
Final year presentation - David Birch

Supervisor: Prof. Duncan F Gillies

Second marker: Dr. Andrew Davison

Empire Total War

www.creative-assembly.co.uk

Problem Definition

 Modern graphics scenes are complex

requiring huge volumes of content to

create compelling scenes.

 This content requirement is increasingly

exceeding current creation, storage and

delivery mechanisms.

Current Interactive Modellers

The Solution

 Algorithmic or Procedural graphics:

 Complex Models

 Similar Models

 Small Storage Requirements

 On demand generation

 Reuse

 Non-linear editing

Current Procedural Modellers

But...

Complexity

Scripting languages

Skills mismatch

& Fragmentation

The Solution:

ClayWorks:
A System for the Non-Linear

Modelling of Deformable Procedural Shapes

T. Lewis and M. W. Jones

Our Approach

 Tree based pipelines

 Leaf nodes are graphical primitives

 One pipeline for each group of primitives.

 Pipelines flow from the root node down to the
primitives.

Language

 Primitives:
 Lines & Triangles

 Cuboids, Spheres

 Planes

 Modifiers:
 Translate, Rotate, Scale

 Mirror & Colour Changer

 Other pipeline modifications such
as:
 Truncation

 Repetition

 & Primitive filtering

Unified: Buildup Semantics

Tree-based
Pipelined execution

CSG like “Buildup”
Tree semantics

(Blob Tree)

Unified: Stream and Batched

Execution

 Two methods of executing modifiers:

 Stream based execution independent

execution on each primitive

 Batched execution – all primitives processed

by one node before being passed to the

next.

Unified: Mathematical Scripting

Almost all attributes in

the scene tree are

actually mathematical

expressions.

Allowing mathematical

modelling:

Unified: Imperative Constructs

 We provide the following features to our
language:

 If tests – to truncate a pipeline

 For loops to repeat a given segment of
pipeline

 Splitter nodes which allow sharing of
primitives

 Filter nodes which selectively remove
primitives

 We also allow mathematical variables to
flow through the tree

Unified: LSystems
 We implement a Bracketed Parameterised

LSystem with mathematical expressions.

 An LSystem is a production system for
commands for a drawing robot (the “turtle”).

 Commands: F, X, Y, Z, +, -, {, }

 Axiom: “X[45]F[10]”

 Productions: “F[10] -> F[10]X[45]F[5]”

 Giving: “X[45]F[10]X[45]F[5]”

 Actually:

“F[d] -> F[d*2]X[45]F[Max(d*10,Exp(5))]”

LSystems:

Development Environment:

 Do/undo/redo with full history

 Save/load

 Log system

 Custom highlighting

Development Environment:

 Graphically manipulated language

 Typesafe drag and drop

 Consistent auto-generated edit system

with validation and help messages

 Visual debugging

Demo!

 Simple example

 Show interface

 Show pipelines

 Show workflow

Codebase: C# 3.5 & Visual Studio

22,082 lines in 167+ classes

Pipeline Creation

BuildPipelines(IModifier rootNode) {

// set up data

List<Pipeline> pipelines = new List<Pipeline>();

List<IModifier> branches = GetExecutableChildren(rootNode);

List<Primitive> prims = GetPrimitiveChildren(rootNode);

if (prims.Count>0) { // find primitives and start a pipeline

pipelines.Add(new Pipeline(prims));

}

foreach (IModifier modifier in branches) { // recurse

pipelines.AddAll(BuildPipelines(modifier));

}

foreach (Pipeline pipe in pipelines) { // extend pipelines

pipe.InsertStage(rootNode);

}

return pipelines;

}

Pipeline Execution

 The list of pipelines to execute is split upon
their first modifier.

 The number of modifier which all the
pipelines in each group share is found.

 Each such pipeline section is then sent to a
ThreadPool for multi-threaded execution.

 On completion of a section the remaining
pipelines are returned and split as above.

 Care is taken of Batch modifiers and the
signalling they require.

NCalc Expression Evaluator

 Extensible open source C# expression

evaluator library

 Multiple data types, delegate extensible

function list & events to evaluate parameters

& functions

 A mathematical context (variable to value

mapping) flows through the pipeline

http://www.codeplex.com/

Further Work (Simplicity)

 Interactive modelling!

 Integrate tools such as translate and scale

into the DirectX renderer

 Automatic extension of the scene tree.

 Allow primitive drawing in DirectX renderer

 Methods of selecting primitives

Further Work (Unity)

 Move to 3d

primitives &

modifiers such

extrude.

 This allows

Constructive

Solid Geometry

(CSG)

Further Work (Unity)

 Shape Grammar

 An LSystem but with graphical primitives

Pattern Production

Example: City Engine

Integration:

Further Work (Performance)

 Aggressive Threading:

 Multiple threads per pipeline section

 Work Splitting Algorithms for modifiers with

large workloads (10,000 primitives +)

 Intelligent algorithms required!

Further Work (Performance)

 Cuda – a C extension which runs on

NVidia Tesla graphics cards, providing

general purpose computing with 100x

throughput of modern CPU’s

 240 “cores” support up to 30,000

running threads.

http://www.nvidia.com/page/home.html

Further Work (Performance)
 Generate Meta Data of pipelines.

 Translate each modifier to C/Cuda code

 Aggressively threaded – one thread per

primitive

 Execute multiple pipeline sections on the

graphics

Further Work (Performance)

 Active Semantic Caching:

 Cache executions along with the pipelines
that generated them.

 When a new execution is required and a
similar execution is cached we can compute
the extra stages and not the whole pipeline

Demos & Questions?

 Demos:
 Clock

 Helix

 Orchard

 Marching Column

 Extra material:
 Composite Nodes

 Mathematical Scripting

 Selection Channels

 Primitive Tagging

 Software Engineering

 Reflections on C# & .Net 3.5

Extra Material - Tagging

 Every primitive has a Tag attribute

 Every modifier has a Tag Test which
dictates whether or not to apply the
modifier to a given primitive.

 All Tags and Tests are math expressions

 This allows semantic groupings of
primitives.

 There are Tag Changer nodes and Filter
on Tag modifiers to facilitate this

Extra Material – Selection

Channels (ClayWorks)

 Selection is made volumetrically via set
operators on a number of convex hulls.

 Sphere radius 5 on <0,0,0> UNION
Sphere radius 5 on <10,50,5>

 The convex hulls are also passed
through the pipelines and are acted
upon.

 This avoids brittle selection which is
broken when a user modifiers an earlier
pipeline stage.

Software Engineering

4700
5146

5676
59796100
63866536

7109
7359

7859
8250

8627
8882

9104

9649
9898

10113

10680

11241

11971

12657

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

22/12/2008 22/01/2009 22/02/2009 22/03/2009 22/04/2009 22/05/2009

Lines vs Date

C# & LINQ

 Introduces Functional constructs into an

imperative language:

