3.1), and the

incorporation of structural and non-functional information in the assembly process

(Section 4.3), and includes a larger case study. Finally, [SHMK10] concentrates on

non-functional selection and compares the two strategies described in Section 4.4.

Each of these papers constitutes a joint work, describing one or more aspects of

the work in this thesis, in addition to related topics such as planning.
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1.3 Thesis Outline

In the next chapter we provide some background on software architecture and

review the existing approaches for self-adaptive systems, evaluating each against

our requirements.

In Chapter 3, the three-layer conceptual model for autonomous systems is

described. The model stratifies the operation of an autonomous system so that

the most expensive planning operations are performed the least frequently. The

middle layer of the model handles architectural concerns and it is in this layer that

we focus our efforts in subsequent chapters.

Chapter 4 discusses the assembly process from a centralised perspective, including

the ways in which dependencies, structural constraints and non-functional (NF)

information guide the selection of component configurations. Additionally this

chapter makes a comparison between this dependency-guided approach and

generalised constraint solving.

Chapter 5 translates the process of Chapter 4 into a fully decentralised approach

using a gossip protocol, and discusses the effect on performance of factors such as

the size of the network.

Chapter 6 describes the mechanisms used firstly to preserve the application

state of replaced components and secondly to ensure that modifying a running

configuration (to effect an adaptation) does not endanger the consistency or safety

of the application. The final part of the chapter discusses implementation issues.

Chapter 7 evaluates the work against the requirements set out above and considers

the efficacy of the approach in two case studies. The first of these requires several

mobile robots to co-operate to achieve a global goal, and makes use of decentralised

assembly. The second comes from an application for aligning satellite antennas and

uses the centralised assembly process. The rest of the chapter discusses limitations
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that arise from our assumptions.

Finally, Chapter 8 discusses future work and concludes.



Chapter 2

Background

A
FTER briefly reviewing the context of software architecture and architec-

tural evolution, this chapter describes the extant work on self-adaptive

and autonomous systems in terms of three questions pertinent to

adaptation: what must be changed, when the change should happen, and how

the change is brought about in the running system. Many approaches, such as

reconfiguration scripts (Section 2.3.3) and architectural planning (Section 2.3.14),

have considered how to enable the designer to specify what needs to be changed

in terms of the manifold combinations of connect, disconnect, create and destroy

commands. Several researchers have tackled the question of when to adapt, using

policies (Section 2.3.9), style violation (Section 2.3.3) or violation of non-functional

requirements (Section 2.4.2). Fewer approaches have addressed how a change is

enacted. The most notable of these is quiescence and its progeny (Section 2.5.3).

In reviewing the previous work on self-managing and self-adaptive systems, we

refer to the criteria set out in the introduction in order to highlight the differences

between the approaches. In addition, since some proposals partially achieve

the requirements, we distinguish the degrees to which existing work meets

requirements 1 and 2 with successive levels of increasing desirability, such as

D1 to D4. These levels are given below.

32
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1. Declarative autonomy.

The first requirement for declarative autonomy can be met partially through

varying the proportions of, and relation between, procedural code and declarative

statements. We define four levels, below:

• D1 Mixed code. The adaptive behaviour is spread throughout the normal

application behaviour (or throughout the architectural description). This is

difficult to understand, analyse, reuse, and modify. Avoiding this is beneficial

in the same way that the development of software architecture improved the

understanding of high-level artefacts which were previously implicit within the

program code.

• D2 Separate adaptation code. The adaptive behaviour is distinguished from

the steady-state application behaviour. This provides separation of concerns

(easing reuse, modification, understanding) but the adaptation code remains

programmatical, specifying the means to the result (in terms of connection

and instantiation of specific components, and when to do so) rather than the

constraints on the result.

• D3 Independent impetus. Separation of concerns is applied a second time

to isolate the specification of the conditions or eventualities under which

adaptation should be applied from the actual adaptive operations.

• D4 Declarative adaptation. The adaptive behaviour is independent of the

application code and is specified in terms of functional or extra-functional

constraints on the result rather than the means to achieve the result,

necessitating some sort of search within the space of solutions. The system

is now able to adapt beyond the expectations of the designer, making it more

likely the system can cope with a changing environment.

2. Accounting for explicit NF properties.
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The use and scope of NF information can also vary, and so we categorise them

according to three levels:

• N1 NF selection. Non-functional properties are used to make local choices

between alternative components, but solutions are not constrained by the

user’s requirements.

• N2 NF matching requirements. Non-functional properties are locally

constrained, either with respect to another component’s requirements or the

user’s requirements. For solutions within the constraints, preferences may be

applied to select the best candidate.

• N3 NF global requirements. Non-functional properties are globally con-

strained by the user such that valid solutions must have some overall

properties (which may not be evident from observing local information alone).

2.1 Software Architecture

Here we discuss some of the background of software architecture in order to

expedite the review of previous work on architectural adaptation.

The architecture of a software system is the high-level view of the parts of

which it is composed and the connections between them. The parts making

up the system are called components. Ideally, a component should be ignorant

of its context in order to maximise the opportunities for reuse [Szy98]. In

a similar vein, software architecture does not prescribe the implementation of

components or connections in terms of languages or protocols (though some

languages allow the inclusion of such details). Thus components hide their state

(data) from the architectural view. This is similar to encapsulation in object-

oriented programming, though components are typically much larger and more

independent than objects. Components may also contain their own threads of
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control, unlike objects. The architecture of a software system is the high-level view

of the parts of which it is composed and the connections between them. The parts

making up the system are called components. Ideally, a component should be

ignorant of its context in order to maximise the opportunities for reuse [Szy98].

In a similar vein, software architecture does not prescribe the implementation

of components or connections in terms of languages or protocols (though some

languages allow the inclusion of such details). Thus components hide their state

(data) from the architectural view. This is similar to encapsulation in object-

oriented programming, though components are typically much larger and more

independent than objects. Components may also contain their own threads of

control, unlike objects.

A piece of software is created by assembling smaller components, which may

have been developed independently, into larger (composite) components and

eventually complete applications. We refer to such an assemblage or topology as a

configuration.

In academia, much work has been done to provide ways to describe and specify

software architecture, culminating in various architecture description languages

(ADLs). In industry, the principles of component-based software engineering

are transformed into various frameworks which support the development of

applications using components. These two strands are discussed below.

2.1.1 Industrial Standards

There are several competing standards for developing component-based software,

including CCM (Common Object Request Broker Architecture Component Model),

EJB (Enterprise Java Beans) and COM (Component Object Model).

CORBA (the precursor to CCM), designed by the OMG (Object Management
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Group1), defines standards for describing the interfaces of (potentially remote)

objects, the protocol for invoking methods on those objects, and a central object

request broker (ORB) [Szy98]. Objects providing some service define their interface

using the interface definition language (IDL), and register themselves with the

ORB. A client wishing to use the object can then request it from the ORB, and

invoke its methods. Due to its focus on method invocation, CORBA has no

explicit mechanism for expressing dependencies or hierarchical configurations.

CCM attempts to mitigate this by introducing a model where components may

have “facets” (provisions) and “receptacles” (requirements), and analogous ports for

events [Hei05].

The OMG has also provided for architectural description within the Unified Mod-

elling Language2 (UML) wherein a configuration is described using a component

diagram. A component in such a diagram has a number of provided and required

interfaces, and may be composed of a number of other components and the

connections between them.

Microsoft’s COM3 is similar to CORBA in its focus on interfaces and method calls.

A COM object may provide several interfaces through which its methods can be

called. Objects are initially constructed by calling a static library function with the

object’s “class identifier”, which identifies the component in the Windows registry.

A form of hierarchical composition is supported by composite components having

references to the interfaces of their children, and by forwarding calls [Szy98].

Enterprise Java Beans is a standard for creating components in the Java

language4. Each component (“bean”) includes an implementation class, the

interfaces it provides, a factory interface (used to instantiate the component)

and a “deployment descriptor” which includes an explicit statement of the bean’s

dependencies. Clients are able to locate beans using the Java Naming and

1http://www.omg.org
2http://www.omg.org/uml
3http://www.microsoft.com/com
4http://java.sun.com
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Directory Interface (JNDI) [Hei05].

2.1.2 Architecture Description Languages

Architecture description languages (ADLs) allow the architecture of a system —- its

high-level design —- to be expressed and analysed independently of implementation

concerns. Several major ADLs and their distinctive properties are discussed here.

ADLs can be roughly divided into those which associate behaviour or semantics

with connectors (much like components) and those which rely on the component

implementations to determine the interaction protocols.

In the latter category are Darwin [MDEK95] and Rapide [LKA+95]. A component

description in Darwin states its dependencies by having a number of ports which

either provide or require a particular interface type. A composite component

contains a number of parts (instances of other components), and a number of

bindings which describe the connections between the ports of the parts it contains.

A composite component may also have ports which internally connect to a part.

Darwin also has a graphical form, as shown in Figure 2.1. By convention, a filled

circle indicates a provided port, and an empty circle indicates a required port.

Figure 2.1: Darwin example

Rapide is primarily focused on simulation (analysis) of the behaviour of a component-

based system. Rapide’s ADL features differ from the other reviewed ADLs in that a

configuration is a wiring “layout” between interfaces, while actual component im-

plementations are plugged into these interfaces. Since an architectural description
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in Rapide is closely bound to a behavioural description, Rapide provides a natural

way to modify the architecture by creating connections when events are observed

which match a certain pattern (for which purpose there is an expressive language).

The ADLs which give behaviour to connectors include Wright [AG94], UniCon

[SDK+95] and C2 (SADEL) [MTWJ96, TMA+95]. Wright concentrates on providing

a more rigorous basis for specifying architectural connection by associating with

each connector and with each component port a behavioural description in a

CSP-like language. Thus, connectors have an associated protocol, to which the

component ports bound to the connector ports (called roles) must conform. Figure

2.2 shows an example configuration where the process definition on each port

states that the action i can be performed indefinitely.

Figure 2.2: Wright example

Later work [ADG98] extended Wright with the ability to specify changes in the

architecture as the behaviour of a “configuror” component with the semantics

of configuration actions given as rewrite rules. Van Eenoo et al. [VEHK05]

further extend Wright to account for non-functional properties. These aspects are

discussed in detail in subsequent sections.

UniCon is similar to Wright in that components have players (ports) which, when

bound to a connector, play roles (ports of a connector). Connectors thus have

structure and can be formed from compositions of more primitive connectors. In
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addition connectors have particular implementation semantics such as procedure

call or file I/O.

C2 was originally created as an architectural style [GAO94] and developed into

an ADL where components are restricted to one port on their “top” and one on

their “bottom”, creating a strictly layered style (limiting the configurations it can

describe). No direct connections between components are permitted. Instead

communication passes through a connector, which may broadcast or filter the

messages. A connector may be connected to multiple components above or below.

2.2 Architectural Evolution

The static view of architecture prevailing in the various ADLs was not likely to stand

for long, given the very malleable nature of software, and since software must be

changed as project requirements shift, as the technological environment develops,

and under the normal process of maintenance. Before moving on to self-adaptive

systems which evolve at runtime, we discuss some of the work which addresses

the issues of design-time evolution, since one would expect some similarity if this

design-time evolution were seen as a slow form of adaptation.

2.2.1 Backbone

Backbone [MKM06] is one such system for designing and modifying configurations

of components. It provides a language (much like Darwin) and a graphical tool for

expressing and then instantiating architectural designs where the leaf components

are implemented as Java objects.

Backbone provides two special design constructs for specifying how a configuration

changes: resemblance and redefinition. The user can take an existing composite

component and add or remove parts, almost arbitrarily, to create a new composite.
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The new component is then said to resemble the old one. Alternatively, the user

can add or remove parts, and additionally use this modified design wherever the

original component was used. In this case, the old component has been redefined.

The essential difference, then, between resemblance and redefinition is that the

design created by resemblance is given a new name (it is a new component), while

the design created by redefinition takes on the original name (it is not a new

component). Resemblances and redefinitions can be organised into strata, and

so a system can be defined by applying a number of strata to a base stratum.

This is somewhat similar to a mixin layer [SB98] (see Section 2.2.2), except at the

architectural level.

Backbone also supports a limited form of runtime evolution by way of a factory,

which closely resembles the direct dynamic instantiation of Darwin (see Sec-

tion 2.3.1). A factory is a description of a partial configuration which is to be

instantiated at runtime. This partial configuration contains a number of new com-

ponents which are those to be instantiated, and a number of placeholders. When

the factory is called, existing components are assigned to each of the placeholders

(the placeholders act as formal parameters), and the factory instantiates the new

components and connects them to the placeholder components as specified.

2.2.2 Feature Grammars

The work of Batory and others [Bat05, SB98, Bat06, BLHM02] is concerned with

constructing different programs (products) from a set of features, giving a product

family. This is an alternative – though compatible – way to consider the problem

of architectural configuration. A feature can be encapsulated in a component,

and a combination of features would thus give a configuration. In [Bat05] Batory

describes the concept of a feature grammar which, when elaborated, enumerates

all the valid configurations, and thus describes the product family. For example,
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the grammar

program ::= a|B

a ::= CD

states that valid configurations are the component B alone, or the pair C and D. No

other combinations are valid. It may be the case that C is a component which has

a required interface provided by D (or vice versa).

Batory shows how the grammar can be translated into propositional logic,

permitting a candidate architecture to be checked easily. This reflects the fact

that the work on product lines is largely methodological in relying on the user

to suggest new combinations of features (new products) at design-time, thus

precluding runtime evolution. Indeed, the notion of a feature implies a level of

granularity which is meaningful to the user [vdS07]. No such restriction applies

to components, although [vdS07] observes that certain components may represent

at least the interface to certain functionality and that the complete feature can be

derived from the dependencies of that “root” component.

In other work, Batory describes a language-level construct, the mixin layer, for

encapsulating features [SB98]. Such features have some functionality which is

spread across a family of related classes, each of which must be modified (with a

single mixin) to provide the overall functionality. As a non-architectural language

construct, the mixin layer is restricted to design-time evolution.

2.3 Adaptive Architecture : What

In this section we review systems which are self-adaptive in the sense that they

answer the first of our three questions about adaptation by deciding what the

result of adaptation should be, either in a procedural or declarative manner. In

subsequent sections we focus on systems which address the remaining questions
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of when and how an adaptation should be performed.

2.3.1 Dynamic Darwin

In an early work by Magee and Kramer [MK96], later formalised in [RE94], the Dar-

win ADL (Section 2.1.2) is extended with a dyn keyword to allow lazy instantiation of

components, which enables the creation of recursive configurations of unbounded

size. Whenever a component attempts to use an as-yet uninstantiated provider, a

dummy provider catches the request and binds the requirement to a new provider

reference. For example, in Figure 2.3, component B is only instantiated when A

attempts to use it.

Figure 2.3: Lazy instantiation

The keyword can also annotate an interface (potentially of a third component)

whose only function is to demand instantiation, as in Figure 2.4, where component

C instantiates B using its create interface. B is then bound to the provision of A.

Notice that it is redundant to have any provisions on B since any other component

which depended on it would have an unsatisfied requirement r until C chose to

instantiate B. Moreover, if C created multiple instances of B, then it would not be

clear which of those would be called to satisfy the requirement r.

This work achieves level D2 for our first requirement, in that the dynamic behaviour

is declared in the architectural description, however it cannot qualify for D3, since,

by restricting dynamic instantiation to the use of a port (whether a dedicated

port or otherwise), the structure of the system at any instant is determined by
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Figure 2.4: Direct dynamic instantiation

the component implementation. In other words, the adaptation and application

concerns are not separated. The architect cannot tell, for example, whether

the structure will ever stop growing, without detailed analysis of the component

implementations. The dyn keyword does not permit removal or rebinding of

components, substantially restricting the forms of architectural change which can

be supported.

Finally, the work does not attempt to address criteria 2 (non-functional properties),

3 (structural properties), 4 (safety) and 5 (decentralisation), though the authors

allude to some of these.

2.3.2 Dynamic Wright

Early work developing Wright (see Section 2.1.2) to support reconfiguration

[ADG98] recognised the need to separate the adaptive behaviour from the ap-

plication behaviour. This is particularly evident in Wright due to its inclusion

of behavioural specifications at the architectural level. The separation was

achieved by the introduction of a “configuror” component whose behaviour was

specified in terms of reconfiguration actions such as attach (connect), detach and

new, which themselves had semantics in terms of rewrite rules transforming

the configuration. Thus this approach can be characterised as having property

D2 (separate adaptation code). However, the events initiating reconfiguration
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remained written within the application behaviour (at safe points only) and thus

the approach cannot qualify for D3 (independent impetus), nor does it explicitly

address requirement 4, that of adaptation safety. This work does have a notion

of architectural style (requirement 3), but does not consider any non-functional

concerns (requirement 2) nor decentralisation (requirement 5).

2.3.3 Dynamic Acme

Later work by Garlan and Schmerl [GS02] takes the separation of concerns

achieved in dynamic Wright further by having a feedback loop between the

system model (handling architectural concerns) and the running system (handling

application concerns). The architectural style [GAO94] of the system is described

in the Acme ADL [GMW00], and annotated with constraints on certain non-

functional properties, such as a maximum latency. These properties are monitored

in the running system. If a constraint is broken, then a repair strategy, written

in an imperative language, is applied to the architectural model. The changes

are then fed back to the running system. Figure 2.5 shows an example repair

strategy consisting of two repair tactics, which are intended to maintain the non-

functional property p > 10. In [CGS+02] the repair strategies are also checked

for correctness with respect to the style. By separating the cause and the

mechanism of adaptation from the application, this approach qualifies for D3

(independent impetus). While it does make use of non-functional information

to initiate adaptation, it is left to the developer to ensure that the adaptations

do improve the system. The work meets requirement 3 by using architectural

style, but does not address safety (requirement 4). Finally, although Acme can

manipulate systems composed of distributed components, the system model and

the architecture manager responsible for executing strategies remain centralised,

meaning that the work cannot meet requirement 5.
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Figure 2.5: Acme repair strategy

2.3.4 Rainbow

Work on Rainbow, by Cheng et al. [Che08] takes the repair strategies of Acme

further by calculating for each of the strategies a utility so that the most appropriate

response to a constraint violation can be selected. For example, each repair

strategy has a cost such as disruption of application execution, and a benefit such

as a gain in performance. This removes the reliance on the designer knowing which

strategies are more appropriate, by permitting the system to make choices between

strategies based on contextual information which may only be available at runtime.

As in Acme, each strategy is composed of a number of tactics. However, in addition

to a block of imperative code, each tactic has a condition, which states when it is

useful to apply the tactic, and an effect, which states the expected result of applying

the tactic. Tactics thus resemble event-condition-action policies [GT04]. Each

tactic is annotated with the expected change in non-functional property values, in

other words, a cost or a benefit. An additional non-functional property, the failure

rate, is maintained by the system to record when a tactic (and hence a strategy)

fails to achieve its stated effect. This property is then combined with the normal

calculation of utility, allowing the system to make decisions on the basis of past

behaviour.

In a strategy, tactics are arranged in a tree of condition-action rules, stating
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when each tactic should be applied. In order to calculate the aggregate utility

of a strategy, each conditional branch of the tactic tree is given (by the user) a

probability of occurring. The aggregate utility is simply the probability of each

branch multiplied by the utility of the tactics in that branch. Figure 2.6 shows an

example repair strategy in Rainbow intended to ensure the property p is greater

than 10. Tactic branches t0 and t1 are labelled with probabilities 0.6 and 0.4.

After taking branch t1, if it succeeded, then the strategy can terminate, otherwise

(with probability 0.1), the system must then attempt tactic 3 (branch t1b).

Figure 2.6: Rainbow repair strategy

The approach relies on the assumption that several pieces of information provided

by the user – the NF description of tactics, the tactic effects, the tree of probabilities

– are correct. There is no mechanism for updating the information, if, for example,

one particular strategy causes far more disruption at runtime than expected.

Overall, this proposal can be said to meet requirement D3 (independent impetus)

since it achieves significant separation of concerns. However, although the system

goes beyond the imperative nature of dynamic Acme by performing a search for

the most appropriate repair strategy, it cannot be said to derive a solution from

constraints as tactics remain imperative, and hence it cannot qualify for D4. The

approach performs selection based on non-functional preferences (satisfying N1),

and uses style as a basis (satisfying requirement 3), but does not discuss safety

(failing requirement 4). Rainbow also suffers from the same centralisation as Acme,

failing requirement 5.
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2.3.5 Aura

In other work [GPSS04, SG02], Garlan et al. consider the problem of adapting in

such a way as to preserve or achieve the user’s task (goal). Adaptation may be

the result of a change of task, a change in the environment, or the user moving

between environments. They describe a three-layer architecture, where goals are

managed in the top layer, configuration happens in the middle layer, and services

exist in the lowest layer. Goals and services in their system are at a high level of

granularity. For example, when the user’s task is to edit a document, this has a

direct solution by running a single text editor service. Thus, selection of services is

constrained by the user’s requirements, achieving criterion D4. In addition, service

selection can account for non-functional preferences (N1). However, requirements

3, 4 and 5, concerning style, safety and distribution, are not addressed.

2.3.6 Distributed Management

In [GMK02] Georgiadis describes an approach to adapting systems which may

be highly distributed, where there is no centralised control. This requires

each component to have a manager which maintains a model of the current

configuration and is charged with enforcing architectural constraints provided by

the user. Managers receive notifications when the architecture changes and if at

any point one of the component’s requirements is not satisfied, then the manager

attempts to acquire the change lock and make modifications which result in the

satisfaction of the requirement while simultaneously respecting the architectural

constraints. These modification scripts are written by the system architect, and

in this regard the work bears great similarity to [GS02], except in a distributed

setting. The problem of applying the changes while maintaining a consistent

component (application) state is not addressed, and components in this system

cannot be compositions. The approach does however ensure that managers have
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a consistent view of the global configuration through its use of reliable, totally-

ordered broadcast, which restricts scalability. The approach meets criterion D3

since the adaptation concerns are wholly isolated from the application logic, but

it cannot be said to be entirely declarative since the architect must still write the

repair scripts. The work is not concerned with NF properties nor safety, and so it

does not meet requirements 2 and 4. However, central to the approach is the notion

of structural constraints, meeting requirement 3. Perhaps most importantly, the

approach is completely decentralised, meeting requirement 5.

2.3.7 Genie

The approach of Bencomo et al. [BB09, BGF+08] is to define an adaptive system

as having a set of structural variants (somewhat like modes, or abstractly, states)

with transitions which indicate the conditions under which the variant will change.

Each variant is associated with one or more configurations of components, and so

transitions between variants in response to environmental change have the effect

of adapting the configuration. This proposal bears some similarity to that of Zhang

and Cheng (Section 2.5.1) in its use of an adaptive state machine, and also to work

on policies (Section 2.3.9) since each transition can be regarded as a policy.

The work meets D3 (independent impetus) since the adaptive concerns are

separated from those of the application. However, each transition and resulting

configuration is specified explicitly using the OpenCOM ADL, and so D4 cannot be

satisfied. The work does not address requirements 2, 3, 4 or 5.

2.3.8 Critics

Dashofy et al. [DvdHT02] describe an approach in which an architectural change

is expressed as a “diff” (a delta). Deltas and architectural descriptions are stored

in a repository, which may be augmented at runtime. Before applying the delta
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to the running system they apply it to a model of the architecture and use design

critics [RHR96]—that is, an extensible set of analyses—to check that the result

is valid. When the change has been validated it is propagated to the running

system. The authors employ a simplification of the quiescence protocols described

in Section 2.5.3 to ensure the adaptation process goes smoothly. First they request

that the components to be removed are shut down, then that their neighbours

are suspended. However, they do not account for circumstances—however

pathological—in which a neighbour makes a request to one of the components

to be removed after it has shut down or similarly when another neighbour makes

a request to a suspended node. Indeed they state that the order of the steps in

the adaptation process is irrelevant after all required suspensions have occurred.

We would argue that this is not the case when we wish to minimise disruption,

especially for critical components. It is clear that the proposal satisfies requirement

D3 (independent impetus) and goes some way to meeting 4 (adaptation safety),

but it does not meet D4 since, although the deltas are in some sense declarative,

they exactly specify the resulting architecture, obviating any search for solutions.

The inclusion of design critics leaves the system open to support verification of

structural constraints (requirement 3), though it is not directly mentioned in the

paper. The approach does not address the use of NF properties (requirement 2) nor

decentralisation (requirement 5).

2.3.9 Adaptation Policies

Georgas and Taylor [GT04] describe a system where architectural change is enacted

by architectural policies which are invoked in response to certain events such as

component failure. Actions performed by policies may add or remove components

(or connections), and even manipulate other policies. Hence, the set of policies

can be extended while the system is running, but as with many other approaches,

the policies are specified explicitly by the programmer. Likewise, in [GBJC07],
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reconfigurations are specified in the form of condition-action rules (similar to a

policy), and are validated by a style enforcement service before application.

There is a wide variety of other work using policies for self-management, such

as [SFLD+07]. The use of policies provides a uniform mechanism for dealing

with changing environments and resources, and even specification of sequential

behaviour. However, excepting [GT04, GBJC07], work on policies is not explicitly

architectural, and much of the work relies on the programmer writing the policies.

One exception is that of Bandara et al. [BLMR04] on policy refinement wherein

high-level “goal” policies are refined into implementable sets of policies using logical

abduction, in a manner akin to planning (Section 2.3.14).

Policies allow the reason for adaptation to be specified independently (achieving

D3) but, in most of the work we are aware of, policies are written by hand, and

are essentially imperative. Moreover, there is no particular means for dealing with

NF properties, decentralisation or safety (requirements 2, 4 and 5). [GBJC07] does

deal with structural constraints (requirement 3), however.

2.3.10 Graph Grammars

Work on graph rewriting [LM98, BLM08] uses the notion of architectural style

as a basis for delimiting valid transformations of the component graph in

an architectural configuration. In other words, by restricting the language

of transformations to style-preserving rewrites, the configuration is correct by

construction, obviating an explicit constraint check.

Le Métayer [LM98] defines an architectural style as the class of configurations

generated under applications of a given set of rewrite rules, such as

clientserver ::= client + clientserver|server
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which states that a client-server system can be a server, or can be rewritten

arbitrarily to add a client (the syntax here is simplified from that in the paper). The

rewrite rules are statically checked for consistency with the intended constraints of

the style, so that the rules can be applied freely at runtime.

Graph rewriting approaches naturally deal with requirement 3 (structural con-

straints). However, [LM98] observes that context-free grammars cannot express

all possible styles. Also, these approaches do not address the question of when to

apply a particular rewrite rule, nor whether it is safe to do so at a certain point

in the application’s computation (requirement 4). Likewise they are not concerned

with decentralisation nor NF properties (requirements 2 and 5). They can be said

to meet D2 since the rewrite rules are independent of the application, and can be

seen as repair strategies (with all the aforementioned drawbacks) in a more abstract

language.

2.3.11 Specification-Based Retrieval

Various authors [MMM97, PA99, ZW97, NR07] have proposed a component selec-

tion mechanism based on a (logical) specification of the component’s functionality.

Rather than binding provisions to requirements based on a syntactic match of

the interface name (or method names), such matching considers how well the

specification of the provision guarantees the conditions of the requirement. This

kind of retrieval could be used as part of a larger adaptation scheme.

In [MMM97, PA99, ZW97] a provision is matched to a requirement if the provision’s

specification is a refinement of the requirement. For a function, this means that the

post-condition of the provision must imply the post-condition of the requirement.

For example, a requirement for f(x) > 4 would be satisfied by f(x) > 5. Often,

though, refinement matching is too strict, and so the authors suggest various

weaker alternatives. [NR07] proposes to determine the validity of a semantic match
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by testing. Specification-based retrieval would meet criterion D4 if combined with

a larger adaptation scheme which should address requirements 2, 3, 4 and 5.

2.3.12 Service Brokering

There are a number of works in the field of web services and service-oriented

architecture which are relevant for self-managed systems. Such work generally

only deals with the selection of a single service to meet a requirement, but this

can be seen as a degenerate case of modifying a configuration of components.

For example, the approach taken by Mukhija et al. [MDSR07], in developing the

Dino service broker, matches the functional and non-functional requirements of a

service requester against the provisions of each service provider.

Matching of the functional requirement is done using a semantic description (see

Section 2.3.11) in OWL-S5. For the matching of non-functional (QoS) requirements,

each provider states its expected value for an NF property, and its confidence

that the value can be achieved. Between all providers which meet the functional

requirements (and the minimum NF requirements), a choice is made on the basis

of evaluating utility functions.

When a binding has been made, the NF properties of the provider are monitored

by the broker (requiring the broker to understand the meaning of each property),

and the provider’s utility is penalised (through the inclusion of a trustworthiness

property) when the service agreement is violated, which is to say, when the

provider’s NF property diverges from the advertised value. This can also trigger

an adaptation to select an alternative provider.

Since Dino performs a search for providers, it clearly achieves requirement D4.

Moreover it accounts for NF information, satisfying requirement N2, but not re-

quirement 4 (safety). Dino does not consider structural constraints (requirement 3),

5Semantic web ontology language.



2.3. Adaptive Architecture : What 53

reflecting the wider point that Dino is not concerned with properties, architectural

or otherwise, of the system as a whole. Each selection is performed with local

information, which may lead to a result which is globally sub-optimal. The

Dino broker does not deal with distribution issues (requirement 5), despite the

expectation that services are ordinarily distributed.

Mokhtar et al. [MLGI05] propose a system similar to Dino wherein web services are

semantically matched against a state machine representing the user’s task, and

choices are made on the basis of NF requirements.

2.3.13 MADAM

The MADAM (and later MUSIC) project [BHRE07, MAD06, MUS07] considers

various means for finding component configurations which have the optimal

combination of non-functional properties (with respect to resource constraints),

noting that the solution space is exponential in the number of variation points.

The approaches considered include exhaustive search, greedy selection and

another using the Bellman-Ford algorithm [AHE+06].

In particular, the MADAM approach meets D4 since it searches in a space of

solutions for one which meets resource constraints, and the functional goal implied

by the root component. The proposal meets (and exceeds) N3 since solutions must

meet resource constraints, and the remaining NF properties must be optimised6.

MADAM appears to support a limited form of structural constraints that encode

dependencies (requirement 3), but does not meet requirements 4 and 5.

6The related QuA project [SE04] also considers NF properties.
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2.3.14 Architectural Planning

Arshad et al. [AHW07, AHW04] use a planner to find an optimal method for

deploying a configuration. Planning tools take a description of a system and its

world [Jac95], and a specification of a goal, to produce a sequence of actions which

should be performed to achieve the goal. In this case, a linear plan is produced

in terms of architectural actions such as instantiation and connection. Plans are

optimised in terms of the time or resources needed to deploy the configuration. The

goals used may be an explicit description of the desired configuration, or an implicit

description which includes only the components of interest. The use of linear plans

prevents this system from being able to cope with failures during deployment. A

reactive plan would be able to recover from reaching an unexpected state after

performing an architectural action.

Their work also addresses adaptation in the face of component failure, by

generating a new plan from the current state when a component fails. The new

plan will describe how to reconstruct the configuration. The use of planning for

adaptation allows the programmer to avoid having to specify the repair strategies

ahead of time, as in most of the other approaches. Unfortunately, using planning

for all architectural reconfiguration comes at some cost. In [AHW07] planning took

between 5 and 57 seconds, while plan execution took between 62 and 138 seconds.

It seems possible that a ‘naı̈ve’ algorithm might perform better overall, so that it

can be applied in the context of dynamic reconfiguration.

This proposal satisfies requirement D47, since the result is constrained rather

than programmed. It also addresses the safety of the change, since architectural

actions have a precondition of components being in the appropriate state, meeting

requirement 4. The approach also meets N3 with the caveat that the NF

properties pertain to deployment actions rather than configuration resulting from

deployment. Although not explicitly mentioned by the authors, the planner’s input

7Similarly the policy refinement of [BLMR04] meets D4.
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language seems capable of handling structural constraints, which would enable

the approach to satisfy requirement 3. However, the approach is centralised, failing

requirement 5.

2.4 Adaptive Architecture : When

In this section we review work which considers when (and hence why) an adaptation

should be performed. Much of this work pertains to reconfiguration in response

to changing non-functional properties (of the environment or the system). Other

causes of adaptation, such as changing goals and failing components, are described

in Section 6.1.

2.4.1 Resource Allocation

Walsh et al. [WTKD04] use utility functions to adapt data centres in response to

particular non-functional properties such as latency. Adaptation is achieved by re-

allocating resources (of which there is a fixed quantity) between applications (which

can be thought of as services or components) in order to maximise the utility. Each

application uses the current demand on the service and future demand (predicted

by a demand forecaster) to calculate the utility it can provide under the current

resource allocation. In other words, changing demand (in the environment) can

trigger the system to reallocate resources to match the demand.

2.4.2 Resource Prediction

Poladian et al. [PGS+07] describe a mechanism for predicting resource availability,

to enable pre-emptive adaptation, so that the resulting utility might be maximised.

This is motivated by the observation that merely reactive adaptation (in response
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to changes in availability) leads to sub-optimal utility. In addition, frequent

adaptation is discouraged by giving an increased utility to components that are

already running.

Prediction of resource levels is performed by combining multiple basic predictors

such as linear regression over the recent history, expected minima and maxima,

and step changes. The set of enabled applications (which might be thought of as

components) are then changed (one or more times according to different strategies)

to maximise the total utility for a number of time steps into the future.

2.4.3 Failure Prediction

Epifani et al. [EGMT09] present an approach (KAMI) for updating NF properties

provided a priori after monitoring their real values, in order to improve a model of

the system. NF properties in this case are probabilities in a discrete time Markov

chain describing the system behaviour.

Given some requirements (on reliability for example), KAMI can then use the model

to detect and even predict when the system will violate its requirements. This

violation could be used to adapt the system configuration pre-emptively.

2.5 Adaptive Architecture : How

In this section we review approaches for ensuring that the process of adapting

from one steady-state behaviour to another is safe in the sense that it does not

cause deadlocks or incorrect component execution (such as segmentation faults).

Naturally, most of these techniques only address one of our requirements, that of

adaptation safety (4).
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2.5.1 Preserving Guarantees

Zhang, Cheng et al. [ZC05, ZC07, ZC06a, ZC06b] apply formal techniques to

show how the safety of a transition from one steady-state program (which can

be thought of as an architecture) to another can be guaranteed. In order to do this

they require descriptions of the source and target programs in the form of finite

state machines (which may be derived automatically [ZC07]). Each state machine

is checked against its own invariant (given in linear temporal logic), and the states

are annotated with their guarantees (which should include the invariant). For each

transition (specified by the programmer) from a state in the source FSM to a state

in the target, the transition is only valid if the guarantees of the target preserve

the guarantees of the source, that is, if the target guarantees imply the source

guarantees. Only the guarantees of the two states involved in the transition need

be considered. In Figure 2.7 S1 and S2 belong to a source program, and SA and

SB to a target program.

Figure 2.7: Adaptive system

The guarantees of S1, which include �q (eventually q), are not satisfied by the target

state, since q is no longer a possibility if the adaptive transition is taken. Hence

this is not a safe adaptation.

Not only does this scheme permit verification of the adaptive transition, it does it
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in a modular fashion. When a new source or target program is added with new

transitions to existing programs, only the guarantees of the new program need to

be computed. These are then easily compared against the previously computed

guarantees of the other programs. Previous approaches would have to recompute

all guarantees as the adaptive program was regarded as a single monolithic FSM.

This work is not directly applicable to the problem we are considering since they

assume that the adaptive transitions are specified by the user (they themselves

admit this requires a worst case of N2 transitions for N programs). Indeed, this

supports our claim that it is a significant burden upon the programmer to specify

adaptations explicitly, and that a more declarative mechanism is needed. Also,

they regard the source and target programs as monolithic entities which have no

discernible internal structure. They do not tackle the problem of performing a

partial change to an architectural configuration.

2.5.2 Minimising Cost

Further work by Zhang et al. [ZYCM04] considers safe adaptation in the context

of programs composed of components. This work does not simply verify an

adaptation, but derives an adaptation procedure which does not violate certain

safety conditions, and which is optimal with respect to some measure of cost. The

first step of their process is to determine all the valid configurations. This is done by

considering the specific requirements of components (such as required interfaces),

and by considering other potentially global constraints. For each possible add,

remove or replace operation which transforms one configuration to another, a cost

is associated. This forms a graph of configurations where the arcs are weighted.

The system then finds the minimum-cost path through this graph from the source

to the target architecture. For example, in the adaptation graph below, there are

two ways to adapt from a configuration consisting of just A to that consisting of B

and D. The path with an intermediate configuration has a lower cost and will be
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selected by the algorithm.

Figure 2.8: Adaptation graph

The work also includes a simple quiescence mechanism (see Section 2.5.3) whereby

components are sent “reset” messages instructing them to enter a state safe for

adaptation.

2.5.3 Quiescence

Kramer and Magee [KM90, KM98] describe a method to apply a previously

unknown set of changes to an architecture during execution, while maintaining

consistency. They consider systems in which transactions (communications

between components) are independent, that is, where one transaction cannot

invoke another sub-transaction before completing. Also, they restrict their scope

to systems which do not have composite components – each component is a leaf.

They introduce the notion of a quiescent node, which is a component which is not

engaged in any transaction (that it or another node initiated) and will not start any

new transactions (and it will not be required to service any incoming transactions).

The weaker notion of a passive node is one which must not be engaged in a

transaction it initiated, nor initiate a new transaction (it may however service

transactions). If a component is to be removed, its neighbours (those connected to

it) must be passive. Components must therefore respond to a “passivate” message

which ensures that eventually the required nodes will be quiescent. At this point a

component can be disconnected or removed (or added). The passive set PS(Q) of a

node to be removed, Q, is defined to be Q and the set of nodes directly dependent

on Q. The quiescent set QS is the set of all nodes which have an outbound
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connection which is to be removed. When all the connections to be removed are

directed to a node which is to be removed, QS = PS. The change passive set is

CPS =
⋃

n∈QS PS(n), denoting the set of nodes which must be made passive before

the changes are performed.

Figure 2.9: Lunar rover architecture

To demonstrate this, consider the example configuration in Figure 2.9, which

describes the software architecture of a (hypothetical) lunar rover. Communication

between the rover and headquarters is handled by the transmitter component.

Other components use the provided interface of the data compressor to have the

data compressed before transmission. Commands may come from the transmitter,

and so it requires a component to handle those commands, namely the mission

controller. The mission controller has direct connections to the gripper and motor

components which deal with hardware details. There is also a location service

which the mission controller and map constructor use to determine the current

location. The purpose of the map constructor is to collect information from the

rover’s camera and the location service to build a map of the environment, which

the mission controller may then query. The purpose of the solar panel manager is

to adjust the angle of the solar panels continually so that the rover does not run

out of power. This requires a connection to a mission controller, which it uses to
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report when power is low.

Figure 2.10: Quiescent and passive sets

If the mission controller is to be changed for an alternative implementation, then

the existing one must be removed. The quiescent set QS = {Mission Controller,

Data Compressor, Solar Panel Manager} since this latter pair have direct con-

nections to the mission controller. This set is shaded in Figure 2.10. The

CPS = QS ∪ {Location Service, Camera, Transmitter}, and is denoted by lighter

shading.

The transmission system and the solar panel manager are critical components,

and it is highly undesirable to make them passive. In particular, the solar panel

manager must continue running to provide power. It is only included in the

quiescent set because of a connection to the mission controller, which it uses

very infrequently. This suggests a more dynamic approach that considers actual

rather than potential behaviour would be more appropriate. That being said, the

work is directly applicable to our problem since it permits arbitrary changes at the

architectural level.
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2.5.4 Dynamic Growth

Moazami-Goudarzi [MG99, MGK96] proposes a system whereby the set of quiescent

nodes grows dynamically. The blocked set (BSet) is the set of nodes which will not

initiate or service transactions (equal to QS). Once a node has been asked to block,

it should continue to service requests that come from other BSet members since

this may be required for quiescence to be achieved. Since a request to a node

outside the BSet may cause a chained request to a member of the BSet, the BSet

must grow when a BSet member initiates a transaction with a node previously

not in the set. These extra members are later removed when the transactions

terminate.

Considering the previous example where the mission controller is to be removed,

BSet = QS. Further, suppose the mission controller calls the location service

before it blocks. This causes a consequent transaction on the data compressor,

which must be temporarily unblocked. This causes a further transaction with the

transmitter. Hence, the location service and the transmitter are added to the BSet.

Figure 2.11: Blocked set

This is an improvement over the system in [KM90], but still requires the
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transmission system and solar panel manager to block.

2.5.5 Connections

Wermelinger [Wer99] presents a refinement which attempts to minimise unneces-

sary disruption by concentrating on blocking connections themselves rather than

whole components, and only blocking connections which will be removed in the

course of reconfiguration. In order to avoid deadlock, the dependency between

transactions (viz. between connections) must be given, so that a dependency

is always blocked after the dependant. Unfortunately, this requires substantial

knowledge of component implementations.

Wermelinger also addresses hierarchical (composite) components. The difficulty

is that the dependencies between connections in a composite component cannot

always be seen when only considering that component, since an extra external

connection from the composite component back to itself may create a depen-

dency. Wermelinger solves this by associating a configuration manager with

each component (leaf and composite). When a connection is to be blocked, the

manager for the source of the connection (the dependant) is queried. This manager

forwards a request to its own dependants to ask them to block the inbound

connections. This chain continues to the “root” which may pass outside the

current composite component. The root sends an acknowledgement to allow its

outbound connection to be blocked. Acknowledgements are sent back along the

chain ensuring connections are blocked in a safe order.

In the rover example, all connections to or from the mission controller will have to

be blocked as in Figure 2.12.

Many of these connections are outbound, and so blocking them is not a problem.

However, both the data compressor and the solar panel manager have connections

towards the mission controller. It seems reasonable to expect that the controller will
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Figure 2.12: Blocked connections

be unresponsive to commands from the transmission system while being changed,

and will ignore low battery events from the solar panel manager. However, low

battery events are unlikely, and this scheme has the advantage of not requiring the

solar panel manager to be blocked.

2.5.6 Tranquility

Vandewoude et al. [VEBD06a] observe that the work of Kramer and Magee causes

widespread disruption and breaks the black-box principle since components must

know something about their context. A new solution is proposed, called tranquility,

which weakens the conditions of quiescence, at the cost of being unable to

guarantee that it is reached in a finite time. This, though, can be managed by

reverting to the original quiescence scheme after a certain period of time.

One of the conditions of quiescence is that the node to be replaced will not

participate in any transactions yet to start, or currently in progress, which are

initiated by another node. This is weakened to requiring that the node will not

participate in any transaction in which it has already participated. To illustrate



2.5. Adaptive Architecture : How 65

the point, consider Figure 2.13, which shows the participation of component C in

a transaction T, where time flows from left to right. Both situations are prohibited

by quiescence, but replacement of C is permitted under tranquility in situation

(b), after C’s participation has ended. Intuitively, if C has no further work in the

transaction, or has not yet worked in the transaction, it can be replaced (assuming

replacement finishes before C is required).

Figure 2.13: Component C participates in transaction T

Figure 2.14: Tranquilised components

This weakened condition means that only the component to be replaced need be

stopped. In most cases, its neighbours can continue operation. However, there are

situations where tranquility will never be reached, such as when two transactions

overlap such that the component is perpetually in situation (a). In this case,

the neighbours must be made passive8 as under quiescence. Tranquility is very

effective in the rover example (Figure 2.14) since most of the connections to the

8“tranquilised”



66 Chapter 2. Background

controller are outbound. It then suffices to wait for the data compressor and solar

panel manager to report that they will not reuse the controller. In other words, they

must “lock” the controller if they intend to use it multiple times in a transaction.

2.6 Summary

Much of the work described above addresses one or more of our requirements.

Section 2.3 covered the most relevant work which addresses the question of what

changes an adaptation consists of. Table 2.1 summarises the review, indicating

which approaches come closest to satisfying our aims.

Approach Declarative
autonomy

NF proper-
ties

Structural
properties

Safety Distribution Comment

Dynamic Darwin D2 - - - - Adaptation restricted
Dynamic Wright D2 - Y - -
Dynamic Acme D3 Y Y - - NF motivates adaptation
Rainbow D3 Y Y - - NF motivates adaptation, almost D4
Aura D4 N1 - - -
Georgiadis D3 - Y - Y
Genie D3 - - - -
Critics D3 - Y Y -
Policies D3 - Y - -
Graph Grammars D2 - Y - -
Spec. Retrieval D4 - - - -
Service Brokering D4 N2 - - -
MADAM D4 N3 Y - -
Arch. Planning D4 N3 Y Y - NF pertains to deployment

Table 2.1: Summary of related work

Four approaches in particular stand out: Rainbow, the work of Georgiadis,

architectural planning and service brokering (Dino). Rainbow uses non-functional

information to inform the adaptation process, and respects structural constraints

in doing so. However, Rainbow remains largely procedural in its use of repair

strategies.

The architectural planning of Arshad et al. is fully declarative, satisfying the first

of our requirements, and it appears that it would address safety and structural

constraints. The use of NF information is limited in that it only relates to the

deployment of the configuration rather than its application behaviour. However,

the most significant limitation is the performance cost of generalised planning.
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The Dino service broker performs matching on functional and non-functional

properties, and does not require any procedural specification. Although it does not

address the problem of safety, its main drawback is the lack of global knowledge

– selection is performed on a component-by-component basis and is not verified

against structural constraints.

The work of Georgiadis stands out as the only proposal which explicitly addresses

the issues of decentralisation, namely of ensuring that nodes see a consistent view

of the global configuration and co-ordinate their changes. The adopted approach

however did not overcome the performance limitations of a centralised system.

In Section 2.5 we described work which specifically addresses the requirement

for safety during the adaptation process. The original quiescence work entails

substantial disruption to the running system, while the subsequent works attempt

to minimise this. Wermelinger’s approach has the disadvantage that something

must be known about the implementations to determine which transactions

are related. Tranquility preserves the black box principle by requesting that

components identify which of their dependencies they are going to reuse within the

current transaction, so that the adaptation system can wait for a point at which

the component to be replaced is no longer required. The advantage is that only that

component need be stopped, unless the application takes too long to reach the safe

point (in which case quiescence is applied).

We can see from this survey that there is a need for solutions which meet D4 by

entirely eschewing procedural specification (as Dino and architectural planning do),

while simultaneously accounting for NF properties (requirement 2) and structural

properties (requirement 3) of the configuration. Very few of the existing works

include a safety protocol (requirement 4), and only one specifically addresses

the issues surrounding decentralisation (requirement 5). With this in mind, the

algorithms and protocols detailed in the subsequent chapters constitute a proposal

to meet each of our requirements. The centralised assembly process in Chapter
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4 addresses requirements 1 to 3, the extension of tranquility given in Chapter

6 addresses requirement 4, and the decentralised formulation of the assembly

process given in Chapter 5 addresses requirement 5.



Chapter 3

The Three-Layer Model

A
S alluded to in previous chapters, our work is founded upon the

three-layer conceptual model of Kramer and Magee [KM07] which was

developed from a similar work in the robotics field [Gat98]. This model

provides a framework for handling self-adaptive concerns wider than those specific

problems addressed in our work, and provides a context in which to demonstrate

the applicability of our solutions. Specifically, our approach sits in the middle layer,

taking input from the layer above, and driving the layer below1.

3.1 Conceptual Model

The three-layer model is depicted in Figure 3.1. The primary intent of the model

is to stratify the decision-making capability of a system implementing the model

so that the most expensive operations are performed the least frequently. This

is reflected in the level of abstraction employed, and the amount of deliberative

analysis performed, in each layer. This ensures that the system can react quickly

to highly variable (possibly continuous) environmental properties, and fall back

1The reification of aspects other than the techniques and algorithms of the middle layer were
undertaken as joint work.
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upon expensive analyses only when necessary. Whereas similar models [KC03]

employ a single feedback control loop, incurring the same cost for each adaptation,

the three-layer model has (depending on the interpretation) three feedback loops

which operate at different rates.

Figure 3.1: The three-layer model for self-adaptive systems

The first of these loops is between the environment and the component layer

(or control layer). In this layer reside several components which implement

the fundaments of the application behaviour and which react quickly to small

environmental changes. For instance, a robotics application would handle obstacle

avoidance in this layer since a rapid response is imperative.

The second feedback loop lies between the component layer and the change

management layer. The change management layer has two concerns. The first is to

instruct the components to perform high-level actions in response to environmental

conditions. The sequence of such actions (in other words, a plan) should lead

the system to meet its high-level goals, which are handled in the layer above.
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The second concern of the middle layer is to manipulate the configuration of

components in order to adapt to component failures (which may result from

unhandled environmental changes or implementation bugs). It is this problem

which is addressed in our work. Both functions of the change management layer

are likely to be invoked less frequently than those of the control layer, since

reconfigurations are discrete, substantial changes; and plan actions (and the

conditions on which they depend) are abstracted from the fine-grained ad hoc code

which the application components consist of. For example, in the robotics domain

again, if a robot is trying to reach a target location using a GPS component, and

that component fails (perhaps the GPS signal is lost), then an architectural change

could be made to use a different means of getting to the target, such as following a

wall. These abstract behaviours would be encapsulated in one or more components

which can be replaced without necessitating a change to the current plan.

The final feedback loop lies between the change management layer and the goal

management layer. The purpose of this layer is to synthesise the overall behaviour

of the system in the form of a plan, which is to be executed in the layer below.

The plan is derived by analysing an abstract model (called a domain model) of

the system and its environment, in conjunction with a specification of the goal to

be achieved. Feedback comes in the form of replanning requests when a given

plan fails to achieve the goal2. Such requests are expected to be infrequent, given

the numerous opportunities for adaptation in lower layers afforded by the level of

abstraction in the plan, avoiding the expense of replanning.

The result of this arrangement is a system which can derive a high-level behaviour

from an abstract goal, and assemble (in a top-down manner) a configuration of

application components to execute that behaviour, and which provides means for

adaptation in each layer to discourage the use of expensive mechanisms to perform

trivial changes.

2Replanning can also occur if the goal is changed.
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3.2 Reification

Having covered the model in abstract terms, we now describe a particular

reification of the model which uses a declarative configuration assembly process

in the change management layer, directed by the goal management layer. This

assembly process, as indicated by the requirements given in the introduction, is

the focus of subsequent chapters.

3.2.1 Planning

In the goal management layer, reactive planning is used [SHMK08, Sch87].

Whereas a traditional linear plan consists of a sequence of actions, blindly executed

in the expectation that the system will move from some starting state to a goal

state, a reactive plan observes the state of the world after every step in order

to determine what action to take next. A reactive plan, then, consists of a map

from states to actions, which imposes no execution order except that imposed by

the state changes which occur in the environment. Such a state change may be

unexpected, perhaps as a result of some part of the environment failing to match

the assumptions made about it, or perhaps as a result of an unmodelled aspect of

the environment changing, such as an unwitting human tramping in and breaking

something. The unexpected state may be advantageous to the system, by putting

it closer to the goal state, or it may be completely unrelated to the actions which

the system has performed thus far. It is this latter case which would have required

replanning if a linear plan were to be used. Reactive plans deal with the problem

by including an action for every state from which the goal is reachable. In other

words, whatever state the environment takes, the system knows how to respond,

providing it is still possible to achieve the goal.
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Domain Model

In order to generate a reactive plan to achieve a goal, the environment and the

actions that the system can perform within it must be described precisely and

unambiguously. This description is called the domain model. The domain model

includes a set of propositions P which represent discrete facts which may hold in

some states of the environment and not in others. A valuation of these propositions

uniquely determines a logical state of the environment. Ordinarily, the truth

of propositions will be sensed from the runtime environment to determine what

the current (logical) state is. Other propositions may refer to internal system

properties. For example, in the robotics domain a proposition such as atLocation(1)

might hold when the robot can detect it is at symbolic location 13.

In addition to the set of propositions, a set of transitions Trans labelled with actions

that the system can perform are defined. These transitions determine how the

environment is expected to change from one state to another after the system

performs an action. Actions are assumed to be instantaneous. For example,

a transition may specify that when the state is atLocation(1) ∧ ¬holdingBall, and

the action grabBall is performed, the environment is expected to move to the

state atLocation(1) ∧ holdingBall. A given action may be associated with multiple

transitions where the result of the action is non-deterministic. These transitions

mean that the domain model can be considered to be a labelled transition system4

(LTS) where states are labelled with a valuation of the set of propositions.

More formally, a domain model is a tuple:

Domain = 〈P, States, Actions, Trans〉

where P is the set of propositions, States ⊆ 2P is the set of valuations of propositions

3The interpretation of propositions and the consequent quantisation of sensed data is a matter
for plan execution.

4Actually a Kripke structure.
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that determine environment states, and Actions is the set of actions used in the

transition relation Trans ⊆ States× Actions× States.

The set of actions can be partitioned into Sys, the actions that the system controls

directly; EnvDep, the set of causally-dependent actions performed by the environ-

ment; and EnvInd, the set of causally-independent environment actions. Causally-

dependent actions are events expected to happen in the environment after a system

action has initiated some behaviour. For example, the system may initiate moving

towards a target using an action startMoving, and completion of the behaviour

is notified by the environment performing the action arrivedAtTarget5. Causally-

independent actions are those which can be performed by the environment at any

(applicable) time. For example, in a system which can detect rainfall but has no

control over it, startRaining may occur at any time when it is not already raining.

The distinction between kinds of actions arises from the need to include system

behaviours which are not instantaneous and have duration. Such behaviours have

an initiating action of the form beginBehaviour, which makes a proposition such

as performingBehaviour true. To complete the model, there must be a transition

from the state where performingBehaviour is true, and this transition is labelled with

a causally-dependent environment action of the form behaviourComplete (which

sets performingBehaviour to false). For example, the system action startMoving

might set the proposition moving to true. After some time the environment action

arrivedAtTarget happens and sets moving to false. However, this distinction

between environment and system actions is not necessary for assembly, and so in

the following references to actions should be taken to indicate Sys, unless otherwise

specified.

Our implementation [SHMK08] previously made use of NPDDL6 [BCDLP03] to

specify the domain model. In this formalism, a domain model is a set of actions

with pre- and post-conditions over the domain propositions, with the meaning that

5We use an underscore to denote environment actions.
6Non-deterministic planning domain definition language.
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in states where the pre-condition holds, it is reasonable to perform the action, and

doing so will lead to a state where the post-condition holds. In effect, each of these

‘rules’ defines several transitions labelled with the given action from all the states

which satisfy the pre-condition.

A more expressive means to specify the domain model [HSMK09], however, is as

a set of fluents (the domain propositions) and a number of constraints written in

linear temporal logic (LTL). These constraints can specify pre- and post-conditions

but also constraints that hold in all states, such as the fact that a robot can only

occupy one location at once (making the relevant fluents mutually exclusive). An

example domain model, in the syntax of the Labelled Transition System Analyser

(LTSA)7, is given below:

fluent holdingBall = <{grabBall}, {dropBall}> initially false
fluent atLocation1 = <{arriveAtLocation1}, {moveToLocation2}>
fluent atLocation2 = <{arriveAtLocation2}, {moveToLocation1}>
...
constraint GrabPre = ([] (!X grabBall W !holdingBall && atLocation1))
constraint SingleLocation = ([] (!(atLocation1 && atLocation2)))

Each fluent declaration gives the list of actions which make the fluent true, and

the actions which make the fluent false. In this case, the fluent holdingBall

is specified to become true when grabBall is peformed, and become false when

dropBall is performed.

The constraint GrabPre specifies the pre-condition of the action grabBall. Here,

the operator [] means “for all states”, X means “in the next state” and W is the

weak until operator, which in this context can be read as “unless”. The meaning

of GrabPre, then, is that for all states, grabBall is not performed in the next

state unless holdingBall is false and atLocation1 is true. Notice that actions

are treated as propositions that hold in the target state of transitions labelled with

the same action. It is not necessary to specify the post-conditions of actions, since

7http://www.doc.ic.ac.uk/ltsa/ The grammar can be found in the appendix.
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these are covered by the fluent declarations.

The second constraint SingleLocation uses the LTL syntax to state that there is

no state where both atLocation1 and atLocation2 hold.

Plan Generation

Once a domain model has been defined and a goal is given, a plan can be generated.

A reactive plan is a map from states (as above) to actions: Plan : 2P → Actions. Plan

contains an entry for every s ∈ ReachableStates where ReachableStates is the set of

states from which the goal is reachable. States s /∈ ReachableStates are of no interest

to the plan since there is no way (described in the domain model) for the goal to be

reached from them. For some a ∈ Actions, Plan(s) = a only if Trans(s, a, s′) for some

s′ ∈ States.

Execution of the plan involves sensing the truth of propositions P to determine

the current state and then executing the action associated with that state. The

order of actions is thus solely determined by the response of the environment to

the actions. Strictly, this sort of plan is called a strong cyclic plan since there is the

possibility that it will never terminate. This could happen if the environment does

not change after an action is performed, leading the system to repeat the same

action (or engage in longer cycles of actions).

The first step to generate such a plan is to identify the states in which the goal

holds. These are referred to as goal states. Goal states are identified using LTSA by

asserting the negation of the goal (given as a further LTL formula), generating the

Büchi automaton corresponding to the negation [GM03, MK00] and composing this

with the LTS of the domain. LTSA then highlights the states in which the negation

of the goal is violated, that is, the states in which the goal is satisfied.

The reactive plan is subsequently generated by an algorithm from the planning-

as-model-checking community [GT99]. This algorithm starts with the set of goal
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states, and adds states which lead to a goal state via a single transition. The

transitions leading into the set of goal states are added to the plan. This process

repeats with an ever-increasing set of states (and transitions) until there are no

more states that can be added. The set of transitions collected at that point

constitute the reactive plan.

Figure 3.2 shows two steps of plan generation. In (a), state 1 is added to the plan

because its exiting transition leads to the goal state (in black). In (b), states 2 and

3 are added to the plan because their transitions lead to states already selected

(state 1).

Figure 3.2: Plan generation

Notice that it is possible for a state to have more than one transition that leads into

the set of collected states. Since the plan requires just one action associated with

every state, the algorithm must choose between them. In this case the algorithm

favours the transition which belongs to the shortest path (in terms of the number

of transitions). Other strategies can be applied including transitions weighted with

NF properties such as cost or reliability. Figure 3.3 shows an example wherein

state 3 has two transitions, one to state 2 (indicated with a double arrow-head) and
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one to state 1. The transition which is selected for the plan is that to state 1, since

this path leads to the goal in fewer steps.

Figure 3.3: Multiple exiting transitions

Plan generation can be regarded as pruning the domain model to remove (i) states

from which the goal can never be reached and (ii) longer paths where a non-

deterministic choice between actions is present. The result of pruning is a set

of trees, each rooted at a goal state.

At this point it is worth noticing that by handling architectural concerns in the layer

below goal management, which leaves only the high-level application behaviour

to be handled in the plan, the space of propositions and states is reduced, thus

simplifying the planning process (cf. Section 2.3.14). In the general case, the

number of states grows exponentially with the number of propositions (|States| =

2|P |). The state explosion problem [GM03] can limit the scalability of reactive

planning, and so restricting the planning domain in this way can provide significant

performance benefits. In addition, the abstraction of architectural concerns from

the plan allows the system to adapt, by changing components, without having to

perform an expensive replanning step.

Figure 3.4 is an excerpt of a reactive plan taken from one of our case studies

[HSMK09] (also see Chapter 7). Each mapping from a state to an action can be seen
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as a condition-action rule. For instance, rule 12 states that when the proposition

MovingEast is false and DoorOpen is true, and so on, the system should perform

the action moveToTarget. The special action DONE indicates that plan execution

can terminate, since the goal has been reached.

...
// Rule 12
!MovingEast && DoorOpen && !InEast && !MovingToArmEast && !BallAtArmEast
&& !MovingWest && !MovingToTarget && InWest && MovingToArmWest
&& !BallAtArmWest && !HoistingEast && !BallAtTarget && !HoistingWest
-> moveToTarget
// Rule 13
!MovingEast && DoorOpen && !InEast && !MovingToArmEast && !BallAtArmEast
&& !MovingWest && MovingToTarget && InWest && !MovingToArmWest
&& !BallAtArmWest && !HoistingEast && !BallAtTarget && !HoistingWest
-> _arrivedTarget
// Rule 14
!MovingEast && DoorOpen && !InEast && !MovingToArmEast && !BallAtArmEast
&& !MovingWest && !MovingToTarget && InWest && !MovingToArmWest
&& !BallAtArmWest && !HoistingEast && BallAtTarget && !HoistingWest
-> DONE
...

Figure 3.4: Example reactive plan

3.2.2 Assembly

Once the plan has been generated, it is presented to the change management layer

which firstly uses it to assemble a component configuration, and then executes

the plan by observing the state of the environment (and potentially the state of

components) and instructing the components to perform the appropriate actions

as determined by the plan.

The actions in the plan represent a declaration of the functional requirements8

which the component configuration must meet: there must be components which

can execute each action in the plan. Thus the first step is to use a mapping defined

by the user to find a list of interfaces which provide the implementation of actions
8We will also call them capabilities.
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in the plan. This list of interfaces will then be used as the basis for configuration

assembly and adaptation.

The focus of our work is on this assembly process, as described in Chapters 4, 5

and 6. Starting from the mapping of actions, the assembly process analyses the

dependencies between components, and uses any structural constraints and non-

functional information that the user has provided in order to construct the best

component configuration for plan execution.

3.2.3 Components

The component configuration selected by the assembly process is instantiated and

operates in the component control layer. Instantiation and binding are handled by

the Backbone interpreter [MKM06]. Components are implemented in Java using

normal object references as bindings, and are called by the change management

layer to execute the actions in the current plan. The details of this implementation

can be found in Section 6.7.

3.3 Summary

The three-layer model separates high-level deliberative tasks from low-level be-

haviours so that adaptations to changes in the environment can be performed at

the appropriate frequency and level of abstraction. In the bottom layer, components

perform low-level behaviours and react to changes quickly. In the middle

layer, behaviours are performed in sequence and composed as a configuration of

components. More substantial adaptations can be effected in this layer by changing

components. In the top layer, abstract goals are used to generate overall plans. The

most wide-ranging and time-consuming adaptations can be achieved by resorting

to replanning.
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The primary contribution of this work is concentrated in the middle layer and

concerns assembling and adapting (through re-assembling) the configuration of

components to be used for plan execution.
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Automatic Architectural Assembly

A
DDRESSING the functional capabilities required of the system is the first

and naturally most important concern of the assembly process. The

secondary non-functional concerns guide and constrain the satisfaction

of the functional requirements, without changing the fundamental nature of the

process. Hence, after stating the relevant assumptions, we first describe the

process by which the functional requirements are met, in isolation from the other

concerns. Subsequent sections deal with the non-functional concerns.

4.1 Assumptions

Given the wide range of approaches that could be taken in pursuit of our

requirements, it is necessary to make certain assumptions to focus our effort on

particular solutions.

The first and largest assumption is that the problem of adaptation is to be tackled at

the level of software architecture, where adaptations are achieved by the selection

of different components and changing the connections between them. As indicated

in the introduction, there are several other levels at which adaptation can be

82
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considered, including parameter adjustment and dynamic update of classes. An

architectural approach allows us to consider a wide range of adaptations from

single components to complete changes of functionality, and renders several lower-

level considerations unnecessary.

Within the architectural approach, we suppose the existence of an extensible

repository of architectural descriptions of components, subsets of which can be

instantiated to create a working configuration. The form of these descriptions

closely follows Darwin, with unnecessary features omitted. Each component is

described by its name and a set of ports. Each port may provide or require a single

named interface. In the following, the set of provided interfaces of a component c

is denoted by prov(c), and the set of required interfaces by req(c).

The provision of an interface i ∈ prov(c) indicates that the component provides some

functionality associated with the name i. Thus, it is the interfaces that determine

which components can be used to satisfy a functional requirement. To this end, we

assume the assembly process is furnished with a mapping between the functional

requirements (which may be actions from a plan, as above), and the interfaces

which can be used to meet those requirements.

Furthermore, for the purposes of resolving dependencies between components,

we assume that interface names are sufficient. In other words, we assume the

interfaces form a closed ontology for the application domain. We are not concerned

with the problem of providing wrappers [YS97] or proxies so that compatible but

differently-named interfaces can interact, nor are we concerned with more detailed

matching of interfaces using semantic descriptions (as in Section 2.3.11).

Our final structural assumption is that it is reasonable to bind a requirement to

any matching provision, and that where alternatives exist they are functionally

equivalent. This means that connections can be generated trivially and thus

omitted from our definition of a configuration. We recognise that these alternative

bindings (topologies) may have different non-functional properties, but regard
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the functional concerns as paramount and the NF concerns as secondary.

This also makes it unnecessary to consider multiple instances of each type of

component, since a single provision can satisfy many requirements. Where

multiple instances are necessary (perhaps to meet a non-functional obligation), this

apparent restriction can be overcome by a renaming of components and interfaces

so that the different instances can be distinguished.

For the incorporation of non-functional information, we limit the expressiveness

of annotations to a constant value referring to a single component. The assembly

process does not consider the meaning of each annotation (so a property labelled

“memory” does not entail special consideration of the physical memory available)

and assumes each property is orthogonal. The local nature of annotations means

that functionally-equivalent components can be ranked to make a choice and the

lack of semantics frees us from having to introduce specialised procedures for each

property, and allows the designer freedom in using whatever properties are relevant

to the domain.

4.2 Functional Concerns

In contrast with other approaches (particularly architectural planning [AHW07]),

we do not attempt to choose between the manifold combinations of connect,

disconnect, create and destroy commands in order to construct or modify a

configuration. This unnecessarily increases the complexity of the problem, as

is clear from the performance of architectural planning. As indicated above,

we leave the bindings between components implicit, leaving the core problem

of choosing which components are needed. A configuration is thus a set of

components (component types), where create and destroy commands are implied

by the difference between two configuration sets.

The first task of the assembly process is to consider the set of functional
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requirements or capabilities. To find component implementations providing these

capabilities, a mapping from capabilities to interfaces is used:

Implements : Capabilities → P (Interfaces)

Given a set of desired capabilities Cap, the complete set of required interfaces can

be determined thus:

Implements(Cap) =
⋃

c∈Cap

Implements(c)

Finding implementations of these interfaces is the first part of the assembly

process. In the general case, the selected components have requirements which

must be satisfied by searching for implementations of the further required

interfaces (this is termed the dependency analysis). Where two interfaces provide

the same functionality, their names must match, or the provision p must be a

nominal subtype [Lis87] of the requirement r: p < r (that is, it can provide more

functionality but not less).

4.2.1 Dependency Analysis

The problem to be solved by the dependency analysis can be characterised as

finding an arch (the set of components in the configuration), given Implements(Cap),

subject to two constraints:

∀r ∈ Implements(Cap) : ∃c ∈ arch : ∃p ∈ prov(c) : p ≤ r (4.1)

∀c ∈ arch : ∃r ∈ req(c) −→ ∃c2 ∈ arch : ∃p ∈ prov(c2) : p ≤ r (4.2)

The first constraint states that for all initial requirements, there should be an

implementing component, and the second constraint is simply that all component
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requirements are satisfied. Implicit in the second constraint is the expectation

of cyclic dependencies. If component c depends on c2, and c2 requires something

provided by c, then this latter requirement is satisfied by c, instead of introducing

a different component with the same provision (or another instance of c). We call a

configuration satisfying these constraints complete.

To see how these constraints can be satisfied, consider the following example in

which Implements(Cap) = {i1}. There are three components c1, c2 and c3. In the

descriptions of these components, prov(c1) = {i1}, req(c1) = {i2}; prov(c2) = {i2},

req(c2) = {i3}; and prov(c3) = {i2, i3}. Figure 4.1 shows this information using the

Darwin notation that we use throughout. Then a valid configuration must include

c1 since it is the only provider of i1, and there must be further components to satisfy

the i2 requirement of c1. One valid solution is {c1, c2, c3}, while {c1, c3} is another.

Figure 4.1: Example components

4.2.2 A Constraint Satisfaction Problem

The above problem can be posed to a tool such as Alloy1, which can then search for

a solution to the constraints. In Alloy, the components and interfaces are expressed

as signatures with particular components represented as singleton extensions of

the abstract signatures2:

abstract sig Interface {}
abstract sig Component {req: set Interface, prov: set Interface}

1http://alloy.mit.edu
2Chatley [CEM03] provided a similar formulation, but with explicit bindings.
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one sig ExampleInterface1 extends Interface {}
one sig ExampleInterface2 extends Interface {}
one sig ExampleComponent extends Component {}
{

prov = ExampleInterface1 + ExampleInterface2
req = ExampleInterface1

}

This defines two interfaces, ExampleInterface1 and 2, and a component

ExampleComponent which provides the set {ExampleInterface1, ExampleInterface2}

and requires the set {ExampleInterface1}. A configuration is defined as a set of

components:

sig Configuration in Component {}

And finally the two constraints of a valid solution are given (we ignore subtyping

for simplicity). The userRequirement is stated as a fact (since it must hold),

indicating ExampleInterface1 is the only functional requirement (this constraint

is a specialisation of 4.1). The predicate validConfig allows us to ask Alloy to find

an example configuration where the constraint 4.2 holds:

fact userRequirement { some c:Configuration | ExampleInterface1 in c.prov }
pred validConfig { all c:Configuration, i:c.req |

some d:Configuration | i in d.prov }
run validConfig

Unfortunately, this proved to be substantially inefficient. Figure 4.2 shows the time

complexity was exponential with the number of components. This is to be expected

since Alloy translates the problem to one of boolean satisfiability (where a (logical)

model is a set of components). The underlying SAT solver attempts to satisfy the

constraints by selecting different subsets of components without paying particular

attention to the dependency graph. In a sense, Alloy performs an undirected

search whereas greater efficiency can be achieved with a directed search over the

dependency graph.
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Figure 4.2: Alloy performance

4.2.3 Dependency Analysis Algorithm

We have developed the algorithm shown in Figure 4.3 to overcome the limitations

of undirected search as above. The algorithm performs a depth-first search over

the dependency graph between provided and required interfaces.

The algorithm is expressed as a function which takes an existing configuration

(called arch), and a set of names of desired interfaces. The arch parameter may

be the empty set, to generate an initial configuration. In the first branch, the

algorithm checks whether there is a component in the current configuration which

already provides the desired interface. If so, the interface can be removed from the

set of desired interfaces. The function prov(x) returns a set of interfaces provided

by component x, and req(x) does likewise for requirements. In the second branch

of the algorithm, the repository of known components (here expressed as a set

called Components) is searched for components which provide the desired interface,

and are available (this small restriction enables the approach to deal with dynamic

availability). If there are no providers of the desired interface, the special value null

is returned, indicating that no configuration can be found. The function is called



4.2. Functional Concerns 89

Construct(arch, interfaces)
∀ i ∈ interfaces

if ( ∃ c ∈ arch : ∃ p ∈ prov(c) : p ≤ i)
interfaces := interfaces - {i}

else
providers := {xj : xj ∈ Components ∧

∃ p ∈ prov(xj) : p ≤ i ∧
available(xj)}

archs := {Construct(arch ∪ {xj}, interfaces ∪ req(xj))
: xj ∈ providers}

if ( ∃ a ∈ archs : a 6= null )
interfaces := interfaces - {i}
arch := a

else
return null

return arch

Figure 4.3: Configuration generator

recursively to find the requirements of each of these components, returning a set

of configuration choices in archs. Some of the providers may have unsatisfiable

requirements, indicated by null. However, if there is a non-null configuration,

then this is selected.

An initial configuration can be generated with the call

Construct(∅, Implements(Cap))

which will locate components which implement the interfaces in Implements(Cap),

and then complete the configuration by selecting further components to satisfy

the requirements of those already selected. Subsequent configurations can be

generated with a call such as

Construct(oldConfig , Implements(Cap))

Two particular aspects of this algorithm are deserving of further discussion. The

first, which was alluded to previously, is that there may be multiple candidate

configurations which satisfy constraints 4.1 and 4.2 in the case when a given
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interface is implemented by multiple providers. Indeed, it is our assumption

that this is the normal case, since this is what gives the system opportunities

for adaptation by switching providers. However, given only the functional

requirements of the problem, there is little reasonable basis on which to choose

between solutions (except perhaps minimality). Thus, the algorithm as given

above makes an arbitrary choice by returning the first candidate to satisfy the

constraints. This can be seen in the code in branches which lead to the set

interfaces being empty, causing it to exit the loop and return arch. Non-

functional preferences provide a better basis for choosing between the candidates,

and this is discussed in subsequent sections.

Figure 4.4: Cyclic dependency

Another interesting feature of the algorithm is

that it permits cyclic dependencies between

components. Consider executing the body of

the loop for a particular i which has already

been provided by an “ancestor” component (C1

in Figure 4.4). The first branch of the if

statement checks for this ancestor, and removes

i from interfaces, before going into the

branch which searches for a new provider and

recursing with its requirements. This means

that all requirements for a given interface can

be satisfied by a single provision, even where

this creates dependency loops.

In effect, the algorithm computes the transitive closure of the dependency graph

for each component directly needed to satisfy a functional requirement. The

dependency relation is defined as

D(a, b) = r ∈ req(a) ∧ p ∈ prov(b) ∧ p ≤ r
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and the notation DT indicates the transitive closure of D. If DRT (a) indicates the

dependency graph related to component a, that is

DRT (a) = {(a, y) : DT (a, y)}

then the configuration generator computes (in the absence of alternatives)

Config(a) = {a} ∪ range(DRT (a))

when a is a component satisfying a functional requirement. Figure 4.5 shows an

example dependency graph (without any alternatives) and the selected configura-

tion for the functional requirement i0.

Figure 4.5: Dependency graph and selected configuration for requirement i0

Here, Config(c2) = {c2} ∪ range(DRT (c2)), where

D = {(c1, c3), (c2, c3), (c2, c4), (c3, c5), (c4, c6), (c6, c4)}
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and

DT = D ∪ {(c1, c5), (c2, c5), (c2, c6)}

DRT (c2) = {(c2, c3), (c2, c4), (c2, c5), (c2, c6)}

giving

Config(c2) = {c2, c3, c4, c5, c6}

Once the set of components has been selected, there remains the issue of creating

connectors between the components to form a working configuration. Recall that all

requirements for an interface can be satisfied by a single provision. Then it suffices

to find such a provision in the selected set for each component’s requirements and

connect them.

4.2.4 Example

Now consider a larger example in which a mobile robot must search for a

coloured ball. There are many components available to the robot, providing

wide-ranging functionality, including: Koala (which provides interfaces to the

motors and sensors), VectorMotionController (which combines different sources of

movement), ObstacleAvoider (which enables the robot to avoid obstacles), Webcam,

GoToTask (which directs the robot to a target location), BallSurveyor (which uses

the camera to detect the ball), and two search patterns, ZigZagSearchPattern and

CircularSearchPattern.

The functional requirements are implemented by the interfaces {Surveyor, Colli-

sionAvoider}. In this case, the interfaces are provided by only one component each,

giving the set {BallSurveyor, ObstacleAvoider}. The configuration can be com-

pleted by calling Construct with the requirements of those components, namely

{SearchPattern, Camera, MotionController, Sensors}. The Camera requirement is

satisfied by selecting the Webcam; the MotionController requirement is satisfied
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by selecting the VectorMotionController; and the Sensors requirement is satisfied

by selecting the Koala. In order to satisfy the SearchPattern requirement, the

algorithm must choose between several implementations including ZigZagSearch-

Pattern and CircularSearchPattern. Although these differ in their non-functional

properties (reliability, coverage), they have the same functional behaviour which is

that they perform a search, and so one is selected arbitrarily.

At this stage, the algorithm has selected {BallSurveyor, ObstacleAvoider, ZigZa-

gSearchPattern, VectorMotionController, Koala} but there remain the requirements

of the newly-added components to consider. The ZigZagSearchPattern requires a

MotionController, but this has already been dealt with. Likewise the VectorMotion-

Controller requires a Motors interface which is supplied by the Koala which has

already been selected.

The resulting configuration, selected purely on the basis of functional require-

ments, is shown in Figure 4.6.

Figure 4.6: Selected configuration for ball survey
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4.2.5 Termination

The algorithm can be shown to terminate if one considers the current (global)

set of required interfaces, called IFS, which grows as the requirements of new

components are added, but shrinks as those requirements are found to be satisfied

by the selected components. IFS ⊆ Interfaces, the set of all interfaces in the

repository. Let |IFS| be the size of IFS. Then in the first branch of the algorithm,

|IFS| is reduced by 1 as a requirement has been satisfied.

In the second branch, for each component xj ∈ providers, |IFSj| increases by (at

most) the number of interfaces in req(xj) which are not already in IFS. One

of these |IFSj| is selected as the final value of |IFS|. Since there are a finite

number of possible interfaces (|Interfaces|), |IFS| can only increase to the maximum

of |Interfaces|, since when this is the case, all the interfaces in req(xj) will already be

present in IFS. |IFS| must then decrease by the first branch, causing termination

when IFS is empty. Alternatively the algorithm will terminate when it fails to find

a component to satisfy a requirement.

4.3 Structural Constraints

In order to incorporate structural constraints into the assembly and re-assembly

process the above dependency analysis is extended with a check that the generated

candidates meet the system designer’s constraints. This is done by invoking an

external constraint checker to determine whether or not the candidate is valid.

In the present case, this is done using Prolog, which affords the user the full

expressiveness of the Prolog syntax to write constraints ([WSKW06] uses Alloy for

a similar purpose). Indeed, such a general mechanism does not limit the user

to strictly “structural” constraints. Any sort of constraint may be written with the

caveat that the only information available from the dependency analysis is the set of
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component names selected for the candidate configuration, and the dependencies

between them. Figure 4.7 shows an example constraint, which describes a ring

architectural style, written in the Prolog syntax.

allowed(Arch) :- ring(Arch).
ring(Arch) :- \+ (member(C, Arch),

\+ ( findall(I, provider(C, I), Provs),
findall(J, requires(C, J), Reqs),
length(Provs, Ps), length(Reqs, Rs),
Ps == 1, Rs == 1 )

),
member(C, Arch),
reachable(Arch, C, Cs),
permutation(Cs, Arch).

% further clauses omitted

Figure 4.7: Ring architectural constraint

A candidate Arch is checked by evaluating allowed(Arch). When a candidate

is vetoed by the constraint check, there are two possible responses: firstly, the

candidate can be completely discarded, and the other candidates which arise by

virtue of alternative implementations can be considered; secondly, the candidate

can be extended in an arbitrary way in an attempt to meet the constraints before

falling back to the other normally generated candidates.

Whereas the first option may seem the more intuitive, we have implemented

the second, since there are some constraints which can never be satisfied by

considering alternative implementations alone (even when it is possible to satisfy

the constraints given the set of components available). The simplest example of

such a constraint is one which requires the presence of an arbitrary component (for

whatever domain-specific reason) which is not required by any other component

in the dependency graph. The following constraint is one such example which

requires the ObstacleAvoider (which is not required by any other component):

allowed(Arch) :- member(’koala.motion.ObstacleAvoider’, Arch).
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All candidates submitted to Prolog would be vetoed since the dependency analysis

does not select components which are not required by any other. Thus, the only

way this constraint could be satisfied would be by adding further components.

Unfortunately, since there is no way of knowing (with such an expressive constraint

language) what should be added to satisfy the constraints, the system must

resort to a blind search through the possibilities. It is worth noting that it is

not reasonable to remove components from a candidate in an attempt to satisfy

structural constraints since this would make the candidate incomplete (because

all components are transitively required).

It might be thought that falling back upon an undirected search returns us to

a situation with no performance advantage over general constraint solvers, and

indeed this is true in the worst case. However, as shown below, in many cases

the efficient dependency analysis gives a performance improvement by taking

advantage of truly “structural” constraints.

4.3.1 Performance Compared To Constraint Solving

The approach taken to find valid, complete candidate configurations is thus (i) to

perform the dependency analysis (generate a candidate), (ii) to check it against

the structural constraints (test the candidate), and if it is rejected, (iii) to add

new components iteratively and (iv) to check each extended candidate against the

constraints, and only when those options are exhausted, (v) to generate the next

candidate from alternative interface implementations. The first complete candidate

to pass the constraint check is returned as the chosen solution.

When a new component is added in step (iii), it is returned to the dependency

analysis for completion (before the constraints are checked again), in recognition

of the fact that the new component will have its own requirements which are

best satisfied using the dependency analysis. It is thus the balance between
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the time spent performing the directed search provided by the dependency

analysis and the time spent falling back to undirected search that determines

the performance of this approach with respect to general constraint solving. We

have found that this balance is controlled by the specific constraints used, and

that although our approach has exponential time complexity in the worst case, it

is those constraints that might be regarded as truly “structural” that result in a

performance improvement.

To illustrate this point, consider the following two examples (which use a simplified

syntax). In the first, the component C is part of the required capabilities of the

configuration. C depends on D (c −→ d), and another component E depends on F

(e −→ f ). The structural constraints state that E and F must be included:

Components = {c, d, e, f}

c −→ d

e −→ f

allowed :- e, f.

The dependency analysis will initially produce candidate {C, D}, which fails the

constraint check. It then has the option to add E or F. Since E requires F, the new

candidates are {C, D, E, F} and {C, D, F}. The first of these will succeed. Here,

the constraint is related to the dependency graph and so a solution is produced

quickly.

However, in the second example, where the user again requires something provided
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by C, the constraint is totally unrelated to dependencies:

Components = {b, c, d, e, f}

b −→ c

d −→ e

allowed :- c, f, e.

The initial solution is {C}. Since this does not satisfy the constraints, components

are added to generate new configurations {C, B}, {C, D, E}, {C, E}, {C, F}. None of

these satisfy the constraint, so further components are added to the candidates {C,

B, D, E}, {C, B, E}, {C, B, F}; {C, D, E, B}, {C, D, E, F}; {C, E, B}, {C, E, D}, {C,

E, F}; {C, F, B}, {C, F, D, E}, {C, F, E}. Three of these now satisfy the constraints,

however the first one {C, D, E, F} will be selected.

Figure 4.8 shows two runs of our assembly algorithm (labelled “OriginalRetry”)

compared with an algorithm which blindly generates subsets of components to

test against the constraints (“Subset”), which always shows exponential behaviour,

representing the worst case.

In the first case (top), the structural constraint used requires that the candidate

includes all components which provided an interface with less than three alterna-

tives (we omit the Prolog representation). Since such components are much more

likely to be chosen by the dependency analysis (irrespective of the constraint), our

algorithm vastly outperforms “Subset”.

The second graph shows the worst case behaviour. Here, the constraint is simply

that 50% of the components in the repository are present in the candidate, which

gives our approach no opportunities for exploiting the dependency graph.

We expect that in practice the structural constraints used will not be so degen-

erate as in the second graph, and that they will afford some opportunities for

performance improvement over general constraint solving to avoid the exponential



4.3. Structural Constraints 99

Figure 4.8: Prolog performance
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behaviour. Put in this light, our approach can be regarded as a domain-specific

heuristic. There is perhaps scope for further investigation into the relationship

between the expressiveness of the constraint language (with respect to structural

concerns) and the performance of our heuristic.

4.4 Non-Functional Properties

To incorporate non-functional information into the assembly process, the system

designer can define a set of non-functional properties, NFProp. It is important to

note that this set may be entirely domain-specific, since the particular meaning of

each property is not necessary during assembly (though it is for monitoring). Table

4.1 gives some examples of the wide range of non-functional properties supported

by our generic approach. The user can provide as little or as much information as

is available, with the caveat that assembly falls back to arbitrary choice where no

information is provided.

This information can be captured using annotations in the ADL description of

components in the repository. Two components C1 and C2 could be annotated

with cpu and memory properties as below (the precise syntax is not significant3):

component C1 [cpu=high, memory=5k]
{

prov a : I
}

component C2 [cpu=low, memory=100M]
{
prov b : I

}

Here each component is annotated with a set of pairs naming an NF property,

and the value of the property for that component. The intended meaning may be

3Its grammar can be found in the appendix.
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Performance (time
complexity, latency,
throughput)

The performance of a component is important in
many domains, particularly embedded systems and
high-load systems such as web servers.

Memory (main memory,
permanent storage)

Memory is a particular concern in embedded systems.

Power Some components have a direct effect on power use
(by enabling a specific piece of hardware like GPS),
and so in a power-constrained environment like a
mobile device this is a critical property.

Bandwidth This is increasingly relevant as streaming media
over the internet (and thus over mobile networks) is
becoming more popular.

Reliability This is a critical property for systems which
demand high availability such as banking or military
infrastructure.

Security Again, this is critical in some domains such as
military or medical systems.

Monetary cost Certain components may incur a cost-per-use, such
as those which require data over a mobile network.

Fidelity (graphical qual-
ity, video compression)

This is an important property for components which
deal with the end-user experience, such as rendering
engines in games and compression when streaming
media.

Usability Again this is relevant for components pertaining to the
user experience. An example might be different input
methods on a mobile device where usability needs to
be balanced against computational cost.

Table 4.1: Table of non-functional properties

that C1 uses a lot of CPU resources, but little memory, with the contrary holding

for C2. We do not ascribe meaning to these natural-language annotations during

assembly, and merely rely on the user providing a utility function for each property

to produce a value representing how useful that property value is. Meaning is

however necessary for monitoring when, for example, it should be possible to

update the annotation of C1 from memory=5k to memory=1M on the basis of data

gathered at runtime.
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4.4.1 Utility Functions

For each property p in NFProp, the user defines a utility function up [Bat00] which

maps a property value (which may be continuous or discrete) onto a real number

between 0 and 1, where 1 represents the most useful value. For example, the utility

function for memory usage may be defined as

umem(5k) = 0.9

umem(100M) = 0.1

with intermediate values linearly interpolated between these two. Other interpola-

tion functions are possible, such as a sigmoid.

In addition, a relative weight between 0 and 1 is associated with each property

which indicates its importance in the domain. This way, the user can indicate their

preference for candidates which offer maximal utility in particular dimensions,

such as maximal performance or minimal cost. Note that the set of all weights

must sum to 1.

With this information, the total utility of a component can be calculated from the

property values by taking a weighted sum, resulting in a value between 0 and 1,

placing functionally equivalent components in a partial order. In other words, the

utility U(c) of a component c is

U(c) =
∑

p∈NFProp

wp × up(c.p) (4.3)

where c.p indicates the value of p for component c (if it is not provided then the

utility is assumed to be 1), and wp is the weight for property p.
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Hence, with the additional definition of ucpu as

ucpu(low) = 0.9

ucpu(high) = 0.1

and two weights representing the user’s preference between the cpu and memory

properties

wcpu = 0.6

wmem = 0.4

then the utility of components C1 and C2 can be calculated as

U(c1) = 0.1× wcpu + 0.9× wmem = 0.42

U(c2) = 0.9× wcpu + 0.1× wmem = 0.58

Assuming that cpu and memory are the only properties of interest, C2 should be

chosen over C1 to provide interface I. In general, the components with the highest

utility should be selected, but as described in Section 4.4.3, making this decision

with only local information may lead to a configuration that is globally sub-optimal.

Having defined the utility of a single component, it is now possible to find the

aggregate utility of a configuration in order to choose between candidates by taking

the average utility of all the components in the configuration:

Uagg(arch) =

∑
c∈arch U(c)

|arch|
(4.4)

This method for calculating the utility of a configuration masks a significant

assumption which is that the component annotations are correct whether the
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component works in isolation or in a large configuration; in other words, that NF

properties are compositional. It is trivial to conceive of a situation where this is

not the case, such as a configuration which involves large numbers of components

which claim to be fast, which will no doubt exhibit poor performance. More obscure

situations can arise if components compete for resources such as a hard disk.

We aim to mitigate (but not solve) this problem by using monitoring to update

the NF annotations, reflecting how the components behave at runtime. A more

general solution for accurate, compositional annotations will require significant

further work. And yet, even with such assumptions, the task of finding a globally

optimal configuration given NF information remains a difficult one.

We now present two schemes for combining these utility functions with the

assembly process. The first uses the aggregate utility to choose between a list

of complete candidates. The second is a greedy algorithm which uses the utility

of components to make local choices. In order to compare these approaches,

we consider (i) whether the approach chooses the configuration with maximal

aggregate utility and (ii) the overhead in terms of processing time to use the

approach.

4.4.2 Aggregate Selection

Figure 4.9: Overview of aggregate selection
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Figure 4.10: Example dependency graph with utilities

Aggregate selection adds a third independent step to the assembly process, which is

to compute the aggregate utility (as defined above) for all the complete, constraint-

satisfying candidate configurations produced by the previous two steps. The

candidate with the maximum utility is selected. If there are two candidates with

the same utility, the smaller one (in the number of components) is selected. Figure

4.9 shows an overview of the procedure.

For example, consider the components C1 to C8 below. The plan requires interface

A, necessitating the selection of C1. C1 then requires C2 or C3 via interface I,

which in turn require C4 to C8 via interfaces J and K. This information is depicted

in Figure 4.10, which also includes the utility of each component (for simplicity we

omit the particular NF properties).

component C1 { req i:I; prov a:A }
component C2 { req j:J; prov i:I }
component C3 { req k:K; prov i:I }
component C4 { prov j:J }
component C5 { prov j:J }
component C6 { prov k:K }
component C7 { prov k:K }
component C8 { prov k:K }



106 Chapter 4. Automatic Architectural Assembly

In this example, there is also an unfavourable (in performance) structural

constraint that states that valid configurations do not contain C8. Hence, with

aggregate selection, there are 4 candidate configurations which are complete (no

requirements unsatisfied) and valid (constraints are satisfied). These are, with

their aggregate utilities:

Candidate Uagg

{C1, C2, C4} 0.6
{C1, C2, C5} 0.55
{C1, C3, C6} 0.5
{C1, C3, C7} 0.45

However, to generate this list, it is necessary to generate the full list of complete

candidates, and then to discard those which are not valid, since the structural

constraints can only be checked for complete candidates.

This means that the configuration {C1, C3, C8} will have been generated and seen

to fail the constraint check. Then, since the system is entirely ignorant of what

needs to be added or removed to satisfy the constraint, the candidate is extended

with further components (C8 cannot simply be removed since this would cause

the candidate to be incomplete). In this case, 5 components (C2, C4, C5, C6 and

C7) can be added to create a new candidate, giving a maximum of 25 − 1 = 31

extended candidates. Of these, 4 are not considered since they are not complete

(that is, those that contain C2 without any of its dependencies), leaving 27 extended

candidates such as {C1, C3, C8, C4, C6}, none of which pass the constraint check.

Thus, while this method of selection has the advantage that it produces the solution

with the maximum aggregate utility, it necessitates the generation of the full

list of candidates, which can sometimes be expensive, depending (as previously

described) on the structural constraints employed.
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Figure 4.11: Overview of incremental selection

4.4.3 Incremental Selection

Incremental selection integrates the consideration of utility into the dependency

analysis, as shown in Figure 4.11. At each step of the dependency analysis, one

required interface is under consideration, and all the providers of that interface

are found. With incremental selection, the provider with the highest utility is

selected (greedily), and the other alternatives are discarded (unless the constraint

check vetoes the selection). This is the critical distinction between incremental and

aggregate selection: incremental selection is able to stop at the first valid candidate,

since utility has guided selection at every step, while aggregate selection must find

the (potentially large) list of valid candidates before calculating their utilities.

Taking again the components from the previous section, the dependency analysis

starts with the incomplete configuration {C1} and finds C2 and C3 as the

implementations of interface I. Since U(C3) > U(C2), C3 is added to the

configuration to give {C1, C3}. Now the implementations of interface K are found,

and since the maximum utility among these is U(C6) = 0.4, the next configuration

is {C1, C3, C6}. Since this configuration is complete, and passes the constraint

check, it is returned as the final configuration. However, notice that its aggregate

utility is 0.5, which is less than the maximum. This is because the local choice
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Figure 4.12: Execution times for incremental and aggregate selection using
randomly-generated components

between C2 and C3 does not take account of the low utility of the components

implicated by choosing C3. In other words, a good choice now may be a bad choice

later.

Thus, while this approach is much less costly, its solutions do not maximise the

aggregate utility in many cases. In the next section, we quantify the differences

between the two approaches by comparing their solutions and performance on a

large number of components.

4.4.4 Performance Of Aggregate Versus Incremental Selection

Figure 4.12 shows the time taken (in milliseconds) by each approach to generate

a solution for repositories containing between 40 and 120 components. In

almost every case, incremental selection (“Inc”) takes less than 1ms to produce a

solution. This is expected because its behaviour is not dependent on the number of
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Figure 4.13: Execution times for aggregate selection against the number of valid
candidates

components, but rather on the size of candidates, which in these tests is normally

less than 10 components.

Aggregate selection, on the other hand, takes increasing lengths of time as the

set of components grows. The results for aggregate selection do not form a

smooth curve due to the varying number of candidates permitted by each set of

components (which is controlled by the number of interfaces and the number of

implementations of each interface, in addition to the size of the set). In fact, the

time taken by aggregate selection increases linearly with the number of candidates

(which increases combinatorially), as shown in Figure 4.13.

In addition to comparing the execution time, we compared the optimality of the

chosen candidates with respect to the maximum aggregate utility. Since it is known

that aggregate selection chooses the maximum aggregate utility, we can compare
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the candidate chosen by incremental selection using:

optimality(archinc) =
Uagg(archinc)

Uagg(archagg)

where archinc is the candidate produced by incremental selection and archagg is

that produced by aggregate selection. This allows one to say, given an aggregate

utility of 0.4 produced with incremental selection, and a utility of 0.9 produced with

aggregate selection, that incremental selection has achieved 44% of the maximum

aggregate utility.

Surprisingly, in all the random tests, incremental selection gave solutions between

90 and 100% of the maximum. The average over all runs in Figure 4.12 was

98.9%. This suggests that the computational cost incurred by aggregate selection

outweighs the benefit of optimality since runtime adaptation necessitates prompt

responses. However, it remains to be seen whether this result holds in a realistic

corpus of components.

In any case, the choice between the strategies need not be final, and further

strategies may be developed. In fact, the assembly process could switch between

them depending on the size of the component repository (using aggregate selection

for small repositories only), or could initially use aggregate selection and fall back

to incremental selection after a time-out.

4.5 Hierarchy

The remaining aspect to discuss is how the assembly procedure handles a

hierarchy of composite components. A composite component can be designed by

the programmer to encode domain-specific expertise about which combinations

of leaf components are desirable solutions, in other words, to perform some of

the assembly work statically. Thus, composite components can implicitly encode
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structural constraints, and can improve the performance of assembly. On the

other hand, excessive use of composites may restrict the search space, reducing

opportunities for adaptation.

The component repository may contain a mixture of composite and leaf components

with identical treatment of dependency and NF annotations. However, when

the dependency analysis chooses a composite, it recursively adds all the leaf

components specified in the composite to the configuration, effectively flattening

the hierarchy. This flattening means that the resulting configuration can be

treated in the same manner as a non-hierarchical one for all subsequent steps.

The advantage of this approach is that a failed component at any depth in the

hierarchy can be replaced while preserving the rest of the hierarchy4, meaning that

the configuration can adapt beyond the user’s initial design.

4.6 Summary

In summary, this chapter has described a centralised assembly process which

accounts for the user’s functional requirements, structural constraints and non-

functional preferences to address requirements 1 (declarative autonomy), 2 (NF

properties) and 3 (structural constraints), given in the introduction. Functional

requirements are addressed using a dependency analysis, which works in con-

junction with explicit constraint checks to ensure that only valid candidates are

considered. In the worst case, finding a valid configuration can take exponential

time relative to the number of available components, but in many cases the directed

approach (which considers dependencies first) can vastly outperform generalised

constraint solving. NF information is incorporated by using either incremental or

aggregate selection. Incremental selection trades optimality in the utility of the

result for improved performance. On the other hand, aggregate selection ensures

4Although the relevant composites must be marked as failed.
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optimality but this comes at some cost in performance. The next chapter describes

how this centralised process can be adjusted to work in a decentralised context to

achieve greater robustness (in the face of node failure).



Chapter 5

Distributed Assembly

A
SSEMBLY as described thus far is a centralised algorithm which requires

a complete view of the system in order to derive solutions. This view

comprises the list of available components and the complete dependency

graph, all the structural constraints and the NF annotations of every component.

Although the components may be physically distributed after a configuration has

been derived, this part of the problem is invisible to the assembly process.

The two major limitations of a centralised scheme are the lack of reliability and

inefficiencies which limit its ability to cope with very large distributed systems.

Reliability of a centralised system is dependent upon on the reliability of the

central node (in our case the assembly process). Failure of this node can rarely be

recovered from. The central node also creates a bottleneck since the computation is

limited by the performance of that node and since extensive communication must

take place to ensure the central node has a global view of the system.

There is some irony, then, in the fact that the assembly process may adapt to

the failure of any application component, but will fail utterly should the assembly

process itself encounter a problem. The solution to these problems is to do away

with the central node and to use a fully distributed technique.

113
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The distributed approach described hereafter assumes that the system comprises a

set of peer nodes (physical hosts connected in a network), each of which knows only

the components that it hosts locally. In particular, the dependency graph cannot be

computed without examining every node. Each component knows some (possibly

empty) subset of the structural constraints, knows all the functional requirements,

and knows the NF annotations of the local components and the NF preferences.

The objective is to have the peers derive and agree on a (global) configuration

given only their restricted (local) knowledge. To avoid the performance limitations

encountered in the approach of Georgiadis et al. [GMK02], we would like an

approach which tolerates temporary inconsistency between the views each node

has, provided that eventual agreement is guaranteed.

5.1 Gossip

A gossip protocol provides an ideal means to achieve global agreement using

decentralised information. Gossip protocols are used to ensure that a network of

peers all receive some piece of information within a certain time, without resorting

to reliable broadcast, which may involve a huge number of messages (restricting

scalability). In our case the item of information is the (global) component

configuration. There are two kinds of gossip protocol: the basic ones which

involve a single update (which we shall call simple), and aggregate protocols, which,

through the propagation of several updates, compute some aggregate function of

information stored at each node. Our protocol is of the latter kind.

5.1.1 Simple Gossip

Gossip was originally inspired by the way in which disease epidemics spread across

a population [DGH+87]. In its simplest form, gossip is a protocol for propagating
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a single piece of information (a database update for example [DGH+87]) across a

network. Initially one node has the information (which we refer to as the state),

and chooses another node at random to transmit the information to. The protocol

proceeds in synchronous rounds so that in the next round, both the informed

nodes independently choose another node to update. In the best case, four nodes

now have the information (Figure 5.1(a)), but since the choices are uniform and

independent, the same nodes may have been chosen again, leaving the same two

informed nodes (Figure 5.1(b)). If all nodes continue transmitting indefinitely, the

protocol is referred to as anti-entropy, and the information is guaranteed to reach

all nodes in the network [DGH+87]. If nodes decide to stop transmitting after some

number of rounds, the protocol is referred to as rumour mongering.

Figure 5.1: Best-case and worst-case instances of simple gossip

Variations of the anti-entropy protocol can be created by adjusting the strategy

for selecting nodes (round robin is one alternative) or by performing extra steps

when nodes communicate. With a push policy, the update is transmitted from

the choosing node, while with a push-pull policy, updates pass in both directions.

In the uniform push (anti-entropy) algorithm, a single state update will propagate

across the network in log2 n + ln n + O(1) rounds, where n is the size of the network

[DGH+87, Pit87]. Intuitively, this result stems from the fact that the fastest

propagation would require every node to push the state to a “new” node in every

round. This would mean that the number of informed nodes doubles in every
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round, and thus the number of steps required to reach n is log2 n. However,

the random selection of nodes means that propagation is slower than optimal.

Nevertheless, the speed of propagation ensures that gossip scales well: for 1000

nodes, dissemination of a single update may take as few as 17 rounds.

The random pattern of message exchange ensures that the loss of a single message

only delays agreement since the node that would have received the update will

eventually receive another message. Likewise if a node fails and restarts, it only

has to wait for a single message to arrive to restore its state.

5.1.2 Aggregate Gossip

In an aggregate protocol [KDG03], each node is permitted to compute some

function of the received state and use the result of this function for propagating

to other nodes. This function may incorporate some information known only to

that node (which is never transmitted directly). This behaviour allows the protocol

to compute some aggregate function of the information held by each node. For

example, if every node holds an integer, the nodes can agree on the maximum value

of these integers using an aggregate protocol [JMB05]. This is achieved by treating

the information propagated as an estimate of the maximum, and by having every

node keep a local estimate (set to the value of the node’s integer in the first step).

Each node then compares the received estimate with its own estimate and chooses

the largest to produce a new estimate of the maximum. As estimates propagate

across the network, the estimate of each node will converge on the true value of the

maximum, and every node will be aware of it.

Computing the maximum sometimes requires a node to reveal its own integer

(when the new estimate is that value), but other aggregate functions can completely

hide the information held by each node.

An aggregate function (one which converges under these circumstances) must (i)
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be divisible into pairwise operations (so a new estimate can be computed from an

old estimate and local information) and (ii) proceed monotonically towards the true

value (according to some distance function) [vR].

In the case of computing a maximum, this is easily divided into pairwise operations.

It is also trivially monotonic since (i) if the received estimate is greater than the

node’s estimate, the new estimate is the same and (ii) if the node’s estimate is

greater, then the new estimate is greater than the old estimate, and so must be

closer to the true maximum. If the aggregate function is non-monotonic (such as

if the node alternated between computing a minimum and a maximum) then the

estimate will never converge.

5.2 Gossip-Based Assembly

Our distributed assembly process uses an aggregate gossip protocol to enable the

set of nodes to derive and agree upon a global component configuration. Each

node may host some subset of the components in the configuration, and only

a subset of the nodes in the network may be involved in hosting components.

Once a configuration is agreed upon, it is instantiated by determining the wiring

automatically as described in Section 4.2.3. If a component failure occurs, the

gossip protocol resumes to find a new solution for the functional requirements.

The gossip protocol for assembly uses a uniform push policy. Each node’s state

is an “estimate” of the (global) component configuration, and can use the local

component repository to propose a new state. Figure 5.2 shows an overview of

the process in which two nodes exchange a single gossip message, resulting in a

change of state. In the following the state representation (and thus the format of

gossip messages) is given before describing the rules used to generate a new state.
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Figure 5.2: Overview of gossip-based assembly

5.2.1 State Representation

The state of a node is an estimate of the global component configuration. The state

is a set of “active” dependencies which represent a decision on which component

provisions will satisfy which requirements. Gossip messages contain a single state.

State ⊆ 2Dependency

Dependency ⊆ {prov, req} × ComponentType× InterfaceType

A Dependency is a tuple of a ComponentType, an InterfaceType and prov or req indicat-

ing whether the dependency represents a provision or a requirement. In the case

of a provision (prov, c, i), a component of type c is present in the configuration and

is responsible for providing interface i. A ComponentType ⊆ ImplementationType ×

NodeIdentifier is in fact a pair comprising the actual implementation type and the

node on which the component is hosted. This way, multiple implementations of a

type are supported, provided they reside on different nodes.

Given a State, the set of component instances active in the configuration can

be found by collecting the ComponentTypes mentioned in each Dependency. For
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example, the state

{(req, (c, n0), i), (prov, (d, n0), i), (req, (d, n0), j), (prov, (e, n1), j)}

describes a configuration of {c, d} hosted on node n0 and e hosted on n1. Component

d satisfies requirement i of c and requires j, satisfied by e. The wiring of the

configuration is determined automatically as described in Section 4.2.3.

5.2.2 State Transformation Rules

Upon receipt of a new state s, the node applies the following rules:

1. If the state does not contain one of the functional requirements i, then the

node adds (req, , i).

2. If there is a requirement (req, (c, n0), i) with no corresponding provision

(prov, (d, n1), i) and the node n knows a component e which provides interface

i, then the node can add (prov, (e, n), i) to the state along with the other

provisions and requirements of e. This rule leads the configuration towards

being complete1. If there are multiple local providers of i, non-functional

preferences are used to choose between them.

3. If the above rules do not apply, the state is complete and meets the functional

requirements, and the node may evaluate it against the structural constraints

using a local constraint checker. If the check fails, the node can

(a) adopt a randomly-selected previous state (for this purpose, a list of all

incomplete states is maintained), which simulates the backtracking of

the centralised algorithm, or

1A symmetric rule which removes provisions that are not required is also possible, and ensures
minimality. It is however unnecessary as the configurations generated are minimal in any case.
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(b) add a randomly-selected component to the state, which simulates the

exhaustive search of the centralised algorithm.

The new state s′ is only accepted if the following conditions hold: (i) s′ is not a

subset of the node’s previous state sn, (ii) s′ must be complete and valid if sn is

complete and valid, and (iii) s′ > sn according to the partial order > (we use a lexical

ordering over component names). Conditions (i) and (ii) ensure that the algorithm

is monotonic: a node cannot accept an incomplete solution when it already knows

a more complete solution. Condition (iii) ensures that when there are two possible

complete solutions, every node chooses the same one.

In the next section we illustrate the essential features of the protocol before

addressing some of the finer points necessary to complete the description.

5.2.3 Example

Figure 5.3: Example of distributed assembly using gossip
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Figure 5.3 shows a system composed of three nodes each of which hosts one

component, A, B or C (we shall use these names to refer to both the node and

the component, using italic type to distinguish the nodes). The interface ai is

identified as a functional requirement and is provided by A. A also requires bi. Thus

in step (i) node A identifies a requirement it can satisfy and adds the provision

(prov, A, ai) and the requirement (req, A, bi) to the state. A transmits this new

state to a randomly-selected node, which in this case is B. Likewise, in step

(ii), B sees that (req, A, bi) is a requirement which it can satisfy. Component

B has the further requirement of ci, so (req, B, ci) and (prov, B, bi) are added to

the state. This is transmitted back to A. In step (iii), A makes no changes

to the state (since ci cannot be satisfied locally) and at some point forwards

it to C. In step (iv), C satisfies the requirement for ci by adding (prov, C, ci)

to the state, and forwarding it arbitrarily to B. B has no changes to make

and eventually forwards it to A. After step (iv) all nodes agree on the state

{(req, , ai), (prov, A, ai), (req, A, bi), (prov, B, bi), (req, B, ci), (prov, C, ci)} which gives

the configuration {A, B, C}.

Since the configuration after step (iv) is complete, it can be evaluated against the

user’s structural constraints. Any node can perform this evaluation, and in the

case of failure revert to some previous state. Unfortunately in this case there are

no alternative configurations so the search would fail.

5.2.4 Enforcing Structural Constraints

Unfortunately, deriving a complete configuration using rules 1 and 2 as in the

example does not guarantee that the solution will meet the structural constraints,

which can only be checked when the solution is complete. Therefore it is necessary

to extend the approach beyond an ordinary aggregate protocol to incorporate

backtracking when a complete solution fails the constraint check. This is the

purpose of rule 3, which gives the node a choice between (a) backtracking to a
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previous state and (b) adding an arbitrary component.

In case (a), the node chooses at random an entry from the list of all states it has

seen previously, and propagates it. Since this state is likely to be an “ancestor”

which led to the derivation of the invalid configuration, it is necessary to prevent

the derivation of the invalid configuration by informing the other nodes that it

fails the constraint check (in case they have not realised themselves). For this

purpose we have adapted the “death certificates” of [DGH+87] into a secondary

gossip protocol. When a state fails the constraint check, a death certificate is

produced and propagated across the network using a uniform push policy. Upon

receiving a death certificate, the state mentioned is added to a local list and if the

offending state ever recurs, its propagation is suppressed.

The propagation of death certificates forces the algorithm to choose alternative

component implementations (by, for example, overriding the > ordering on

solutions). Since backtracking is random, eventually either a valid solution will

be found, or every node will contain a list of death certificates for every possible

configuration.

Notice that death certificates are not strictly necessary if every node has the

full set of structural constraints, since every node would build up the list of

death certificates locally without any propagation. However, in that case death

certificates would work as an optimisation since they can be issued before the

network has agreed upon a solution, allowing nodes to dismiss unseen solutions.

In other words, using death certificates takes advantage of parallelism in that

different solutions can be checked simultaneously by different nodes, as opposed

to requiring every node to check every solution.

Case (b) simulates the exhaustive search of the space of components which is

performed in the centralised algorithm when no solution in the transitive closure

of the dependency relation satisfies the constraints. Again, random choice ensures

that eventually a valid solution is found or the full combinatorial space is covered.
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5.2.5 Convergence & Non-Convergence

There are two properties of interest when considering convergence (agreement on

a single solution). The first (and most important) is whether the algorithm is

guaranteed to converge in all cases. The second is how quickly one can expect

convergence to occur, with respect to the size of the problem and the number of

nodes involved.

In order to show that convergence is guaranteed, we need to show

(i) that the aggregate protocol proceeds monotonically to a solution and

(ii) that all nodes come to agreement on that solution.

Firstly consider the protocol without backtracking. This restricts our view to

rules 1, 2 and 3(b) of Section 5.2.2. Notice that each of these rules can only

add Dependency entries to the state, and so the state can only increase in size.

Additionally, if a node receives two updates “out of order” whereby the second

update is an ancestor (a subset) of the first, only the first is retained. This means

the state cannot decrease in size (unless it is a different solution entirely, in which

case we rely on gossip to achieve agreement). Hence, the protocol is monotonic,

giving (i).

For (ii), we rely on standard properties of gossip that allow us to assume every node

will eventually receive every update (that is not rejected by another node). Then we

must ensure that every node chooses the same solution from this “acceptable” set.

It is for this purpose that we order solutions using >, and have nodes choose the

greatest. This leads to agreement, giving (ii).

The effect of (i) and (ii) is a protocol in which the various solutions grow monotoni-

cally until completion, at which point each node makes a choice using the arbitrary

(but fixed) ordering. However, so far we have omitted backtracking. Clearly
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backtracking breaks monotonicity, so it is necessary to show that backtracking

does not lead to infinite loops. Every time backtracking occurs, a death certificate

is produced for the invalid configuration. This is propagated across the network

using uniform push (and so all nodes eventually have the death certificate). Since

backtracking is performed by making a random choice between the previous states

(and all solutions are reachable from the “root” state) we can say that if there is

a valid solution, it will eventually be derived (since the probability of backtracking

to the necessary state is non-zero). If there is no valid solution, then every node

will receive a death certificate for every possible solution, and backtracking will

continue indefinitely. A time-out must be used in this case since although a node

may have a death certificate for all solutions, there is no way for the node to detect

this situation, since the node does not know the whole dependency graph. The

unfortunate side effect of a time-out is that the solution may be found just after

the time limit, and so the algorithm is no longer complete (in the sense of being

able to derive solutions when they exist). Depending on the application domain, it

may be a better policy to fall back to the centralised algorithm after a time-out to

ensure completeness.

In summary, without any structural constraints the algorithm is guaranteed

to converge on a single solution, even if that solution is incomplete because

of a requirement that cannot be satisfied. When structural constraints cause

backtracking, the algorithm will find a solution if one exists and if it is found before

the time-out.

5.2.6 Time To Convergence

In a uniform push protocol (and in several aggregate protocols [KDG03]), con-

vergence after an update occurs in O(log n) rounds [DGH+87]. Assembly, if

backtracking is disregarded for the moment, can be seen as several such updates

performed (in the worst case) sequentially. Then for a solution size (number of
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components2) s, convergence can be expected within O(s log n) rounds. Ordinarily,

of course, updates happen in parallel, providing even better performance.

5.2.7 Detecting Convergence

Although the protocol theoretically converges within a certain number of rounds,

a mechanism is required for individual nodes to detect that this is truly the case.

The algorithm has converged when

• C1. every node has the same state, and

• C2. no node can suggest a new state according to rules 1 and 2.

This situation can be detected by each node independently when

• L1. observes a lack of state changes for O(log n) rounds. If no node can suggest

any changes, then the time remaining before convergence is the time it takes

for a single update to propagate in a non-aggregate push algorithm, which is

O(log n), and

• L2. cannot apply rules 1 and 2 to the current state.

It is trivial to see that if condition L2 holds on all nodes, then C2 holds. To see how

condition L1 ensures C1, suppose that C1 does not hold (but C2 does). Then the

nodes disagree on the state but (since C2 holds) they cannot suggest any changes.

In this case, the nodes will come to agreement within O(log n) rounds (under the

normal expectations of gossip). Thus if C1 does not hold, a node can expect a state

change to occur within O(log n) rounds, falsifying L1.

When both L1 and L2 hold, a consensus protocol is used to ensure that C1

and (particularly) C2 hold. For this purpose, we use decentralised two-phase
2Strictly the solution size is the number of Dependency entries but this is usually proportional to

the number of components.
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commit [Lyn96], whereby every node transmits its vote (stating whether L1 and

L2 hold) to every other node (requiring full connectivity). When each node has

received a “converged” vote from every node, the node can be sure that C1 and C2

hold and thus the algorithm has converged. This relies on the weak AC (atomic

commitment) property of two-phase commit, namely that, in the absence of node

(crash) failures and message loss, all nodes eventually decide either that they have

converged (when all the votes agree) or that they have not converged (when some

vote disagrees).

Decentralised two-phase commit is a convenient choice because of its simplicity

and its negligible effect on performance, adding only two rounds to the time if it

succeeds on the first attempt. However, it requires a large number of messages to

be sent (O(n2)), and could be replaced by another scheme such as centralised two-

phase commit (which requires fewer messages) or three-phase commit. Another

alternative would be to use the variant of gossip known as rumour mongering

(Section 5.1.1) whereby, with a certain probability, nodes stop propagating an

update after a certain number of rounds. Eventually, all nodes will stop without

having engaged in any extra commit protocol. However, this benefit must be

balanced against the small chance that updates will not reach every node, causing

nodes to have inconsistent solutions [DGH+87].

5.3 Simulations

In order to test our hypotheses, particularly with respect to the performance

of the distributed assembly algorithm, we have performed several simulations

using, in the first instance, predictable graphs of components (with and without

backtracking) and, in the second instance, random graphs of components.
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5.3.1 Heterogeneous Rings

In the first simulation of regular structures, the sets of components were structured

into rings of increasing sizes. Each component was of a different type, providing

and requiring a single interface (in other words, the ring structure was built into

the dependencies rather than enforced as a constraint). There were no further

dependencies, nor structural constraints, such that there was only a single trivial

solution in each run (the number of components c equals s, the solution size). The

assignment of components to nodes was also made predictable. Figure 5.4 shows

a ring of size 4.

Figure 5.4: A heterogeneous ring

Figure 5.5 shows the behaviour of the algorithm given a ring comprising 20

components, and increasing numbers of nodes. This fits a logarithmic curve,

confirming our expectation of convergence within O(s log n) rounds. Notice that

the best fit curve has a coefficient of approximately 20, matching our expectation

that a solution of size 20 will require at most 20 sequential updates. The final term

in the formula can be regarded as the start-up time, and if divided by 20, this is

less than 1 round.

Figure 5.6 shows the behaviour with a fixed number of nodes, and increasing sizes

of ring. The relationship is linear as expected (O(s log 5)). The number of rounds is

approximately double the size of the ring.

Figure 5.7 shows the number of rounds when the size of the ring is fixed to the

number of nodes, and increased. The expected result is that the number of rounds

taken to converge is O(n log n). The results in this case should grow slightly faster

than linear, but this is difficult to confirm using the graph.
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Figure 5.5: Simulation for a ring of size 20, with increasing nodes

Figure 5.6: Simulation with 5 nodes, and increasing sizes of ring
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Figure 5.7: Simulation with increasing sizes of ring, matching the number of nodes
(n = s)

5.3.2 Homogeneous Rings

Figure 5.8: A homogeneous ring

A more common and expressive way to enforce a regular structure (such as an

architectural style) is through the use of structural constraints. In the next set of

simulations, a single component type is used, and the ring structure is enforced

through the constraints. In order to construct a ring of a certain size, composed of

multiple instances of the same component type, it is necessary that several different

nodes host the component (recall that each instance must be on a different host).

Also, since the size of the ring bears no relation to the functional requirements

(which are satisfied by a single component), exhaustive search (that is, rule 3(b) of

Section 5.2.2) must be used to find the combination of components which satisfies

the constraints. Figure 5.8 shows a ring which is constrained to have 4 elements.

Figure 5.9 shows the number of rounds to generate homogeneous rings of 3
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Figure 5.9: Simulation with increasing numbers of nodes for rings of size 3

components, for increasing numbers of nodes. In this case the graph shows the

mean average rather than the results of individual runs. This is due to the much

wider spread of points resulting from the random behaviour of backtracking. The

vertical bars on each point show the 95% confidence interval [Dev95] which gives an

indication of how reliable each mean is. The graphs shows that the average number

of rounds increases slowly with the number of nodes. However, for numbers of

nodes greater than 10, simulation becomes infeasible as the execution time for a

single run exceeds our time limit of 120 seconds. This occurs because the execution

time grows faster than the number of rounds, due to increased computation in each

round (arising in part from the growing number of death certificates). Since we are

simulating many nodes on a single computer, these costs are sequential rather

than parallel.

Figure 5.10 shows the increasing number of rounds taken to generate homoge-

neous rings of various sizes in a network of 5 nodes (limiting the maximum ring

size to 5). Again, the graph shows an average with a 95% confidence interval for

approximately 200 runs (in total). The increase in the number of rounds can be

understood by considering the likelihood of choosing a valid solution at random.

Since there are 5 nodes which can each host a component instance, there are
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Figure 5.10: Simulation with increasing sizes of ring, with 5 nodes

25 = 32 solutions, some valid and some invalid. When the ring is constrained to

be of size 2 or 3, there are
(
5
2

)
= 10 valid solutions. The chance of picking a valid

solution is then 10
32

= 0.31. For rings of size 4 and 5, the number of valid solutions

falls to 5 and 1 respectively, giving probabilities of 0.16 and 0.03. This means that the

number of rounds taken to reach a valid solution are likely to be greater for these

larger sizes of ring, although in practice death certificates ensure that solutions

are not attempted twice, effectively increasing the probability of choosing a valid

solution as the algorithm progresses.

5.3.3 Random Components

The next set of simulations use sets of randomly-generated components with no

structural constraints. The success of the algorithm on random components shows

that it is not tuned to specific styles such as rings, to configurations of a certain

size, nor does it rely on the intuition of the designer, in the way that repair strategies

are written to handle a very restricted domain of components.

Given a number c of components, the number i of interfaces was set (randomly)

between 25% and 50% of c. Having a very large i reduces the chance that the
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algorithm can find a solution, since it is less likely that a component provides

a given interface. Then, for each interface, a port providing or requiring that

interface was added to each component with probability k
c

with k set to 4. Assigning

an interface to a single component at random would mean that assignment to

a particular component has a probability of 1
c
. Multiplying this probability by 4

causes each interface to be assigned to 4 components, on average. For the same

reason, each component has an average of 4 ports. A small k, particularly k < 1,

reduces the chance that a solution can be found. The choice between provisions

and requirements was made equally likely. An extra parameter d controls how

many duplicates of a component exist. When this is zero, each component is

hosted by a single node. When this is non-zero, d duplicates are assigned to nodes

at random.

The first simulation in Figure 5.11 shows the number of rounds before convergence

was detected for increasing numbers of nodes over several runs. 40 randomly-

generated components were used as input, with k = 4 and d = 0.

Figure 5.11: Simulation for 40 random components

In this case it is hard to say whether a linear or logarithmic curve fits the results

best. Convergence is expected in O(s log n) rounds, but each run (each point in the

graph) has a different s (1 < s ≤ 40) due to the fact of random generation. This
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would explain a “noisier” curve than with regular structures. In any case the graph

shows that the number of rounds grows slowly with the number of nodes.

In the second simulation, we increased the number of components while keeping

the number of nodes n fixed at 5. The other parameters were as before. We

expected that the number of rounds would, in the worst case, grow linearly with the

solution size s. Figure 5.12 shows the convergence time against the total number

of components. Here, larger sets of components show a slightly larger number of

rounds to converge. This was expected since the solution size is likely to increase

given a larger set of components, so the convergence time should increase also.

Figure 5.12: Simulation for increasing numbers of components, with 5 nodes

Figure 5.13 shows that, indeed, the number of rounds does increase slowly with

the solution size.

The final set of random simulations shows, for the sake of completeness, the effect

of varying the parameters which are used to produce the random components.

Figure 5.14 shows the effect of increasing the parameter k. The other parameters

were fixed as above. A greater k leads to a greater average number of ports per

component, and a greater average number of implementers of each interface. This

consequently leads to a greater solution size s, as the dashed best fit line shows
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Figure 5.13: Simulation with 5 nodes, and increasing solution sizes

Figure 5.14: Simulation for 20 components over 5 nodes, with variable k
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(this line relates to the second vertical axis). The number of rounds to convergence

is shown to be almost constant. This was expected to increase slightly with the

solution size, which further data may show.

Figure 5.15: Simulation for c = 20, n = 5, k = 4, with variable i

Figure 5.15 shows the effect of increasing the number of interfaces i between 2%

and 75% of c (c = 20). k was held at 4. Again, an increased i leads to a larger

solution size, which leads to a slight increase in the number of rounds.

Figure 5.16: Simulation for c = 20, n = 5, k = 4, i proportional to c, with variable d

Finally, Figure 5.16 shows that component duplication has little effect on the
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number of rounds to converge.

5.3.4 Message Loss

The final simulation in Figure 5.17 shows how the protocol copes with message

loss. Here, the simulation discards varying proportions of gossip messages from

10% to 85% and the time to convergence is measured. No convergence messages

were discarded because this would prevent convergence under two-phase commit.

The protocol tolerates up to 50% message loss with a small increase in the number

of rounds, but this increases sharply such that 85% message loss causes a four-

to five-fold increase in the time to convergence.

Figure 5.17: Simulation of the effect of increasing message loss, on a ring of size
20 with n = 5

5.4 Optimisations

There are a number of optimisations one could consider applying without changing

the fundamentals of distributed assembly using gossip. Here we discuss the

feasibility and benefits of three such optimisations.
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5.4.1 States As Deltas

The described approach contains a lot of redundancy in the gossip messages,

wherein the entire state is transmitted, even when most of the state has been

agreed upon. The size of each message is (approximately) proportional to the size

of the solution s, and over O(s log n) rounds, the total “message volume” (per node)

can be expected to be O(s2 log n).

An optimisation, then, is to restrict the gossip messages to transmitting the change

from the previous state (the delta). For example if a node satisfies a requirement r

by adding component c, it will transmit (and other nodes will propagate) the delta

{(+,prov, c, r)}. A delta may contain an addition denoted by + or a removal denoted

by −.

Upon receiving a delta, a node applies the delta to its current state (by adding or

removing the indicated dependencies), and propagates the delta. If the node can

apply rules 1-3, it transmits a further delta describing its changes. The effect of

the optimisation should be to reduce the message volume by a factor of s, giving

O(s log n).

However, there is a problem with this apparently fruitful adjustment since a delta

can be applied when the states of the sender and receiver disagree. In such

circumstances the delta may not even be relevant, satisfying a requirement which

does not yet exist in the recipient state. This can be the result of a provision

delta arriving before a requirement delta, in other words, when deltas arrive “out

of order”. This was previously avoided by virtue of the fact that the requirement

would be included in the full state transmitted when the provision was added (and

the subsequent arrival of a message with the requirement but not the provision

was ignored).

The effect of messages arriving out of order is that the states of the sender and

receiver can diverge (through application of rules 1 and 2 to already differing states)



138 Chapter 5. Distributed Assembly

rather than converge as the original approach would have ensured.

Moreover, when alternatives exist for a requirement, all alternatives are received

and applied, creating a much larger solution than is necessary. This is because

they can no longer be distinguished as alternatives where previously nodes had to

choose one of the alternative states. If we attempt to distinguish between them

on the basis of which requirements are being satisfied, we lose the ability to have

multiple implementations of an interface and multiple instances of a component

type within a configuration.

Properly addressing these issues would require some form of global order on deltas

and a relation between deltas and the states to which they can be applied. This

difficulty, and the modest saving in message volume suggest that the optimisation

is not justified. However, in order to demonstrate the benefit the optimisation

might give if adopted, we tested the algorithm with a rudimentary measure that

requires a node to fall back to transmitting the full state (to all nodes) when the

node has found a complete and valid solution. This full state is adopted by the

recipients, overriding any other solutions. Clearly this increases the message

volume somewhat (though it does not seem to negate the benefit), and more

importantly, runs counter to the aims of gossip.

Figure 5.18 shows the benefit of the optimisation, which is a reduction in the total

message volume. This simulation was performed on a heterogeneous ring of size

20. The delta optimisation fits a slowly increasing logarithmic curve, while the

original algorithm grows rather more quickly.

Figure 5.19 shows that the delta optimisation has no discernible effect on the

number of rounds to generate rings of size 20, since this graph is almost identical

to Figure 5.5 (without the optimisation). Likewise, if the number of nodes is fixed

to 5 and the size of the ring is varied, a linear graph similar to Figure 5.6 emerges.
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Figure 5.18: Comparison of delta optimised and original solutions for rings of size
20

Figure 5.19: The number of rounds taken using the delta optimisation where c = 20
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5.4.2 Configuration-Directed Gossip

The performance of the algorithm in terms of the number of rounds may be

improved by modifying the pattern of message exchange. For example, the state

held by each node contains the names of the nodes hosting components involved

in the configuration, and this might be used to choose message recipients more

efficiently. Intuitively, if a node decides to modify the state, it is most important

to inform the other nodes mentioned in the state, rather than nodes who are

not involved. For instance, if a node modifies the state to satisfy a requirement

(req, (c, n), i) then the named node n is most “interested” in an update, perhaps

because the satisfaction allows it to instantiate or resume execution of c (after

adapting to a lost provision).

Of course, all nodes must be informed eventually. Firstly, this is to ensure all

possible solutions are considered. Secondly, it remains necessary for the entire

network to agree on a solution otherwise (with a new definition of convergence

restricted to named nodes) different groups of nodes may converge on different

solutions. If these configurations are instantiated, the user may find that two

systems, competing either in computational or environmental resources, have

emerged.

The benefit of this optimisation remains to be tested since changing the message

exchange pattern can have a significant effect on the performance.

5.4.3 Variations On Gossip

There are several opportunities to improve the performance of the algorithm by

using different variants of gossip. As mentioned above, rumour mongering can be

used in place of decentralised two-phase commit, if a small probability of error is

permissible. Also, the algorithm uses a push policy for propagating updates, which

might be improved upon by using a push-pull policy whereby updates pass in both
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directions. Changing the pattern of message exchange from a uniform random

choice across all nodes to a configuration-directed pattern as above, or to another

general pattern such as round robin, may also provide a benefit.

Each of these variations will have a different effect on performance, which must be

tested in particular domains. However, the approach is sufficiently modular that

these variants can be used without changing the overall scheme.

5.5 Summary

This chapter has presented a gossip-based technique for decentralised assembly

and adaptation whereby a network of peer nodes co-operate to derive and ultimately

agree upon a configuration meeting the functional and structural constraints.

Agreement on a solution occurs within O(s log n) synchronous rounds (where s is

the size of the configuration and n the size of the network) if extensive backtracking

(resulting from structural constraints) does not occur. Gossip is robust to failure

of nodes and can adequately cope with 85% message loss. This work addresses

requirement 5 (distribution). The next chapter describes the mechanisms used,

once a decision has been made to switch from one configuration to another, to

guarantee the safety of the application and to preserve application state.
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Runtime Adaptation

A
UTOMATIC assembly as described above permits the system not only

to synthesise an initial software configuration but also to derive a

new target configuration in order to adapt to changing circumstances.

While in this work we do not circumscribe which events are to be regarded

as a cause for adaptation, we can suggest four categories which are likely to

be relevant in most domains: environmental change, evolution of requirements,

dynamic availability and monitoring of non-functional properties. We describe

these four circumstances, and then consider the detail of how a reconfiguration

is derived. We discuss how primitive transformations, such as connection and

disconnection, are selected to effect the switch from the old configuration to a

new one, while simultaneously being careful not to disrupt or endanger normal

component execution. In addition, we show how the state (both in the sense of

status and of stored data) of a failed component can be preserved for use in its

replacement, where applicable.

Finally, having completed the description of the principles of the approach, we

describe the prototype implementation in the last part of this chapter.

142
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6.1 Causes For Adaptation

6.1.1 Change Of Requirements

Since our approach is declarative—goals are transformed into functional re-

quirements and eventually to components—it supports adaptation in response to

changing user requirements. An explicit goal statement is often much shorter and

easier to change than its counterpart in approaches which lack this declarative

feature. For example, in Rainbow [Che08], a complete new set of repair strategies

would have to be written. Once the functional requirements have been modified,

reconfiguration can be invoked to generate a new configuration (assuming of course

that the components relevant to the new requirements exist).

6.1.2 Environmental Change

This broad category of events can affect the system in a variety of ways,

leading to different mitigating efforts. For example, components may make

assumptions about the physical world or about the availability of certain hardware

facilities. Such assumptions are easily invalidated, having the effect of making that

component unavailable (see dynamic availability). The breaking of assumptions

may be detected explicitly by the components, so that they fail gracefully, or the

system may simply detect that the component has failed for an unknown reason.

The environment can also have an impact, for similar reasons, on the non-

functional properties of a component. For example, high network congestion can

reduce the claimed performance of a component. Again, the relevant environmental

property or else the consequent NF properties of the component may be monitored

(see NF monitoring).
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6.1.3 Dynamic Availability

Like all software, components are prone to implementation bugs which may prevent

their use under certain conditions. They also make assumptions about their

operating environment that may be broken when deployed. These situations

can cause partial or total failure of the component. Given some mechanism for

detecting component failure, such as explicit exception handling or polling to

check the component is “alive”, such events may be used to mark a component

as unavailable, and to invoke re-assembly. The failed component will then not be

selected in the re-assembly process.

6.1.4 NF Monitoring

Incorrect annotation or unexpected operating conditions can cause the non-

functional properties of a component to diverge significantly from the annotations

used during assembly. For example a component might claim to be reliable, and

yet repeatedly fail in a particular deployment environment. In such a scenario, the

configuration no longer meets the expectations that the user expressed through

NF preferences and so re-assembly should be invoked in order to continue

meeting those expectations. As with component failure, the components must be

monitored, either internally or externally, to determine when (and to what degree)

the component is no longer behaving as its NF annotation suggests. When this

occurs, the annotation for the particular monitored property should be updated

with the correct value and re-assembly should be invoked to choose a component

with higher utility (if there is one).

Unfortunately, NF monitoring is complicated by the general nature of NF an-

notations permitted by the approach, and by the need to preserve component

encapsulation. We cannot hope to provide a standard monitor for all conceivable

NF properties, and so there must be a way for designers to create monitors
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for the properties which interest them (if those properties are indeed subject to

fluctuation). While this increases the complexity of the approach from the viewpoint

of system designers, it does provide a high level of flexibility.

In reality there may be a wider range of reasons to initiate adaptation, but, as

in these four cases, the principle remains that a reconfiguration should occur

whenever the inputs to the assembly process change (significantly). These inputs

include the set of available components (so a newly-available component may also

cause an adaptation), the functional requirements (handling a change of goal),

the structural constraints, the non-functional annotations, and the designer’s

preferences amongst the NF properties. The subsequent sections show how, once

initiated, a reconfiguration is computed and applied.

6.2 Centralised Adaptation

In the centralised algorithm, new configurations are derived by running the

assembly procedure with updated availability, functional requirements or non-

functional annotations. The new configuration is then compared against the

existing configuration to derive the changes which must be performed.

6.3 Distributed Adaptation

In the distributed case, adaptation is slightly more complex. Firstly, if the

adaptation is a result of changing functional requirements, the assumption is that

every node receives the updated changes in the same manner in which the initial

requirements were received.

In the case of a change detected locally, such as a failed component or diverging

NF properties, only a single node need observe the change. This node must
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force the network to choose a new solution by issuing a death certificate1 for

the failed configuration and selecting an ancestor state exactly as if the node was

backtracking after checking the structural constraints (rule 3(a)). Additionally, the

node must update the availability or NF properties of the offending component.

Then, as with backtracking, the network will avoid the failed solution to converge

on a different one.

6.4 Deriving The Changes

The manipulations which are specified explicitly in other approaches, such as

component deletion or replacement, connection and disconnection, are subsumed

by our approach, which is to regard component interconnection as implicit, and

the configuration as a set of components.

Once a new configuration has been generated by running the assembly procedure

with updated availability or non-functional annotations, the specific actions to be

performed can be easily derived. The new components to be instantiated (the

“delta”) are those in the difference between the old and the new configurations.

Likewise the old components to be destroyed are those in the commutated

difference:

createComponents = newConfig \ oldConfig

destroyComponents = oldConfig \ newConfig

All connections to or from a destroyed component must be removed, and new

connections to or from new components are created using the same logic applied

for the initial construction (whereby a requirement is satisfied by any provision).

1The metaphor takes on particular aptness here.
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6.5 Safe Update

Ideally, the components which are present in both the old and new configurations

should be permitted to continue execution, rather than disruptively pausing the

entire application for the duration of reconfiguration (or worse, discarding the

entire old configuration and re-instantiating those components). Pausing the

application in this manner may incur a cost in terms of the start-up time of

components, or in some domains it may not be safe. For example, an unmanned

airborne vehicle cannot safely stop its flight controller while airborne. The

components to be preserved are:

preservedComponents = oldConfig ∩ newConfig

Equally, it is not safe to allow every preserved component to continue in ignorance

of the changes. A preserved component may be connected to another component

which is about to be replaced. There are several reasons why replacing a

dependency such as this may be unsafe, including:

• The preserved component may attempt to interact with its dependency at a

moment when it is not bound (similar to a dangling pointer). The transaction

will fail.

• The preserved component may already be interacting with the dependency at

the moment that it is replaced. Again, the transaction will fail.

• The preserved component may have interacted with its dependency, and

may have the intention to interact with it again to complete the current

computation. Even if the replacement is completed before the preserved

component needs to use the dependency again, this may not be safe if the

transaction relies on the requirement being satisfied by the same component

throughout the computation. A very simple example would be any component
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which provides a protocol with open and close operations like a file or socket.

If the file component is opened, then replaced, then the new component will

not be in the correct state to perform a close operation2.

Of course, there are additional reasons for having some means to warn a

component about its imminent destruction:

• The component may be in the middle of an internal computation.

• The component may need to perform some operations to terminate safely,

such as closing files and releasing resources.

• The component may wish to preserve its internal state.

• The component may continue trying to use bindings that have been discon-

nected.

To combat these issues it is necessary to employ some protocol either to pause

some of the preserved components, or to find a safe moment for adaptation, so that

the changes can be applied without jeopardising the safety of execution.

6.5.1 Tranquility

This problem can be addressed (in the centralised case) by applying one of the

schemes described in Section 2.5. We use the tranquility protocol (Section 2.5.6)

since this causes a minimal amount of disruption to ongoing application execution.

This section describes the principles of component replacement using tranquility,

while the implementation details are given in Chapter 6.7.

First consider the replacement of a single component which has a single provision,

bound to a single requirement of another component (one which is to be preserved).

2Though this may be mitigated if the new component adopts the preserved state of the deleted
component.
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Figure 6.1: Tranquility protocol (centralised)

The sequence chart in Figure 6.1 displays the protocol for this case. The first

two messages of the diagram show normal execution, in which the component

to be deleted (D) receives requests from its dependant (P) and makes requests

to other components. At some point the “tranquiliser” (implemented within the

configuration assembler; not as part of the application) decides to replace D with a

new component N. Since it is desirable to minimise disruption, N is instantiated

and its requirements bound (though they will not be used) before interrupting

normal execution. Then, the tranquiliser instructs D to stop making outbound

requests (point 1), though it may continue servicing inbound requests from P.

Then, the tranquiliser must wait for the system to enter the tranquil state in

which D is not currently involved in any transaction and will not be used in an

ongoing transaction if it has already participated. Recall from Section 2.5.6 that

it is possible (though unlikely) that tranquility will never be reached, requiring the

system to fall back to using the more disruptive quiescence protocol. To detect the

tranquil state, the tranquiliser repeatedly queries the dependant P. When P reports

that it is not using and will not reuse D, it is a safe moment to switch the binding
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of P’s requirement to the new component N (point 2).

Notice that if there is an instant (point 3) in which the old binding to D has been

removed and the new binding to N has not been created, then it is possible for

P (which has not been made passive in any way) to initiate a request upon an

unbound requirement. Hence, this operation must appear to be atomic from the

point of view of P. This can be achieved by momentary blocking of the connection (as

in Section 2.5.5), but in our case we exploit the fact that a binding is implemented

as an ordinary Java reference which can be overwritten in an atomic step.

At point 4, the new configuration is fully connected but the new component N

has not been instructed to begin execution. Before this point, symmetrically with

the demise of D, it may process incoming requests, but not make any outbound

requests. The tranquiliser informs N that it can begin by sending it a start message.

Normal execution of the new configuration continues while the tranquiliser may

perform any clean up operations required to destroy D at its leisure.

Now consider the case when a component like D has multiple provisions, or

equivalently, multiple components are bound to its provision. In these cases the

protocol repeats the section between points 1 and 4 for each binding. While this

means that there is a period of time in which some components are bound to the old

provision and some are bound to the new, this is in principle safe since components

should not be aware of their context including which provisions their “peers” are

bound to.

It is also possible to apply tranquility in the distributed case, where extra messages

are required to co-ordinate the various nodes. In this case, each node has its

own tranquiliser. We do not provide each component with its own tranquiliser for

reasons of efficiency. In Figure 6.2, the tranquiliser TN local to the new component

N is responsible for its creation and connection, and the tranquiliser TD local to D

is responsible for stopping D. At this point an extra “ready” message is sent from

the two mentioned tranquilisers to the one local to the preserved component (TP).
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For this purpose it is necessary that TN knows TP (and vice versa) and that TD

knows TP. Notice, however, that there is no interaction between TN and TD. The

names of the nodes can be found from the gossip state3.

Figure 6.2: Tranquility protocol (distributed)

Once the “ready” messages have been received by TP, it can query P and perform

the atomic rebinding as above. To complete the process, TP informs TD that it may

destroy D, and informs TN that it may start N.

6.5.2 Multiple Replacements

Tranquility as originally described only accounts for the replacement of a single

component in a centralised setting. However, in general, a new configuration will be

comprised of several components which are entirely new and several which replace

existing components, in addition to those which are retained from the previous

configuration. This demands that we consider what constrains the manner in

which multiple replacements are performed.
3This information is in any case a prerequisite for creating the bindings in the original

configuration.
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The key observation is that performing the entire process for each component

separately will cause unnecessary disruption since the time between the first

rebinding and the last must now include component start-up times. This approach

would also mean that the instantiation of new components would have to follow the

(structural) dependencies since there cannot be an instant in which a requirement

is unbound. Components which are depended upon would have to be instantiated

before those which depend upon them. Cyclic dependencies further complicate

the situation. Our approach simplifies the situation by processing all the new

components together, in four phases as described below.

Firstly, all new components (and those which will replace old components) are

instantiated, but are not started. They may perform internal computations, but it

is assumed they do not make outbound requests. All the requirements of these new

components are bound to other new components, or to old components. If there

is a new component which provides the same interface as an old one, then the

new component is chosen for binding since the old component may be replaced

(thus binding to it would cause an unnecessary rebinding). At this point, the

old configuration remains in operation, and a partial new configuration, which

is disconnected from the original, is partially operating. Notice that from this point,

and until the reconfiguration is complete, the actual configuration may violate the

structural constraints.

In the second phase, the new configuration is patched into the old one by iterating

over all the bindings to components to be deleted, and performing steps 1 to 4 of

the tranquility protocol to transfer each binding to the new components. This leads

to a sequence of configurations where the new sections of the configuration are

partly connected to the preserved configuration. This is safe since each rebinding

is an atomic step, and so at every stage of the sequence, a binding is either to

an old component or to a new one, and so requests can always be serviced (new

components can service inbound requests). There is no observable point at which

a requirement is unbound.
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In the third phase, each of the new components is sent the start message which

permits them to make outbound requests. It is the absence (or blocking) of

consequent transactions which allows components to be started in any order. If

transaction dependencies were handled at this level, then the components would

have to be started in the reverse order of the chain of dependencies, so that requests

always go to a component which has already started. If indeed there are any

consequent calls, they must be blocked by components which have not yet been

instructed to start. This means that, in the worst case, a transaction could be

blocked from the first rebinding until the last start message. However, rebinding

and the sending of start messages are not computationally expensive operations,

and so the delay should be minimal. At this point, the new configuration has been

completed and once again satisfies the structural constraints.

The final step is to terminate all the old disconnected components, concurrently

with the normal execution of the new configuration which has been assembled.

Figure 6.3: Performing multiple replacements safely
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Figure 6.3 shows an example in which two components, B and C, must be replaced

by B’ and C’. Figure 6.3 (i) shows the initial configuration. In step (ii), all the new

components are instantiated, and their requirements are bound. Notice that B’

introduces two new bindings not found in the initial configuration, one of which is

satisfied by a completely new component D.

In step (iii) the tranquility protocol is performed for the binding of the preserved

component A to B’. B’ may service incoming requests from A but may not make

any outbound requests to C’ or D. In step (iv), the binding between A and C is

moved to C’, completing the new configuration. It is now possible to discard the old

components B and C, and to instruct B’, C’ and D that they are now permitted to

make outbound requests.

6.6 State Preservation

To increase the likelihood that a reconfiguration causes a minimum of disruption,

we provide a means for deleted components to preserve their internal state4, and to

have that state restored in new components. To see the motivation for this, consider

a situation in which one component has interacted with another several times, and

the manner of these interactions is determined by the state of the components,

which may be a simple status (such as “done the first step”) or a complex data

structure. If one of these components is replaced, even in a safe manner as above,

the new component will be in its initial state which does not correspond to the

state in the preserved component. It is likely that the ongoing interaction between

them will have to be restarted to reconstruct the internal state. For example, in

the robotics domain, there may be a component which constructs a map of the

environment from one type of sensor (say infra-red), which is then replaced by

4This is a different sense of “state” from that used in the discussion of gossip. Here we refer
to the component’s application state, while the state of gossip is global configuration information
stored in the configuration assembler of each node.
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another component which uses a different source of data (such as a webcam).

Clearly it is desirable for the map data from the first component to be retained for

use in the second component.

To avoid disrupting the system in this way, the old state can be passed to the

new component, in the hope that the new component will adopt this as its own

state. Unfortunately there is no guarantee that the new component will pay

attention to the old state. It may not be a meaningful data structure to the

new component (indeed one expects different implementations to have different

internal representations), and the system cannot force the new component to

adopt the state without either (i) breaking the black box principle by peering into

its implementation details, or (ii) losing generality and flexibility by handling a

restricted class of state information which can be understood by most components.

Figure 6.4: New components may split (or unify) the provisions of an old component
amongst themselves

Hence, the system requests from each component that will be deleted a reference to

an arbitrary data structure, and when instantiating a new component, the system

provides this reference. However, there is an additional complexity in that in

general there is no direct relation between an old component and the component

replacing it, complicating the decision of which new component(s) to pass the old
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state to. This arises because a single component may implement many interfaces,

and so any new component may replace another with respect to only one of its

provided interfaces. For example, in Figure 6.4 (i), the component B implements

two interfaces and these are implemented by different components B1 and B2 in

the new configuration. In (ii) the interfaces provided by components B and C are

combined in a single component BC.

Rather than make the (likely futile) demand that components maintain and

isolate different states for each of their provisions, the old state is passed to any

component which implements an interface of the old component. This means that

in situation (i), both B1 and B2 will receive the state of B; and in situation (ii), BC

will receive both the state of B and the state of C.

6.7 Implementation

Although in the above chapters the abstract behaviour and performance character-

istics of our approach have been described, with the intent of making the efficacy

and feasibility thereof manifest, there remains to be discussed some particulars of

our prototype implementation.

6.7.1 Dynamic Backbone

In order to implement our assembly and adaptation techniques, it was necessary

to use a framework that permits the definition of components and the instantiation

and manipulation of configurations (involving component instantiation and wiring).

For this purpose we made use of the Backbone framework [MKM06] by Andrew

McVeigh and extended it with the assembly algorithms and the tranquility and

state preservation protocols.

The original purpose of Backbone was to instantiate configurations designed in a
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graphical modelling tool called Jumble. A diagram created in this tool is essentially

a static description of a configuration, save for one construct called a factory,

which permits a limited sort of runtime change and constructs which describe the

evolution of the design (again, statically). These constructs have been discussed in

detail in Section 2.2.1.

Given the static nature of these constructs, our strategy has been to avoid using

any specific Backbone features (which nevertheless would only provide a means,

and not absolve us from having to make adaptive decisions). This ensures that

the approach remains generally applicable across a wide range of architectural

frameworks. The sole necessity is that components are explicitly marked with their

provided and required interfaces.

Backbone is implemented in Java and requires that components are also imple-

mented (at least nominally) in Java. Figure 6.5 is a class diagram indicating the

major classes involved in the extended implementation along with their significant

methods and fields.

Figure 6.5: Dynamic Backbone
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The most important class is DynamicBackbone, which extends the original Backbone

class. The Backbone class has a method runModel() which instantiates, in the

local Java Virtual Machine, the configuration described in the architectural model

passed as a parameter. In its original mode of operation, Backbone would read the

configuration from a set of files written in Backbone’s ADL, construct the model,

and then call runModel(). DynamicBackbone circumnavigates the Backbone ADL

and constructs models directly at runtime, thereafter calling runModel(). Note

that DynamicBackbone only supports the centralised algorithm at present, though

it should be a simple matter to add the distributed version.

RemoteDynamicBackbone is a remote proxy for the DynamicBackbone, implement-

ing the RMI (remote method invocation) interface RemoteBackbone, thus allowing

remote access.

Component, Configuration and NonFunctionalProperty are data structure

classes describing the relevant entities (thus, collectively they can form archi-

tectural models). DynamicBackbone has a collection of Component instances5

that form its component repository and a collection of NonFunctionalProperty

instances that describe all the utility functions and weights for the application.

DynamicBackbone is responsible for generating Configuration instances (com-

posed of Component instances) which are then instantiated by Backbone.

The main entry point for assembling configurations is the method runArchitecture()

which takes a set of required interfaces (String objects) as a parameter. This

method calls either constructUCArchitecture() or constructUCArchitecture-

Incrementally(), performs the tranquility protocol and ultimately calls runModel().

constructUCArchitecture() performs the assembly procedure using aggregate

NF selection, whereas constructUCArchitectureIncrementally() does the

same using incremental selection. Both these methods call satisfiesConstraints()

which checks that the candidate configuration meets the structural constraints by

5Note that a Component object merely describes a component type, and is unrelated to instances
of real, operational components.
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making appropriate calls to the PrologInterpreter. We use GNU Prolog for Java6,

which is implemented completely in Java, but this can easily be substituted with

alternatives.

The tranquility and state preservation protocols are handled by the tranquilStart

and tranquilStop methods. tranquilStart simply instructs new components to

begin execution and injects preserved state. tranquilStop waits for a safe point to

apply changes before stopping the components to be deleted and extracting state to

be preserved from them. This is achieved—for each component d to be deleted—by:

• waiting for a point when d is not engaged in an external or internal transaction

(by querying d and intercepting incoming calls using a

java.lang.reflect.InvocationHandler),

• instructing d to stop normal execution (it may still respond to incoming

transactions), and

• waiting for each component dependent upon d to assert that it will not reuse

d in the current transaction.

At this point the binding can be changed, and d destroyed.

6.7.2 Domain Components

Components used with Backbone must be implemented in Java (or at least have

a Java wrapper7), and must follow a number of conventions. These conventions

were kept to a minimum in order to reduce the burden of creating Backbone

components. The conventions are:

• When a component C provides an interface I, it must implement I according to

the normal Java rules. This means that a component can only implement one
6http://gnuprologjava.sourceforge.net
7This is the case for the Koala component of Section 7.1.
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copy of an interface, though we do not believe this to be a serious practical

problem (in other words the notion of a port for provisions is lost).

• When a component C requires an interface I, it must have a public non-final

field with the type I and marked with a req annotation including the name

of the port. For example @req("portName") marks a requirement named

portName. The req annotation type is in the Java package

com.hopstepjump.backbone.api, meaning that an appropriate import state-

ment is also needed.

• If a component wishes to have the safety of tranquility, it must addition-

ally implement the TranquilComponent interface. This requires suitable

implementations of the startComponent, stopComponent, transaction-

InProgress and getReusedComponents methods. This necessitates import-

ing com.hopstepjump.backbone.api.TranquilComponent.

• Likewise if a component wishes to allow its internal state to be saved and re-

stored, the StatePreservingComponent interface, comprising saveComponentState

and restoreComponentState methods, must be implemented. The first

method must return an Object (reference) and the second must takes an

Object as a parameter. com.hopstepjump.backbone.api.StatePreserving-

Component must be imported.

Figure 6.6 shows the source code for the ObstacleAvoider component of the Koala

case study. The ObstacleAvoider provides the MotionSource interface, and requires

a MotionController and KoalaSensors via ports named controller and sensors

respectively. The ObstacleAvoider does not strictly need tranquility, but it uses the

startComponent method as a notification that its requirements have been bound

and hence it can call the MotionController.

Components are naturally permitted to start their own threads, and so the

startComponent and stopComponent methods give a suitable place for starting
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threads and cleaning up after them. The transactionInProgress method

should return true if any thread is involved in a lengthy computation or if it is

interacting with a dependency. For transactions which involve multiple calls to

dependencies, the component must ensure that the dependencies are identified

in the getReusedComponents method which prevents DynamicBackbone from

destroying any requirements which are in use.

6.8 Summary

In summary, the major part of this chapter has described the conditions under

which an adaptation is to be performed, and how a reconfiguration is applied

safely. An adaptation can be invoked by a change of requirements (which may

be a result of a new goal), by an environmental change, by components ceasing to

be available (after failures), and by monitored non-functional properties diverging

from their ideal values. These events cause the assembly process (centralised or

decentralised) to resume and compute a delta consisting of the changes to be made

to the existing configuration to arrive at the new one. The safety of the changes

(with respect to preserved components) is ensured by using an extended version of

tranquility that handles multiple replacements and distribution. The preservation

of application state in replaced components is also catered for with a scheme for

extracting and injecting state information. The work in this chapter addresses

requirement 4 (safety) given in the introduction.

The final part of the chapter discussed the implementation of the techniques

described in this and the preceding chapters. The next chapter applies the

centralised and decentralised techniques to two case studies and evaluates the

work.
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package koala.motion;

import koala.KoalaSensors;
import koala.KoalaSensorReading;
import koala.KoalaVector;
import java.util.Vector;
import com.hopstepjump.backbone.api.req;
import com.hopstepjump.backbone.api.TranquilComponent;

public class ObstacleAvoider implements MotionSource, TranquilComponent
{

@req("controller") public MotionController controller;
@req("sensors") public KoalaSensors sensors;
private final int obstacleThreshold = 150;

public ObstacleAvoider()
{
}

public void startComponent()
{
System.out.println("ObstacleAvoider: Registering with motion controller.");
controller.registerMotionSource(this, 50);

}

public void stopComponent() {}

public boolean transactionInProgress()
{

return false;
}

public Vector<Object> getReusedComponents()
{
return null;

}

public KoalaVector getDirection()
{
//implementation omitted

}
}

Figure 6.6: Source code for the ObstacleAvoider component
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Evaluation

A
FTER having discussed the technical and theoretical aspects of our

declarative approach for architectural adaptation, in both the centralised

and distributed forms, it remains necessary to provide a qualitative

evaluation of the utility and efficacy of the approach with respect to both our

requirements and to potential application areas, complementing the quantitative

results given in prior chapters. To that end, this chapter presents two case studies

(drawn from a larger set of experiments performed in the course of the work), and

then a discussion of how each objective was satisfied, particularly in relation to the

case studies. The first case study is one in the robotics domain in which mobile

robots are given a goal to achieve in the physical environment, and the second case

study is for satellite tracking and was originally proposed elsewhere [BHRE07].

Finally, a number of limitations are discussed. Some of these relate to observations

drawn from the case studies, or otherwise follow from our assumptions (Section

4.1).

163
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7.1 Robotics

7.1.1 Scenario

Systems with some robotic element—unmanned vehicles for example—are a

natural application domain of autonomous systems, since they are especially faced

with unpredictable and uncertain environments.

Suppose there is a fixed robotic arm and two mobile robots. In our demonstrations

we have used the Koala robot1, so we refer to the mobile robots as Koalas2. These

robots are equipped with a standard set of components representing a wide range

of functionality. The user provides a goal, from which a reactive plan is generated

(following the three-layer model), which results in a set of functional requirements.

Figure 7.1 shows the complete set of components arranged into a dependency

graph. Some of these components can only be used on hosts providing the relevant

hardware: the Koala component provides access to the hardware of the Koala robot

while the KatanaArm component does the same for the robot arm. The Koala is

capable of motion in a two-dimensional plane (using the KoalaMotors interface) and

sensing the presence of obstacles using reflective infra-red sensors with a range of

approximately 20cm (using the KoalaSensors interface). The robot arm is capable

of moving such that its gripper can be positioned at a three-dimensional point lying

within a sphere centred on the “shoulder” of the arm (though there are several

physical limitations such as its not being able to grip too close to, or underneath,

the shoulder). The arm is also capable of opening and closing the gripper, and has a

set of infra-red and pressure sensors, which can be used to detect gripped objects.

The arm functionality is accessed through the RobotArm interface. Both kinds of

robot may additionally make use of a camera to enhance their sensing capability.

Most often this is achieved by using the Webcam component which allows images

1http://www.k-team.com
2Videos of our demonstrations can be found, at the time of writing, at

http://www.doc.ic.ac.uk/˜das05
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to be grabbed from the camera.

Figure 7.1: Robotics components

From these fundamental behaviours, various composite behaviours can be formed.

Several of the components are concerned with moving the Koala according to

different rules, such as a circular pattern useful for surveying an area. The

ObstacleAvoider interprets the infra-red sensors to adjust the motion of the Koala

according to the proximity of obstacles. These motion-affecting behaviours are

compositional through the use of the VectorMotionController, which computes a

weighted sum of the desired trajectories of each subsidiary component. This sum

is used to set the speeds of the wheels so that the actual motion reflects all the
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behaviours.

Several of the motion-affecting components require the (absolute) position or

orientation (heading) of the Koala which can be found through the LocationServer

interface. In our implementation, locations are detected using external infrastruc-

ture that uses cameras to detect locations, though equally a GPS device and a

digital compass might be used.

The remaining components are largely concerned with high-level non-compositional

behaviours, and implement the abstract functional requirements used at the

planning level. For example, the GoToTask moves the Koala to a specified position

(hence requiring the LocationServer), the BallSurveyor uses a SearchPattern to

control the motion while using a Camera to detect coloured balls in the arena, and

the BallGrabber uses a Camera to detect coloured balls and the KatanaArm to pick

them up.

The possible functional requirements in this system are then subsets of {GoTo,

Surveyor, DoorLocator, LineFollower, Grabber, Placer, Camera}. Goals based on

this set can include such examples as moving to a series of specified points and

taking photographs (which might be used to search for explosives in a military

context), driving through mazes, and carrying objects from one location to another.

To illustrate our approach, we choose one particular goal (and suppose the

existence of a plan) which requires a number of Koalas to carry objects (balls)

from one robot arm to another. The exact locations of the arms are not known (we

could suppose they are mobile), necessitating a search for each arm. This scenario

could represent various real-world applications. In a military context, unmanned

vehicles could be used to carry supplies across hostile territory, between manned

units. Likewise in a disaster situation or a factory setting, the robots might be

used to carry objects through dangerous areas. Figure 7.2 shows the scenario

graphically.
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Figure 7.2: Supply scenario

The functional requirements for this application are the Surveyor (to search for the

arms) and the Grabber and Placer (on the arms). The structural constraints are:

1. Obstacles should be avoided:

(VectorMotionController, n) ∈ arch −→ (ObstacleAvoider, n) ∈ arch.

2. The grabbing and placing roles should be performed by different arms:

(BallGrabber, n1) ∈ arch ∧ (BallPlacer, n2) ∈ arch −→ n1 6= n2.

3. The BallGrabber and BallPlacer must have a KatanaArm and Webcam on the

same node. In other words, there should be two (physically) different arms:

(BallGrabber, n1) ∈ arch −→ (KatanaArm, n1) ∈ arch ∧ (Webcam, n1) ∈ arch,

(BallPlacer, n2) ∈ arch −→ (KatanaArm, n2) ∈ arch ∧ (Webcam, n2) ∈ arch.

The main point of variation between the possible configurations for this scenario is

in the choice of SearchPattern implementation. Although this fact is not necessarily

known at design time, as component availability changes, we use it to restrict our

discussion of non-functional properties to these components. Suppose each search

pattern is annotated with the following NF properties:

• CircularSearchPattern: (efficiency , 0.8), (success, 0.5).
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• ZigZagSearchPattern: (efficiency , 0.5), (success, 0.6).

• RandomSearchPattern: (efficiency , 0.3), (success, 0.9).

with the intended interpretation that “efficiency” is a measure of how quickly the

pattern can find a target, and “success” is a measure of how often the pattern

succeeds in discovering the target. For example, RandomSearchPattern has a low

efficiency since it causes random motion with no regard to what areas have already

been covered, while it has a high success rate since it eventually covers the whole

area.

The weights for these properties are wefficiency = 0.6 and wsuccess = 0.4, reflecting the

user’s preference that the Koalas cross the perilous zone quickly and the positions

of the arms (though they are mobile) are expected to be relatively predictable.

7.1.2 Distributed Assembly

We can now apply the distributed assembly algorithm to generate a configuration

for this application. There are 4 nodes with the following component repositories:

• A Koala k, hosting {Koala, KoalaMotorController, VectorMotionController, Ob-

stacleAvoider, WorldEdgeAvoider, StaticObstacleAvoider, ObstacleMap, Cir-

cularSearchPattern, ZigZagSearchPattern, RandomSearchPattern, BallSur-

veyor, VisualDoorLocator, Webcam, GoToTask, VisualLineFollower}

• Two arms a1, a2, each hosting {KatanaArm, BallGrabber, BallPlacer, Webcam}

• A location server s, hosting {SkyCamera}

Each node is provided with the set of functional requirements and the structural

constraints. The initial state of each node is thus

c0 = {(req, , Surveyor), (req, , Grabber), (req, , Placer)}
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The nature of gossip means that there are many possible execution sequences,

however we can only consider one here. Suppose in the first step that k applies

rule 2 (Section 5.2.2) to satisfy the Surveyor requirement using the BallSurveyor,

and propagates the state

c1 = c0 ∪ {(prov, (BallSurveyor, k), Surveyor), (req, (BallSurveyor, k), Camera),

(req, (BallSurveyor, k), SearchPattern)}

Simultaneously, a1 satisfies the Grabber requirement with BallGrabber, and

propagates the state

c2 = c0 ∪ {(prov, (BallGrabber, a1), Grabber), (req, (BallGrabber, a1), Camera),

(req, (BallGrabber, a1), RobotArm)}

In the next step, a1 receives the state c1 from k, and again adds the BallGrabber.

k satisfies the new requirements for a SearchPattern and a Camera by adding the

Webcam and choosing one of the SearchPattern implementations. The utility of

each is calculated according to the user preferences:

U(CircularSearchPattern) = 0.8× 0.6 + 0.5× 0.4 = 0.68

U(ZigZagSearchPattern) = 0.5× 0.6 + 0.6× 0.4 = 0.54

U(RandomSearchPattern) = 0.3× 0.6 + 0.9× 0.4 = 0.54

The CircularSearchPattern is thus selected producing a new state

c3 = c1 ∪ {(prov, (Webcam, k), Camera), (prov, (CircularSearchPattern, k), SearchPattern),

(req, (CircularSearchPattern, k), MotionController),

(req, (CircularSearchPattern, k), LocationServer)}
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Suppose then that a1 receives this new state and adds the BallGrabber and the

KatanaArm to produce a state

c4 = c3 ∪ {(prov, (BallGrabber, a1), Grabber), (req, (BallGrabber, a1), Camera),

(req, (BallGrabber, a1), RobotArm), (prov, (KatanaArm, a1), RobotArm)}

When this is received by k it is accepted as a superset of the state known to k.

In the following step, s receives the state and satisfies the LocationServer

requirement introduced by the CircularSearchPattern with the SkyCamera. k also

satisfies the remaining requirements by adding the VectorMotionController and

Koala.

Suppose now that the nodes k, s and a1 agree on the state

c5 = c4 ∪ {(prov, (SkyCamera, s), LocationServer),

(prov, (VectorMotionController, k), MotionController),

(req, (VectorMotionController, k), KoalaMotors),

(prov, (KoalaMotors, k), KoalaMotors)}

which has the remaining requirement of a Placer. The configuration described

by the state is not yet complete, so the structural constraints cannot be applied.

Simultaneously, a1 and a2 propose satisfying Placer with their local BallPlacer

producing new states c6 and c7. These alternative configurations are now complete,

but neither satisfy all of the structural constraints.

At this point, the nodes may backtrack a number of times (rule 3(a)), issuing

death certificates for c6 and c7. However, under these conditions backtracking will

be unsuccessful. Eventually exhaustive search will be used (rule 3(b)) and the

ObstacleAvoider will be added, satisfying constraint 1. If both the states proposed

by a1 and a2 are extended in this manner, then the one which will satisfy all
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the constraints is that in which a2 hosts the BallPlacer. This complete and valid

solution cv will eventually propagate to all nodes, and convergence will be detected.

The chosen configuration is shown in Figure 7.3, which additionally shows which

nodes host which components.

Figure 7.3: Assembled configuration for 4 nodes

Notice that the generated configuration includes a single Koala only, while the

intent was to use several to accelerate the work. This can be achieved by trivially

duplicating the sub-configuration for k for all ki. It is possible to encode this

duplication as a number of intricate structural constraints (similar to the way in

which the Grabber and Placer roles were kept disjoint), but this is an inefficient

solution both in terms of complexity presented to the designer, and in terms of the

execution time, since it causes extensive backtracking and exhaustive search.

A related problem which our work does not address is that of correct and optimal

allocation of which nodes are to instantiate which components (when a choice

is available). The correctness of the configuration for Koalas depends on this
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allocation of components to nodes: (i) the ObstacleAvoider must be bound to

the same instance of Koala as the VectorMotionController since the Koala must

avoid the obstacles detected by its own sensors, (ii) the location provided by the

SkyCamera and used by the CircularSearchPattern must be for the same physical

robot on which the CircularSearchPattern3 is hosted, and (iii) the Koala used

(transitively) by the BallSurveyor must be hosted by the same physical node as

the Webcam, since the BallSurveyor relates the image produced by the camera on

a particular robot to the motion of that same robot. Where correctness is not

an issue, there is also a question of optimality. Given a set of nodes hosting

identical sets of components, a solution with many inter-node bindings would

be inefficient in terms of communication cost, while greater efficiency could be

achieved by having a preference for bindings on the same host. On the other

hand, if the application requires few bindings and the user has a preference for

increased performance through parallel computation, the use of more nodes might

be preferred.

7.1.3 Adaptation

The above configuration can be adapted by changing the search pattern used,

for example if the CircularSearchPattern fails due to a bug, or if its claimed

success rate proves to be woefully inaccurate. Should this happen, the Cir-

cularSearchPattern is marked unavailable and a death certificate is issued by

node k for the above configuration, and then node k backtracks. Depending

on the amount of backtracking required, a new solution—in this case involving

the ZigZagSearchPattern—is found more quickly than the original assembly. An

interesting observation made during our experiments is that switching between

search patterns is almost imperceptible to a user since the re-assembly process

happens concurrently with normal execution of the non-failed components. In

3Although this is strictly an application-layer issue, not an architectural one.
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particular, the ObstacleAvoider continues ensuring the Koala does not hit an

obstacle.

7.1.4 Summary

This case study has demonstrated the use of the approach to assemble and

adapt a configuration of components hosted by a number of distributed nodes

which co-operate to achieve a functional goal. The scenario also had associated

NF preferences and structural constraints, entailing some backtracking and

exhaustive search in addition to local (incremental) NF selection. However, the

few variation points of the scenario have meant that it has not exercised aggregate

NF selection.

7.2 SatMotion

7.2.1 Scenario

The next scenario is based on [BHRE07] and shows how an existing problem can

be translated into one of architectural reconfiguration and thence solved using

our approach. SatMotion is an application designed to align satellite antennas

using alternative means that are enabled by selecting different components. Figure

7.4 shows the full set of components arranged into a dependency graph. This

information is expressed in [BHRE07] as architectural constraints, but its trivial

translation into dependencies means that the performance cost of trying to satisfy

explicit structural constraints can be avoided.

The functional requirement used to construct configurations is represented by the

SatMotion interface. This is implemented at the top level by three alternatives.

The alternatives for the requirements of the top-level components mean that there
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Figure 7.4: SatMotion components

are 27 solutions in total. This space of alternatives is substantially smaller

than that given in [BHRE07] since we do not consider alternative locations for

the remote components (of which there are 3). Indeed we regard allocation of

components to nodes as a separate problem (as mentioned above). The search

space may be further limited by changing component availability. For example, the

OfflineController is the only viable choice when no internet connection is present.

The other (less significant) difference with the prior formulation is that we cannot

directly express an optional requirement (as in the case of the Recorder) except by

introducing a “null” recorder.

Since we have expressed the structural constraints in dependencies, there is no

need for further explicit constraints. We do however use some NF properties to

choose the optimal configuration for the user’s preferences (for simplicity the utility

values of each NF property are shown instead of the original values):

• TwoWayController: (accuracy, 0.95).

• OneWayController: (accuracy, 0.7).
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• OfflineController: (accuracy, 0.4).

• LocalRecorder: (bandwidthCost, 1), (performance, 0.7).

• RemoteRecorder: (bandwidthCost, 0.7), (performance, 0.95).

• LocalTWMathProcessor: (bandwidthCost, 1), (performance, 0.5).

• RemoteTWMathProcessor: (bandwidthCost, 0.8), (performance, 0.95).

• TWBasicUI: (accuracy, 0.5), (performance, 0.95), (usability, 0.7).

• TWAccurateUI: (accuracy, 0.9), (performance, 0.5), (usability, 0.6).

• LocalHandsFreeAccurateUI: (bandwidthCost, 1), (accuracy, 0.8), (performance, 0.4),

(usability, 0.8).

• RemoteHandsFreeAccurateUI: (bandwidthCost, 0.6), (accuracy, 0.8), (performance, 0.95),

(usability, 0.8).

• OWBasicUI: (accuracy, 0.5), (performance, 0.95), (usability, 0.7).

• OWAccurateUI: (accuracy, 0.9), (performance, 0.5), (usability, 0.6).

• TextModeUI: (accuracy, 0.9), (performance, 0.95), (usability, 0.3).

where the annotations are relatively self-explanatory. For example, “performance”

is a measure of the computational performance of the component.

Finally, we suppose that the user is primarily interested in accuracy, with

performance as a second priority. This gives the weights:

waccuracy = 0.4 wperformance = 0.3

wusability = 0.2 wbandwidthCost = 0.1
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Candidate solution Uagg

TwoWayController, RemoteRecorder, RemoteHandsFreeAccurateUI,
RemoteTWMathProcessor

0.93125

TwoWayController, LocalRecorder, RemoteHandsFreeAccurateUI,
RemoteTWMathProcessor

0.92

OfflineController, BackPlayerUI, BackMathProcessor 0.92
TwoWayController, RemoteRecorder, TWAccurateUI,
RemoteTWMathProcessor

0.9075

TwoWayController, RemoteRecorder, TWBasicUI, RemoteTWMath-
Processor

0.90625

TwoWayController, RemoteRecorder, RemoteHandsFreeAccurateUI,
LocalTWMathProcessor

0.9025

TwoWayController, RemoteRecorder, LocalHandsFreeAccurateUI,
RemoteTWMathProcessor

0.9

TwoWayController, LocalRecorder, TWAccurateUI, RemoteTWMath-
Processor

0.89625

TwoWayController, LocalRecorder, TWBasicUI, RemoteTWMathPro-
cessor

0.895

TwoWayController, LocalRecorder, RemoteHandsFreeAccurateUI,
LocalTWMathProcessor

0.89125

TwoWayController, LocalRecorder, LocalHandsFreeAccurateUI, Re-
moteTWMathProcessor

0.88875

OneWayController, RemoteHandsFreeAccurateUI, RemoteRecorder 0.88667
OneWayController, TextModeUI, RemoteRecorder 0.88
TwoWayController, RemoteRecorder, TWAccurateUI, LocalTWMath-
Processor

0.87875

TwoWayController, RemoteRecorder, TWBasicUI, LocalTWMathPro-
cessor

0.8775

OneWayController, RemoteHandsFreeAccurateUI, LocalRecorder 0.87167
TwoWayController, RemoteRecorder, LocalHandsFreeAccurateUI,
LocalTWMathProcessor

0.87125

TwoWayController, LocalRecorder, TWAccurateUI, LocalTWMathPro-
cessor

0.8675

TwoWayController, LocalRecorder, TWBasicUI, LocalTWMathProces-
sor

0.86625

OneWayController, TextModeUI, LocalRecorder 0.865
TwoWayController, LocalRecorder, LocalHandsFreeAccurateUI, Lo-
calTWMathProcessor

0.86

OneWayController, OWAccurateUI, RemoteRecorder 0.855
OneWayController, OWBasicUI, RemoteRecorder 0.85333
OneWayController, LocalHandsFreeAccurateUI, RemoteRecorder 0.845
OneWayController, OWAccurateUI, LocalRecorder 0.84
OneWayController, OWBasicUI, LocalRecorder 0.83833
OneWayController, LocalHandsFreeAccurateUI, LocalRecorder 0.83

Table 7.1: Aggregate utility of SatMotion configurations
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7.2.2 Assembly

Now we apply the centralised algorithm and use aggregate NF selection since

the space of solutions is relatively small. Table 7.1 shows the full set of

solutions. These are generated using the dependency analysis as described in

Section 4.2.3. For example, the nineteenth in the table is found by selecting the

TwoWayController to satisfy the SatMotion requirement, and then by considering

the three requirements of TwoWayController. Recorder is satisfied by choosing

LocalRecorder, TWUI is satisfied by choosing TWBasicUI and TWMathProcessor

is satisfied by choosing LocalTWMathProcessor. This produces a complete

configuration arch for which the aggregate utility can be computed:

Uagg(arch) =

U(TwoWayController)+

U(LocalRecorder)+

U(TWBasicUI)+

U(LocalTWMathProcessor)

4
= 0.86625

The solution with the highest utility given the preferences is {TwoWayController,

RemoteRecorder, RemoteHandsFreeAccurateUI, RemoteTWMathProcessor} with

utility 0.93125. This makes intuitive sense, since the user weighted accuracy

highly, and also performance (the remote implementations delegate the compu-

tational cost). The experiments of Section 4.4.4 suggest this solution would be

derived in a small fraction of a second. Figure 7.5 displays the configuration

graphically.

7.2.3 Adaptation

The situation most likely to arise is a loss of connectivity which makes a whole

swathe of the components unavailable. This would leave only one solution for
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Figure 7.5: Optimal SatMotion configuration

adaptation, which is that using the OfflineController.

If however, just one connection were lost—for example, to the RemoteRecorder—

then only that component would become unavailable and a new configuration

would be found. The new solution would be found more rapidly than the initial

assembly since approximately half of the previous solutions (those which used

the RemoteRecorder) are no longer viable. Under the current preferences, the

obvious solution of replacing the RemoteRecorder with the LocalRecorder has the

next highest utility, although this is shared with the OfflineController solution.

7.2.4 Summary

This case study has demonstrated the use of the centralised approach for

assembling and adapting a configuration of components in a scenario proposed by

others. The case study has shown that it is possible to encode apparently complex

structural constraints as dependencies to gain a performance benefit, thus making

it feasible to use aggregate non-functional selection. In this way, the solutions

chosen are optimal with respect to the preferences chosen by the user.
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7.3 Qualitative Evaluation

In this section we discuss the objectives outlined in the introduction and the extent

to which they have been met by the work described herein. Then we consider the

significance and ramifications of certain assumptions and simplifications which

have been made along the way.

7.3.1 Requirements

1. Declarative autonomy. Minimising user involvement in the specifics

of the system’s operation ensures that the dependency on the user’s design-

time assumptions is reduced. Declarative expressions of requirements, goals

and preferences enhance opportunities for adaptation by not specifying detailed

solutions.

The starting point of our approach is the set of functional requirements provided

by the goal management layer, which derives them from an explicit functional goal.

The set of functional requirements is nothing more than a list of interfaces, which

means that there are potentially a huge number of solutions. This is both a benefit

and a drawback since there are many opportunities for adaptation but, at the

same time, searching for a solution is more expensive. The space of solutions

can be constrained with further declarative information from the user: structural

constraints place limits on the kinds of configurations which are acceptable without

(except in degenerate cases) specifying exact configurations (as in the robotics case

study), and non-functional preferences inform the assembly procedure as to which

kinds of components and configurations are preferred.

2. Explicit NF properties. Explicit treatment of non-functional information can

enable the system to make the best choices with respect to the properties the user

wishes to see optimised.
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Each of the components is annotated with a number of NF properties describing

aspects such as the performance or reliability of the component. These annotations

are transformed by utility functions and weights provided by the user into a utility

for each component representing how closely it matches the user’s preferences.

This ranks components in a manner which allows the assembly procedure to

choose between them. Whereas aggregate selection ranks complete configurations

based on aggregate utility, incremental selection chooses between components

providing the same interface while assembling a single solution. Aggregate NF

selection was of particular use in the second case study in which there were many

alternative configurations.

3. Explicit structural constraints. Explicit treatment of structural constraints

restricts the system to producing solutions which fall into well-understood cate-

gories such as architectural styles. Structural constraints also provide a means to

encode certain domain-specific rules such as mutual exclusion between a pair of

components. Such constraints were of particular use in the robotics case study

to handle peculiarities of the domain, such as the need for certain components to

reside on the same host.

The general nature of structural constraints means that the assembly procedure

can evaluate only complete solutions against them, and delegates to a general

constraint checker to do so. When solutions do not meet the constraints the

assembly procedure backtracks to find alternatives that do meet the constraints.

Structural constraints have the effect of reducing the search space but they also

remove opportunities for adaptation.

4. Safety. A modification of a running system must preserve the consistency of

the state of components and thus of the application so that the modification does

not cause faults.

When an adaptation has been chosen, the tranquility protocol is used to ensure

the modifications are applied safely. Tranquility ensures safety by waiting for a
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quiescent point (at which no significant computation is being performed) to apply

changes. Additionally our system has a mechanism for preserving component state

information.

Tranquility was especially relevant in the robotics domain for ensuring safe

thread management in the VectorMotionController and other components, and for

enabling obstacle avoidance to continue execution during a reconfiguration, as

mentioned above.

5. Decentralisation. Decentralisation provides the overall system with increased

reliability and scalability through improved performance. Although this is true of

many systems, it has particular relevance for an adaptive system since faults and

wide distribution are expected to be the norm.

Our assembly procedure has been decentralised by making use of a gossip protocol.

Gossip removes the reliance on a single node, and we have shown that gossip scales

well to large numbers of nodes. If any node fails during assembly, the procedure

continues without it, and when it restarts, it quickly receives the current solution.

Decentralisation comes at some cost in absolute execution time (with respect to a

centralised scheme) due to the extra requirement of reaching agreement between

all the nodes, plus the unavoidable communication delays. However, agreement is

reached in a logarithmic number of steps, meaning that the delay is not prohibitive,

even for large systems.

Our final desire was to find techniques that provide scalability and performance

appropriate for application at runtime. The scalability, in terms of nodes involved in

the decentralised case, and of the size of component repositories in the centralised

case, has been shown through experiments described in previous chapters. The

difficulty, as regards performance, is that random backtracking can make the time

to derive reconfigurations unpredictable. As described in Section 4.3.1, this can

occur when the structural constraints bear no relation to the dependency graph.

Finally, the two non-functional selection strategies provide a means to achieve
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performance appropriate to the application domain. In the robotics domain,

incremental selection is the most appropriate.

In summary, our approach meets or exceeds our objectives in developing a

declarative, distributable approach for assembly and adaptation of autonomous

component-based systems which respects structural constraints and non-functional

preferences. This approach has been shown to be effective in two rather

varied case studies by addressing the domain-specific issues encountered with

generalised techniques. In the next section we discuss some of our design choices,

assumptions (Section 4.1) and the consequent limitations.

7.3.2 Limitations

Configurations as sets. One of the first simplifications made was to treat

configurations as a set of components, and to assume the bindings (the connectors)

could be derived automatically from the dependencies.

An arrangement of bindings can be found (trivially) by binding every requirement

of a given interface to any provision of the same interface. When there is a

single implementation of every interface, the arrangement is unique. Conversely,

where the arrangement is not unique, this follows from the presence of multiple

implementations of one or more interfaces. The multiple possible arrangements

cannot be distinguished functionally since every requirement is bound to a

matching provision providing equivalent functionality. However, the arrangements

do differ in non-functional aspects such as performance and memory load. For

example, a server component may process requests at a fixed rate. If it has two

clients, they will experience degraded performance with respect to the case when

two server components are used and each services one client.

Since our approach primarily uses functional requirements to assemble solutions,

it does not introduce multiple implementations of a given interface (including
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multiple instances of a given component type) without being forced to do so by way

of a structural constraint as in the robotics case study. This simplification, then,

means that our technique cannot make informed choices between functionally

equivalent, but non-functionally different arrangements of bindings. On the

other hand, the simplification does reduce the space of solutions, providing a

performance benefit.

Allocation of components to nodes. A related problem which our approach

does not address is that of deciding which nodes are to host which components.

Again, functionally, the different allocations are equivalent. However, they differ

for reasons of correctness and non-functional characteristics.

Certain allocations may be incorrect if, for example, one component is dependent

upon being located on the same physical host as another (or equally upon being

located on a different physical host). This is often a relevant concern in domains

which depend heavily upon hardware provision. For example, in the robotics case

study, it was necessary that the BallSurveyor and Webcam reside on the same

host. It is possible to enforce correctness through intricate structural constraints

but this can be inefficient. An alternative technique is to partition the components

into sets which must (or must not) reside on the same host. Assembly can then

be performed for each host independently, and the result duplicated across all

identical hosts. This divide and conquer technique should provide a substantial

performance increase when compared to using structural constraints.

Apart from correctness, there are also non-functional concerns which make some

allocations preferable to others. For example, having one node host all the

components except one hosted by another node is likely to be vastly inefficient

compared to a fairer balance of load between the nodes.

Despite these limitations, the second case study showed that the search space

can be vastly reduced and hence performance can be improved by not considering

which nodes should host which components.
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These limitations might be overcome by sacrificing some performance in the

decentralised case, where allocation is firstly influenced by which nodes are able

to host which components (an input of the algorithm), and secondly by the random

pattern of message exchange caused by gossip. This might be achieved by firstly

dividing the problem into multiple assembly procedures for correctness, and then

considering the non-functional properties of the moveable components and the

various nodes to attain an optimal allocation.

The correctness of non-functional annotations. The degree to which our

approach makes optimal selections is heavily dependent upon the accuracy of the

non-functional information annotated on each component. However, this accuracy

may be limited by the user providing incorrect information (either accidentally or

maliciously) and by the fact that non-functional properties are often dependent

upon the context in which they are placed. In other words, non-functional

properties are not compositional and not encapsulated in the way functional

properties are.

The properties for which this problem is most accentuated are those related to

a finite resource such as memory and CPU attention. For example, consider a

component which claims to have a high processing rate, which also requires many

other components (which for simplicity are unannotated). If the user cares about

performance and gives it a high weight, then this component will be chosen over an

alternative which may claim a lower processing rate but has fewer requirements. In

execution, the “optimal” choice may have its performance reduced as CPU attention

is diverted to the many other components. In fact, its performance may be worse

than the alternative (which claimed lower performance) by virtue of its having fewer

dependencies.

Both the problems of an untrustworthy user and the non-compositionality of

annotations can be mitigated by the use of monitoring to update annotations with

more correct values which can also trigger an adaptation when the real NF property
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diverges from the annotation. This amounts to providing semantics for each NF

property. Although this is not a perfect solution, it is in line with the aims of an

autonomous system which favours information gathered at runtime to design-time

analysis, which can always be undermined by incorrect assumptions.

Non-functional requirements. The non-functional information used by our ap-

proach is subsidiary to the functional requirements and the structural constraints

in that it indicates preferences rather than strict requirements. This means that the

NF properties of solutions cannot be constrained, which may be necessary in some

domains. However, the use of preferences means that there are more opportunities

for adaptation as all the functionally valid solutions can be selected.

Non-functional constraints could be provided for in a similar manner to structural

constraints by applying thresholds to the NF values. Indeed, the expressiveness

of the language of structural constraints could be extended to consider the NF

annotations. For example, a constraint could be written so that no configuration

with less than a certain reliability is accepted (a global constraint), or that no

configuration with a component with an associated monetary cost over a some

value is accepted.
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Conclusions

A
LL the work described herein has been in pursuit of our overall objective

to equip an autonomous, self-managing system with the ability to adapt

its software architecture to overcome the unforeseen challenges posed by

the operating environment. A truly autonomous system has some decision-making

capacity beyond following scripts prescribed by the designer. At the same time,

the designer must provide enough information in the form of goals, requirements,

constraints and preferences to direct and limit the search for adaptations to those

which are meaningful in the application context. This kind of autonomous system

is best suited to applications which demand a “best effort” from the system, rather

than those with strict real-time or safety-critical requirements.

Our three primary objectives for a declarative approach follow from this argument.

The first is that greater opportunities for adaptation can be afforded by taking

a declarative approach. The second is that assembly should be guided by

non-functional information about components and the designer’s preferences

regarding NF properties. The third is that configurations should satisfy structural

constraints.

The two remaining objectives follow from practical observations about the nature

of the systems our approach must adapt. Firstly, that manipulating component-

186
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based systems must respect various safety constraints, and secondly that such

systems are often distributed meaning a centralised adaptive framework is either

inefficient or infeasible.

The final observation is that the performance of the approach must be appropriate

for dynamic reconfiguration in the application domain. This means that, for

example, in the robotics domain adaptations should occur within a matter of

seconds.

8.1 Contributions

The key contributions of the approach we have developed are in meeting these

objectives, which have not been sufficiently addressed by other proposals. This is

particularly true of the fully decentralised adaptation using gossip and the strict

adherence to the principle of divorcing the designer from the details of the running

system. Approaches such as [Che08, GS02] specify architectural adaptations at

such a level of detail that the system has few if any choices at runtime, and is

hopelessly stranded should the environment evolve in a way unanticipated by the

designer. This eventuality then entails a prohibitive amount of effort (and down-

time) to rewrite strategies to ensure the system copes with the new circumstances.

Indeed, in the extreme case, such an approach would seem to achieve little more

than the separation of the application and the adaptive concerns. Additionally

there is a dearth of explicitly distributed techniques. The notable work in this area

is that of Georgiadis et al. [GMK02] which granted each node its own adaptation

manager, but suffered from the same procedural approach and poor scalability

owing to its use of reliable broadcast.

To summarise, our approach makes the following contributions:

Assembly process. We have developed a search algorithm that we call the
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assembly process (comprised of the dependency analysis, constraint checking, and

non-functional selection) which assembles configurations of components based

on a declaration of the functional requirements of the domain, without resorting

to procedural specifications. It then narrows its space of choices by checking

candidate solutions against architectural constraints written in an expressive

declarative language and ranks solutions by looking at the user’s preferences,

expressed abstractly as numerical weights, over non-functional properties such as

reliability. The approach can make use of aggregate selection to ensure optimality

with respect to aggregate utility or use incremental selection which vastly improves

performance for a small cost in optimality. The linear complexity of incremental

selection means that solutions can be generated (from a huge space of possibilities)

in a small fraction of a second.

In total, the assembly process chooses the software architecture that meets the

functional and structural requirements and that has the best non-functional

characteristics.

Safe adaptation. We have extended the tranquility protocol to handle multiple

replacements and distribution. This ensures that adaptations are applied safely

with a minimum of disruption to running components. In addition, we have

provided a mechanism for preserving component state information.

Decentralisation. We have developed a decentralised technique for self-assembly

which uses aggregate gossip with death certificates for failed configurations, so

that a network of peer nodes can collectively decide upon a configuration, without

any single node knowing the entire set of possibilities. Without backtracking,

agreement is reached within logarithmic time, ensuring that the technique scales

well to very large systems. Additionally it is robust to lost messages and failing

nodes.

Self-assembly framework. Finally, we have provided an overall framework for

declarative self-assembly in which the above constituent techniques can be applied.
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If necessary, the constituents can be replaced, such as with alternative NF selection

strategies or different constraint checkers.

8.2 Future Work

Of course, there remain several areas in which the work can be improved upon in

future efforts, particularly with respect to the limitations discussed above and the

assumptions we have made along the way. The biggest challenge relates to our

treatment of configurations as sets of components, which prevents the assembly

process from differentiating functionally-equivalent configurations with different

arrangements of bindings. Such configurations are likely to have different (global)

non-functional properties. Likewise different allocations of components to nodes

result in different NF properties. A solution for this problem would have to be

coupled with an increase in expressiveness and accuracy of the NF annotations,

perhaps through the use of parametric contracts [RFB04] which take account of the

context in which the component is to be placed. In addition, resource allocation

[RLLS97] and explicit NF constraints [MVS07, FB98] can ensure solutions meet

the user’s non-functional requirements by providing NF properties with semantics

[SE04].

In the broader context, there remain questions to be answered about the manner

in which adaptation techniques—in all parts of the three-layer model—respond to

environmental fluctuations and whether this maximises reliability or performance

over the life of the system. For example, what risk is there that the environment

will change repetitively, forcing adaptations to oscillate back and forth? Machine

learning techniques [KPJ+06] may be relevant to extract repeating patterns from

the environment and adjust the adaptive responses appropriately to maximise

utility over time and avoid excessive adaptation [PGS+07]. This can also give a

performance benefit as the results of the adaptation process can be recorded for
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reuse when the same situation arises again.

In the goal management layer, there are opportunities for improving the planning

techniques used. For example, the reactive planning algorithm used in our

reification does not account for non-functional aspects which may be relevant at

that level. Recall that when an environment state has two exiting transitions, the

one lying on the path that is shorter in the number of transitions is chosen. A very

immediate benefit can be achieved by making that choice on a different basis such

as a probability which indicates the reliability of the transition. In this manner, the

reactive plan would include the most probable paths to the goal.

The performance of planning is also highly dependent upon the size of the state

space, or in other words, upon the level of abstraction used. At the lowest level, the

planning domain is determined by the semantics of the interfaces available in the

component repository. Explicit treatment of semantics would enable specification-

based component selection (Section 2.3.11) to be used. However, it is likely to be

infeasible to perform planning directly at this level of abstraction. At the highest

level of abstraction is the user’s goal, and so it becomes necessary to elaborate the

goal in the direction of the component semantics. This is partially addressed by the

hierarchy of planning domains given in [SHMK07], but is part of a larger question

about how the user’s requirements including the functional goal, architectural

constraints and the non-functional requirements and preferences are elicited in

a precise and expressive way.

It is a substantial challenge to develop techniques which respect the user’s many

and diverse concerns for the best architecture given the foreseeable circumstances,

which remains the best architecture come what may. If the challenge can

be overcome, then the autonomous systems being progressively deployed in

business, military, humanitarian scenarios and even the home, can benefit from

independence of choice and strengthened reliability, and leave the user to his

freedom.
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[DvdHT02] Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. Towards

architecture-based self-healing systems. In WOSS ’02: Proceedings of

the first workshop on Self-healing systems, pages 21–26, New York, NY,

USA, 2002. ACM Press.

[EGMT09] Ilenia Epifani, Carlo Ghezzi, Raffaela Mirandola, and Giordano

Tamburrelli. Model evolution by runtime adaptation. In ICSE 2009,

2009.

[FB98] X. Franch and P. Botella. Putting non-functional requirements

into software architecture. Software Specification and Design, 1998.

Proceedings. Ninth International Workshop on, pages 60–67, 1998.

[GAO94] David Garlan, Robert Allen, and John Ockerbloom. Exploiting style in

architectural design environments. In SIGSOFT ’94: Proceedings of the

2nd ACM SIGSOFT symposium on Foundations of software engineering,

pages 175–188, New York, NY, USA, 1994. ACM Press.

[Gat98] E. Gat. Three-Layer Architectures. Artificial Intelligence and Mobile

Robots: Case Studies of Successful Robot Systems, pages 195–210,

1998.
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Appendix A

Syntax

A.1 Syntax Of Non-Functional Annotations

Component ::= component ComponentName [ NFProperty* ] { Port+ }

NFProperty ::= PropertyName = PropertyValue ,

Port ::= (prov | req) PortName : InterfaceName ;

A.2 Syntax Of FLTL

The grammar given here for fluent linear temporal logic in LTSA is defined in
[GM03].

Fluent ::= fluent FluentName = < { ActionName* } , { ActionName* } >
(initially (true | false))?

Constraint ::= constraint ConstraintName = LTLFormula

LTLFormula ::= true | false | FluentName | ActionName |
( LTLFormula ) | UnOp LTLFormula | LTLFormula BinOp LTLFormula

UnOp ::= [] | <> | ! | X

BinOp ::= U | W | && | || | -> | <->

204


	Abstract
	Acknowledgements
	Introduction
	Requirements
	Contributions
	Thesis Outline

	Background
	Software Architecture
	Industrial Standards
	Architecture Description Languages

	Architectural Evolution
	Backbone
	Feature Grammars

	Adaptive Architecture : What
	Dynamic Darwin
	Dynamic Wright
	Dynamic Acme
	Rainbow
	Aura
	Distributed Management
	Genie
	Critics
	Adaptation Policies
	Graph Grammars
	Specification-Based Retrieval
	Service Brokering
	MADAM
	Architectural Planning

	Adaptive Architecture : When
	Resource Allocation
	Resource Prediction
	Failure Prediction

	Adaptive Architecture : How
	Preserving Guarantees
	Minimising Cost
	Quiescence
	Dynamic Growth
	Connections
	Tranquility

	Summary

	The Three-Layer Model
	Conceptual Model
	Reification
	Planning
	Assembly
	Components

	Summary

	Automatic Architectural Assembly
	Assumptions
	Functional Concerns
	Dependency Analysis
	A Constraint Satisfaction Problem
	Dependency Analysis Algorithm
	Example
	Termination

	Structural Constraints
	Performance Compared To Constraint Solving

	Non-Functional Properties
	Utility Functions
	Aggregate Selection
	Incremental Selection
	Performance Of Aggregate Versus Incremental Selection

	Hierarchy
	Summary

	Distributed Assembly
	Gossip
	Simple Gossip
	Aggregate Gossip

	Gossip-Based Assembly
	State Representation
	State Transformation Rules
	Example
	Enforcing Structural Constraints
	Convergence & Non-Convergence
	Time To Convergence
	Detecting Convergence

	Simulations
	Heterogeneous Rings
	Homogeneous Rings
	Random Components
	Message Loss

	Optimisations
	States As Deltas
	Configuration-Directed Gossip
	Variations On Gossip

	Summary

	Runtime Adaptation
	Causes For Adaptation
	Change Of Requirements
	Environmental Change
	Dynamic Availability
	NF Monitoring

	Centralised Adaptation
	Distributed Adaptation
	Deriving The Changes
	Safe Update
	Tranquility
	Multiple Replacements

	State Preservation
	Implementation
	Dynamic Backbone
	Domain Components

	Summary

	Evaluation
	Robotics
	Scenario
	Distributed Assembly
	Adaptation
	Summary

	SatMotion
	Scenario
	Assembly
	Adaptation
	Summary

	Qualitative Evaluation
	Requirements
	Limitations


	Conclusions
	Contributions
	Future Work

	Bibliography
	Syntax
	Syntax Of Non-Functional Annotations
	Syntax Of FLTL


