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Problem Definition

 Modern graphics scenes are complex 

requiring huge volumes of content to 

create compelling scenes.

 This content requirement is increasingly 

exceeding current creation, storage and 

delivery mechanisms.



Current Interactive Modellers



The Solution

 Algorithmic or Procedural graphics:

 Complex Models

 Similar Models

 Small Storage Requirements

 On demand generation

 Reuse

 Non-linear editing



Current Procedural Modellers



But...

Complexity

Scripting languages 

Skills mismatch

& Fragmentation



The Solution: 



ClayWorks:
A System for the Non-Linear

Modelling of Deformable Procedural Shapes 

T. Lewis and M. W. Jones



Our Approach

 Tree based pipelines

 Leaf nodes are graphical primitives

 One pipeline for each group of primitives. 

 Pipelines flow from the root node down to the 
primitives. 



Language

 Primitives: 
 Lines & Triangles

 Cuboids, Spheres

 Planes

 Modifiers:
 Translate, Rotate, Scale

 Mirror & Colour Changer

 Other pipeline modifications such 
as:
 Truncation

 Repetition 

 & Primitive filtering



Unified: Buildup Semantics

Tree-based 
Pipelined execution

CSG like “Buildup” 
Tree semantics

(Blob Tree)



Unified: Stream and Batched 

Execution 

 Two methods of executing modifiers: 

 Stream based execution independent 

execution on each primitive

 Batched execution – all primitives processed 

by one node before being passed to the 

next.



Unified: Mathematical Scripting 

Almost all attributes in 

the scene tree are 

actually mathematical 

expressions. 

Allowing mathematical 

modelling: 



Unified: Imperative Constructs

 We provide the following features to our 
language:

 If tests – to truncate a pipeline

 For loops to repeat a given segment of 
pipeline

 Splitter nodes which allow sharing of 
primitives

 Filter nodes which selectively remove 
primitives

 We also allow mathematical variables to 
flow through the tree



Unified: LSystems 
 We implement a Bracketed Parameterised 

LSystem with mathematical expressions.

 An LSystem is a production system for 
commands for a drawing robot (the “turtle” ). 

 Commands: F, X, Y, Z, +, -, {, }

 Axiom: “X[45]F[10]”

 Productions: “F[10] -> F[10]X[45]F[5]”

 Giving: “X[45]F[10]X[45]F[5]”

 Actually: 

“F[d] -> F[d*2]X[45]F[Max(d*10,Exp(5))]”



LSystems:





Development Environment:

 Do/undo/redo with full history

 Save/load

 Log system

 Custom highlighting



Development Environment:

 Graphically manipulated language

 Typesafe drag and drop

 Consistent auto-generated edit system 

with validation and help messages

 Visual debugging



Demo!

 Simple example 

 Show interface

 Show pipelines

 Show workflow



Codebase: C# 3.5 & Visual Studio

22,082 lines in 167+ classes



Pipeline Creation

BuildPipelines(IModifier rootNode) {

// set up data

List<Pipeline> pipelines = new List<Pipeline>();

List<IModifier> branches = GetExecutableChildren(rootNode);

List<Primitive> prims = GetPrimitiveChildren(rootNode);

if (prims.Count>0) { // find primitives and start a pipeline

pipelines.Add( new Pipeline(prims));

}

foreach (IModifier modifier in branches) { // recurse

pipelines.AddAll( BuildPipelines(modifier));

}

foreach (Pipeline pipe in pipelines) { // extend pipelines

pipe.InsertStage(rootNode);

}

return pipelines;

}



Pipeline Execution

 The list of pipelines to execute is split upon 
their first modifier.

 The number of modifier which all the 
pipelines in each group share is found.

 Each such pipeline section is then sent to a 
ThreadPool for multi-threaded execution.

 On completion of a section the remaining 
pipelines are returned and split as above. 

 Care is taken of Batch modifiers and the 
signalling they require. 



NCalc Expression Evaluator

 Extensible open source C# expression 

evaluator library

 Multiple data types, delegate extensible 

function list & events to evaluate parameters 

& functions

 A mathematical context (variable to value 

mapping) flows through the pipeline 

http://www.codeplex.com/


Further Work (Simplicity)

 Interactive modelling!

 Integrate tools such as translate and scale 

into the DirectX renderer

 Automatic extension of the scene tree.

 Allow primitive drawing in DirectX renderer

 Methods of selecting primitives



Further Work (Unity)

 Move to 3d 

primitives & 

modifiers such  

extrude.

 This allows 

Constructive 

Solid Geometry 

(CSG)



Further Work (Unity)

 Shape Grammar 

 An LSystem but with graphical primitives

Pattern Production



Example: City Engine



Integration:



Further Work (Performance)

 Aggressive Threading:

 Multiple threads per pipeline section

 Work Splitting Algorithms for modifiers with 

large workloads (10,000 primitives +)

 Intelligent algorithms required! 



Further Work (Performance)

 Cuda – a C extension which runs on 

NVidia Tesla graphics cards, providing 

general purpose computing with 100x 

throughput of modern CPU’s

 240 “cores” support up to 30,000 

running threads.

http://www.nvidia.com/page/home.html


Further Work (Performance)
 Generate Meta Data of pipelines.

 Translate each modifier to C/Cuda code

 Aggressively threaded – one thread per 

primitive

 Execute multiple pipeline sections on the 

graphics 



Further Work (Performance)

 Active Semantic Caching:

 Cache executions along with the pipelines 
that generated them. 

 When a new execution is required and a 
similar execution is cached we can compute 
the extra stages and not the whole pipeline



Demos & Questions?

 Demos:
 Clock

 Helix

 Orchard 

 Marching Column

 Extra material:
 Composite Nodes

 Mathematical Scripting 

 Selection Channels

 Primitive Tagging

 Software Engineering

 Reflections on C# & .Net 3.5



Extra Material - Tagging

 Every primitive has a Tag attribute

 Every modifier has a Tag Test which 
dictates whether or not to apply the 
modifier to a given primitive. 

 All Tags and Tests are math expressions

 This allows semantic groupings of 
primitives. 

 There are Tag Changer nodes and Filter 
on Tag modifiers to facilitate this



Extra Material – Selection 

Channels (ClayWorks)

 Selection is made volumetrically via set 
operators on a number of convex hulls. 

 Sphere radius 5  on <0,0,0> UNION 
Sphere radius 5 on <10,50,5>

 The convex hulls are also passed 
through the pipelines and are acted 
upon.

 This avoids brittle selection which is 
broken when a user modifiers an earlier 
pipeline stage.



Software Engineering
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C# & LINQ

 Introduces Functional constructs into an 

imperative language:


