
Building your own C Toolkit

Duncan C. White,
d.white@imperial.ac.uk

Dept of Computing,
Imperial College London

31st May 2012

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 1 / 19

Introduction Why Toolkits?

When learning any new language, you go through several stages.

Once you’re competent in C - familiar with writing multi-module
programs using pointers (malloc() etc) and the standard library
(strcpy(), printf(), qsort() etc) - move to the next stage:

Like a carpenter, build your own toolkit of useful tools to make C
programming easier and more productive.

Sometimes you even need to build your own tools!

Principle: ruthless automation - when you find yourself doing
something boring and repetitive, especially for the second or third
time, think: can I automate it?

Today, I’d like to show you some of the tools in my toolkit,
hopefully they’ll be useful to you!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 2 / 19

Introduction Why Toolkits?

When learning any new language, you go through several stages.

Once you’re competent in C - familiar with writing multi-module
programs using pointers (malloc() etc) and the standard library
(strcpy(), printf(), qsort() etc) - move to the next stage:

Like a carpenter, build your own toolkit of useful tools to make C
programming easier and more productive.

Sometimes you even need to build your own tools!

Principle: ruthless automation - when you find yourself doing
something boring and repetitive, especially for the second or third
time, think: can I automate it?

Today, I’d like to show you some of the tools in my toolkit,
hopefully they’ll be useful to you!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 2 / 19

Introduction Why Toolkits?

When learning any new language, you go through several stages.

Once you’re competent in C - familiar with writing multi-module
programs using pointers (malloc() etc) and the standard library
(strcpy(), printf(), qsort() etc) - move to the next stage:

Like a carpenter, build your own toolkit of useful tools to make C
programming easier and more productive.

Sometimes you even need to build your own tools!

Principle: ruthless automation - when you find yourself doing
something boring and repetitive, especially for the second or third
time, think: can I automate it?

Today, I’d like to show you some of the tools in my toolkit,
hopefully they’ll be useful to you!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 2 / 19

Introduction Why Toolkits?

When learning any new language, you go through several stages.

Once you’re competent in C - familiar with writing multi-module
programs using pointers (malloc() etc) and the standard library
(strcpy(), printf(), qsort() etc) - move to the next stage:

Like a carpenter, build your own toolkit of useful tools to make C
programming easier and more productive.

Sometimes you even need to build your own tools!

Principle: ruthless automation - when you find yourself doing
something boring and repetitive, especially for the second or third
time, think: can I automate it?

Today, I’d like to show you some of the tools in my toolkit,
hopefully they’ll be useful to you!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 2 / 19

Introduction Why Toolkits?

When learning any new language, you go through several stages.

Once you’re competent in C - familiar with writing multi-module
programs using pointers (malloc() etc) and the standard library
(strcpy(), printf(), qsort() etc) - move to the next stage:

Like a carpenter, build your own toolkit of useful tools to make C
programming easier and more productive.

Sometimes you even need to build your own tools!

Principle: ruthless automation - when you find yourself doing
something boring and repetitive, especially for the second or third
time, think: can I automate it?

Today, I’d like to show you some of the tools in my toolkit,
hopefully they’ll be useful to you!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 2 / 19

Introduction Why Toolkits?

When learning any new language, you go through several stages.

Once you’re competent in C - familiar with writing multi-module
programs using pointers (malloc() etc) and the standard library
(strcpy(), printf(), qsort() etc) - move to the next stage:

Like a carpenter, build your own toolkit of useful tools to make C
programming easier and more productive.

Sometimes you even need to build your own tools!

Principle: ruthless automation - when you find yourself doing
something boring and repetitive, especially for the second or third
time, think: can I automate it?

Today, I’d like to show you some of the tools in my toolkit,
hopefully they’ll be useful to you!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 2 / 19

Introduction Contents

We’ll cover:

Basic Tools:

Programmer’s Editors: Use a single editor well.
Automating Compilation (reminder): Use Make.
Automating Testing: ruthless testing.
Debugging: Use a debugger and know it well.

Advanced Tools:

Generating prototypes automatically.
Fixing memory leaks.
Optimization and Profiling.
Generating ADT modules automatically.
Reusable ADT modules: hashes, sets, lists, trees etc.

I strongly recommend The Pragmatic Programmer (PP) book, by
Hunt & Thomas. The woodworking metaphor comes from there.

There’s a tarball of examples associated with this lecture, tarball
01.list refers to a directory inside the tarball. Each directory
contains a README file describing what’s in it in great detail.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 3 / 19

Introduction Contents

We’ll cover:

Basic Tools:

Programmer’s Editors: Use a single editor well.
Automating Compilation (reminder): Use Make.
Automating Testing: ruthless testing.
Debugging: Use a debugger and know it well.

Advanced Tools:

Generating prototypes automatically.
Fixing memory leaks.
Optimization and Profiling.

Generating ADT modules automatically.
Reusable ADT modules: hashes, sets, lists, trees etc.

I strongly recommend The Pragmatic Programmer (PP) book, by
Hunt & Thomas. The woodworking metaphor comes from there.

There’s a tarball of examples associated with this lecture, tarball
01.list refers to a directory inside the tarball. Each directory
contains a README file describing what’s in it in great detail.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 3 / 19

Introduction Contents

We’ll cover:

Basic Tools:

Programmer’s Editors: Use a single editor well.
Automating Compilation (reminder): Use Make.
Automating Testing: ruthless testing.
Debugging: Use a debugger and know it well.

Advanced Tools:

Generating prototypes automatically.
Fixing memory leaks.
Optimization and Profiling.
Generating ADT modules automatically.
Reusable ADT modules: hashes, sets, lists, trees etc.

I strongly recommend The Pragmatic Programmer (PP) book, by
Hunt & Thomas. The woodworking metaphor comes from there.

There’s a tarball of examples associated with this lecture, tarball
01.list refers to a directory inside the tarball. Each directory
contains a README file describing what’s in it in great detail.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 3 / 19

Introduction Contents

We’ll cover:

Basic Tools:

Programmer’s Editors: Use a single editor well.
Automating Compilation (reminder): Use Make.
Automating Testing: ruthless testing.
Debugging: Use a debugger and know it well.

Advanced Tools:

Generating prototypes automatically.
Fixing memory leaks.
Optimization and Profiling.
Generating ADT modules automatically.
Reusable ADT modules: hashes, sets, lists, trees etc.

I strongly recommend The Pragmatic Programmer (PP) book, by
Hunt & Thomas. The woodworking metaphor comes from there.

There’s a tarball of examples associated with this lecture, tarball
01.list refers to a directory inside the tarball. Each directory
contains a README file describing what’s in it in great detail.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 3 / 19

Introduction Contents

We’ll cover:

Basic Tools:

Programmer’s Editors: Use a single editor well.
Automating Compilation (reminder): Use Make.
Automating Testing: ruthless testing.
Debugging: Use a debugger and know it well.

Advanced Tools:

Generating prototypes automatically.
Fixing memory leaks.
Optimization and Profiling.
Generating ADT modules automatically.
Reusable ADT modules: hashes, sets, lists, trees etc.

I strongly recommend The Pragmatic Programmer (PP) book, by
Hunt & Thomas. The woodworking metaphor comes from there.

There’s a tarball of examples associated with this lecture, tarball
01.list refers to a directory inside the tarball. Each directory
contains a README file describing what’s in it in great detail.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 3 / 19

Basic Tools Programmer’s Editors: Use a Single Editor Well (PP tip 22)

Hunt & Thomas write:
The editor should be an extension of your hand; make
sure your editor is configurable, extensible and
programmable.

Not my business to tell you which editor to use; avoid editor wars.

IDEs such as Eclipse provide an editor, an automated compilation
system and a debugging environment. If you’re going to use an
IDE, invest time learning how to use it well, and how to extend
and program it.

I use vi, terse but powerful, extensible in several ways - eg.
macros and a “pipe through external command” mechanism.

Others like Emacs, very powerful and extensible. Like Eclipse,
Emacs can be a whole development environment.

Whichever editor you chose, after initial exploration of the
possibilities, stick to it, learn it thoroughly and become expert in
its use.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 4 / 19

Basic Tools Programmer’s Editors: Use a Single Editor Well (PP tip 22)

Hunt & Thomas write:
The editor should be an extension of your hand; make
sure your editor is configurable, extensible and
programmable.

Not my business to tell you which editor to use; avoid editor wars.

IDEs such as Eclipse provide an editor, an automated compilation
system and a debugging environment. If you’re going to use an
IDE, invest time learning how to use it well, and how to extend
and program it.

I use vi, terse but powerful, extensible in several ways - eg.
macros and a “pipe through external command” mechanism.

Others like Emacs, very powerful and extensible. Like Eclipse,
Emacs can be a whole development environment.

Whichever editor you chose, after initial exploration of the
possibilities, stick to it, learn it thoroughly and become expert in
its use.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 4 / 19

Basic Tools Programmer’s Editors: Use a Single Editor Well (PP tip 22)

Hunt & Thomas write:
The editor should be an extension of your hand; make
sure your editor is configurable, extensible and
programmable.

Not my business to tell you which editor to use; avoid editor wars.

IDEs such as Eclipse provide an editor, an automated compilation
system and a debugging environment. If you’re going to use an
IDE, invest time learning how to use it well, and how to extend
and program it.

I use vi, terse but powerful, extensible in several ways - eg.
macros and a “pipe through external command” mechanism.

Others like Emacs, very powerful and extensible. Like Eclipse,
Emacs can be a whole development environment.

Whichever editor you chose, after initial exploration of the
possibilities, stick to it, learn it thoroughly and become expert in
its use.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 4 / 19

Basic Tools Programmer’s Editors: Use a Single Editor Well (PP tip 22)

Hunt & Thomas write:
The editor should be an extension of your hand; make
sure your editor is configurable, extensible and
programmable.

Not my business to tell you which editor to use; avoid editor wars.

IDEs such as Eclipse provide an editor, an automated compilation
system and a debugging environment. If you’re going to use an
IDE, invest time learning how to use it well, and how to extend
and program it.

I use vi, terse but powerful, extensible in several ways - eg.
macros and a “pipe through external command” mechanism.

Others like Emacs, very powerful and extensible. Like Eclipse,
Emacs can be a whole development environment.

Whichever editor you chose, after initial exploration of the
possibilities, stick to it, learn it thoroughly and become expert in
its use.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 4 / 19

Basic Tools Automatic Compilation: Make (tarball 01.list)

When multi-file C programming, eg:

list.c

list.h

testlist.c

mainprog.c

defns.h

Many files:

Module list comprising two files
(interface list.h and impln list.c).

Test program testlist.c

Main program mainprog.c

Separate basic defns header file
defns.h.

Dependencies between the files
are vital, determined by the
#include structure:

list.c includes list.h (check
implmn vs interface).

testlist.c includes list.h

mainprog.c includes list.h
and defns.h

Make uses such file dependencies
to automatically compile your
programs. Details are covered in
another lecture.

Always use make. Keep your
Makefile up to date.

Exercise: why not auto
generate your Makefiles?

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 5 / 19

Basic Tools Testing: Test Early, Test Often, Test Automatically (PP Tip 62)

Hunt & Thomas write:
Tests that run with every build are much more effective
than test plans that sit on a shelf.

Test ruthlessly and automatically by building unit test programs
(one per module) plus overall program tests.

Add make test target to run the tests. Run them frequently.

Can run make test when you check a new version into git!

Test programs should check for correct results themselves
(essentially, hardcoding the correct answers in them).
make test could run all test programs in sequence:
test: testprogram1 testprogram2 ...

./testprogram1

./testprogram2

or invoke a test framework script with testprograms as arguments.
Exercise: add test target to 01.list to run the obvious ./testlist, or
./testlist|grep -v ok to only report failures.
Test Driven Development (TDD) writes the test programs before
implementing the feature to test.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 6 / 19

Basic Tools Testing: Test Early, Test Often, Test Automatically (PP Tip 62)

Hunt & Thomas write:
Tests that run with every build are much more effective
than test plans that sit on a shelf.

Test ruthlessly and automatically by building unit test programs
(one per module) plus overall program tests.

Add make test target to run the tests. Run them frequently.

Can run make test when you check a new version into git!

Test programs should check for correct results themselves
(essentially, hardcoding the correct answers in them).
make test could run all test programs in sequence:
test: testprogram1 testprogram2 ...

./testprogram1

./testprogram2

or invoke a test framework script with testprograms as arguments.
Exercise: add test target to 01.list to run the obvious ./testlist, or
./testlist|grep -v ok to only report failures.

Test Driven Development (TDD) writes the test programs before
implementing the feature to test.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 6 / 19

Basic Tools Testing: Test Early, Test Often, Test Automatically (PP Tip 62)

Hunt & Thomas write:
Tests that run with every build are much more effective
than test plans that sit on a shelf.

Test ruthlessly and automatically by building unit test programs
(one per module) plus overall program tests.

Add make test target to run the tests. Run them frequently.

Can run make test when you check a new version into git!

Test programs should check for correct results themselves
(essentially, hardcoding the correct answers in them).
make test could run all test programs in sequence:
test: testprogram1 testprogram2 ...

./testprogram1

./testprogram2

or invoke a test framework script with testprograms as arguments.
Exercise: add test target to 01.list to run the obvious ./testlist, or
./testlist|grep -v ok to only report failures.
Test Driven Development (TDD) writes the test programs before
implementing the feature to test.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 6 / 19

Basic Tools Debugging: Know a single debugger well (tarball 02.string-debug)

Suppose your program crashes or produces the wrong answers;
you want to debug it. Example in 02.string-debug.

Choose one debugger and know it well. I recommend gdb, the
GNU debugger, which works with C++ too:

Recompile all source code with gcc flag -g: set
CFLAGS = -Wall -g in your Makefile, then recompile everything
via make clean all.

Start gdb by gdb PROGRAMNAME. Inside gdb, type
run COMMANDLINEARGS. Work with your program until it crashes.

Back at the gdb prompt: type where to see the call frame stack
- the sequence of function calls leading to the crash.

frame N allows you to switch to the Nth function call on the
frame stack, i.e. select which of the function calls you want to
look at, in order to examine that function’s local variables.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 7 / 19

Basic Tools Debugging: Know a single debugger well (tarball 02.string-debug)

Suppose your program crashes or produces the wrong answers;
you want to debug it. Example in 02.string-debug.

Choose one debugger and know it well. I recommend gdb, the
GNU debugger, which works with C++ too:

Recompile all source code with gcc flag -g: set
CFLAGS = -Wall -g in your Makefile, then recompile everything
via make clean all.

Start gdb by gdb PROGRAMNAME. Inside gdb, type
run COMMANDLINEARGS. Work with your program until it crashes.

Back at the gdb prompt: type where to see the call frame stack
- the sequence of function calls leading to the crash.

frame N allows you to switch to the Nth function call on the
frame stack, i.e. select which of the function calls you want to
look at, in order to examine that function’s local variables.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 7 / 19

Basic Tools Debugging: Know a single debugger well (tarball 02.string-debug)

Suppose your program crashes or produces the wrong answers;
you want to debug it. Example in 02.string-debug.

Choose one debugger and know it well. I recommend gdb, the
GNU debugger, which works with C++ too:

Recompile all source code with gcc flag -g: set
CFLAGS = -Wall -g in your Makefile, then recompile everything
via make clean all.

Start gdb by gdb PROGRAMNAME. Inside gdb, type
run COMMANDLINEARGS. Work with your program until it crashes.

Back at the gdb prompt: type where to see the call frame stack
- the sequence of function calls leading to the crash.

frame N allows you to switch to the Nth function call on the
frame stack, i.e. select which of the function calls you want to
look at, in order to examine that function’s local variables.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 7 / 19

Basic Tools Debugging: Know a single debugger well (tarball 02.string-debug)

Suppose your program crashes or produces the wrong answers;
you want to debug it. Example in 02.string-debug.

Choose one debugger and know it well. I recommend gdb, the
GNU debugger, which works with C++ too:

Recompile all source code with gcc flag -g: set
CFLAGS = -Wall -g in your Makefile, then recompile everything
via make clean all.

Start gdb by gdb PROGRAMNAME. Inside gdb, type
run COMMANDLINEARGS. Work with your program until it crashes.

Back at the gdb prompt: type where to see the call frame stack
- the sequence of function calls leading to the crash.

frame N allows you to switch to the Nth function call on the
frame stack, i.e. select which of the function calls you want to
look at, in order to examine that function’s local variables.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 7 / 19

Basic Tools Debugging: Know a single debugger well (tarball 02.string-debug)

Suppose your program crashes or produces the wrong answers;
you want to debug it. Example in 02.string-debug.

Choose one debugger and know it well. I recommend gdb, the
GNU debugger, which works with C++ too:

Recompile all source code with gcc flag -g: set
CFLAGS = -Wall -g in your Makefile, then recompile everything
via make clean all.

Start gdb by gdb PROGRAMNAME. Inside gdb, type
run COMMANDLINEARGS. Work with your program until it crashes.

Back at the gdb prompt: type where to see the call frame stack
- the sequence of function calls leading to the crash.

frame N allows you to switch to the Nth function call on the
frame stack, i.e. select which of the function calls you want to
look at, in order to examine that function’s local variables.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 7 / 19

Basic Tools Debugging: Know a single debugger well (tarball 02.string-debug)

list will list 10 lines of the current function.

p EXPR will print any C expression, including global variables and
local variables in the current stack frame.

whatis VAR displays the type of VAR.

x is a flexible memory dumper. x/12c &str would print out the
first 12 bytes of data from str in ASCII, 12xb as hexadecimal
etc. help x (inside gdb) for more info.

You can also set breakpoints (break LINENO|FUNCTIONNAME),
attach conditions on the breakpoints, single step through your
program (step and next), continue until you hit another
breakpoint (cont), and even watch variables as they are altered
or accessed (watch, rwatch).

Google for gdb tutorial for more info.

Most important, leave gdb by quit.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 8 / 19

Basic Tools Debugging: Know a single debugger well (tarball 02.string-debug)

list will list 10 lines of the current function.

p EXPR will print any C expression, including global variables and
local variables in the current stack frame.

whatis VAR displays the type of VAR.

x is a flexible memory dumper. x/12c &str would print out the
first 12 bytes of data from str in ASCII, 12xb as hexadecimal
etc. help x (inside gdb) for more info.

You can also set breakpoints (break LINENO|FUNCTIONNAME),
attach conditions on the breakpoints, single step through your
program (step and next), continue until you hit another
breakpoint (cont), and even watch variables as they are altered
or accessed (watch, rwatch).

Google for gdb tutorial for more info.

Most important, leave gdb by quit.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 8 / 19

Advanced Tools Generating Prototypes Automatically: proto (tarball 03.proto)

Irritating C problem: keeping the prototype declarations in
interfaces (.h files) in sync with the function definitions in the
implementation (.c files).

Whenever you add a public function to list.c you need to
remember to add the corresponding prototype to list.h.

Even adding or removing parameters to existing functions means
you need to make a corresponding change in the prototype too.

Don’t live with broken windows (PP tip 4) - write a tool to do
the work, then integrate it into your editor for convenience!

Years ago, I wrote proto - a tool to solve this. It reads a C file
looking for function definitions, and produces a prototype for
each function. LIMITATION: whole function heading on one line.

Then I wrote a vi macro bound to an unused key that piped the
next paragraph into proto % (current filename). Can do same for
forward declarations of static functions using proto -s %.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 9 / 19

Advanced Tools Generating Prototypes Automatically: proto (tarball 03.proto)

Irritating C problem: keeping the prototype declarations in
interfaces (.h files) in sync with the function definitions in the
implementation (.c files).

Whenever you add a public function to list.c you need to
remember to add the corresponding prototype to list.h.

Even adding or removing parameters to existing functions means
you need to make a corresponding change in the prototype too.

Don’t live with broken windows (PP tip 4) - write a tool to do
the work, then integrate it into your editor for convenience!

Years ago, I wrote proto - a tool to solve this. It reads a C file
looking for function definitions, and produces a prototype for
each function. LIMITATION: whole function heading on one line.

Then I wrote a vi macro bound to an unused key that piped the
next paragraph into proto % (current filename). Can do same for
forward declarations of static functions using proto -s %.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 9 / 19

Advanced Tools Generating Prototypes Automatically: proto (tarball 03.proto)

Irritating C problem: keeping the prototype declarations in
interfaces (.h files) in sync with the function definitions in the
implementation (.c files).

Whenever you add a public function to list.c you need to
remember to add the corresponding prototype to list.h.

Even adding or removing parameters to existing functions means
you need to make a corresponding change in the prototype too.

Don’t live with broken windows (PP tip 4) - write a tool to do
the work, then integrate it into your editor for convenience!

Years ago, I wrote proto - a tool to solve this. It reads a C file
looking for function definitions, and produces a prototype for
each function. LIMITATION: whole function heading on one line.

Then I wrote a vi macro bound to an unused key that piped the
next paragraph into proto % (current filename). Can do same for
forward declarations of static functions using proto -s %.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 9 / 19

Advanced Tools Generating Prototypes Automatically: proto (tarball 03.proto)

Irritating C problem: keeping the prototype declarations in
interfaces (.h files) in sync with the function definitions in the
implementation (.c files).

Whenever you add a public function to list.c you need to
remember to add the corresponding prototype to list.h.

Even adding or removing parameters to existing functions means
you need to make a corresponding change in the prototype too.

Don’t live with broken windows (PP tip 4) - write a tool to do
the work, then integrate it into your editor for convenience!

Years ago, I wrote proto - a tool to solve this. It reads a C file
looking for function definitions, and produces a prototype for
each function. LIMITATION: whole function heading on one line.

Then I wrote a vi macro bound to an unused key that piped the
next paragraph into proto % (current filename). Can do same for
forward declarations of static functions using proto -s %.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 9 / 19

Advanced Tools Generating Prototypes Automatically: proto (tarball 03.proto)

Irritating C problem: keeping the prototype declarations in
interfaces (.h files) in sync with the function definitions in the
implementation (.c files).

Whenever you add a public function to list.c you need to
remember to add the corresponding prototype to list.h.

Even adding or removing parameters to existing functions means
you need to make a corresponding change in the prototype too.

Don’t live with broken windows (PP tip 4) - write a tool to do
the work, then integrate it into your editor for convenience!

Years ago, I wrote proto - a tool to solve this. It reads a C file
looking for function definitions, and produces a prototype for
each function. LIMITATION: whole function heading on one line.

Then I wrote a vi macro bound to an unused key that piped the
next paragraph into proto % (current filename). Can do same for
forward declarations of static functions using proto -s %.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 9 / 19

Advanced Tools Generating Prototypes Automatically: proto (tarball 03.proto)

Irritating C problem: keeping the prototype declarations in
interfaces (.h files) in sync with the function definitions in the
implementation (.c files).

Whenever you add a public function to list.c you need to
remember to add the corresponding prototype to list.h.

Even adding or removing parameters to existing functions means
you need to make a corresponding change in the prototype too.

Don’t live with broken windows (PP tip 4) - write a tool to do
the work, then integrate it into your editor for convenience!

Years ago, I wrote proto - a tool to solve this. It reads a C file
looking for function definitions, and produces a prototype for
each function. LIMITATION: whole function heading on one line.

Then I wrote a vi macro bound to an unused key that piped the
next paragraph into proto % (current filename). Can do same for
forward declarations of static functions using proto -s %.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 9 / 19

Advanced Tools Fixing memory leaks: libmem (tarball 04.libmem/05.mem-eg)

Memory leaks are the most serious C problem:

Often claimed that 99% of serious C bugs are memory-allocation
related. C uses pointers and malloc() so much, with so little
checking, that debugging memory related problems can be
challenging even with gdb.

Failing to free() what you malloc() is very bad for long running
programs, that continuously modify their data structures.

free()ing a block twice is equally dangerous.

derefencing an uninitialized/reclaimed pointer gives
non-deterministic behaviour (really hard to debug!).

Segmentation faults - gdb where (frame stack) may show it
crashes in system libraries.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 10 / 19

Advanced Tools Fixing memory leaks: libmem (tarball 04.libmem/05.mem-eg)

Memory leaks are the most serious C problem:

Often claimed that 99% of serious C bugs are memory-allocation
related. C uses pointers and malloc() so much, with so little
checking, that debugging memory related problems can be
challenging even with gdb.

Failing to free() what you malloc() is very bad for long running
programs, that continuously modify their data structures.

free()ing a block twice is equally dangerous.

derefencing an uninitialized/reclaimed pointer gives
non-deterministic behaviour (really hard to debug!).

Segmentation faults - gdb where (frame stack) may show it
crashes in system libraries.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 10 / 19

Advanced Tools Fixing memory leaks: libmem (tarball 04.libmem/05.mem-eg)

Memory leaks are the most serious C problem:

Often claimed that 99% of serious C bugs are memory-allocation
related. C uses pointers and malloc() so much, with so little
checking, that debugging memory related problems can be
challenging even with gdb.

Failing to free() what you malloc() is very bad for long running
programs, that continuously modify their data structures.

free()ing a block twice is equally dangerous.

derefencing an uninitialized/reclaimed pointer gives
non-deterministic behaviour (really hard to debug!).

Segmentation faults - gdb where (frame stack) may show it
crashes in system libraries.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 10 / 19

Advanced Tools Fixing memory leaks: libmem (tarball 04.libmem/05.mem-eg)

Memory leaks are the most serious C problem:

Often claimed that 99% of serious C bugs are memory-allocation
related. C uses pointers and malloc() so much, with so little
checking, that debugging memory related problems can be
challenging even with gdb.

Failing to free() what you malloc() is very bad for long running
programs, that continuously modify their data structures.

free()ing a block twice is equally dangerous.

derefencing an uninitialized/reclaimed pointer gives
non-deterministic behaviour (really hard to debug!).

Segmentation faults - gdb where (frame stack) may show it
crashes in system libraries.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 10 / 19

Advanced Tools Fixing memory leaks: libmem (tarball 04.libmem/05.mem-eg)

Memory leaks are the most serious C problem:

Often claimed that 99% of serious C bugs are memory-allocation
related. C uses pointers and malloc() so much, with so little
checking, that debugging memory related problems can be
challenging even with gdb.

Failing to free() what you malloc() is very bad for long running
programs, that continuously modify their data structures.

free()ing a block twice is equally dangerous.

derefencing an uninitialized/reclaimed pointer gives
non-deterministic behaviour (really hard to debug!).

Segmentation faults - gdb where (frame stack) may show it
crashes in system libraries.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 10 / 19

Advanced Tools Fixing memory leaks: libmem (tarball 04.libmem/05.mem-eg)

Why can’t the system diagnose these?

There are several tools that can - Electric Fence and
valgrind/memcheck among them.

Here’s a homebrew alternative: the August 1990 Dr Dobbs
Journal provided libmem, a very simple C module which uses the
C pre-processor to redefine malloc(), free(), exit() etc to add
extra checking.

Let’s see it in action:

First install libmem from tarball directory 04.libmem
Now go into tarball directory 05.mem-eg, 2 test programs.
make and run the programs without libmem.
Add #include <mem.h> to both .c files
Add -lmem to LDLIBS in Makefile
Rebuild using make clean all

Run the two examples now!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 11 / 19

Advanced Tools Fixing memory leaks: libmem (tarball 04.libmem/05.mem-eg)

Why can’t the system diagnose these?

There are several tools that can - Electric Fence and
valgrind/memcheck among them.

Here’s a homebrew alternative: the August 1990 Dr Dobbs
Journal provided libmem, a very simple C module which uses the
C pre-processor to redefine malloc(), free(), exit() etc to add
extra checking.

Let’s see it in action:

First install libmem from tarball directory 04.libmem
Now go into tarball directory 05.mem-eg, 2 test programs.
make and run the programs without libmem.
Add #include <mem.h> to both .c files
Add -lmem to LDLIBS in Makefile
Rebuild using make clean all

Run the two examples now!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 11 / 19

Advanced Tools Fixing memory leaks: libmem (tarball 04.libmem/05.mem-eg)

Why can’t the system diagnose these?

There are several tools that can - Electric Fence and
valgrind/memcheck among them.

Here’s a homebrew alternative: the August 1990 Dr Dobbs
Journal provided libmem, a very simple C module which uses the
C pre-processor to redefine malloc(), free(), exit() etc to add
extra checking.

Let’s see it in action:

First install libmem from tarball directory 04.libmem

Now go into tarball directory 05.mem-eg, 2 test programs.
make and run the programs without libmem.
Add #include <mem.h> to both .c files
Add -lmem to LDLIBS in Makefile
Rebuild using make clean all

Run the two examples now!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 11 / 19

Advanced Tools Fixing memory leaks: libmem (tarball 04.libmem/05.mem-eg)

Why can’t the system diagnose these?

There are several tools that can - Electric Fence and
valgrind/memcheck among them.

Here’s a homebrew alternative: the August 1990 Dr Dobbs
Journal provided libmem, a very simple C module which uses the
C pre-processor to redefine malloc(), free(), exit() etc to add
extra checking.

Let’s see it in action:

First install libmem from tarball directory 04.libmem
Now go into tarball directory 05.mem-eg, 2 test programs.
make and run the programs without libmem.

Add #include <mem.h> to both .c files
Add -lmem to LDLIBS in Makefile
Rebuild using make clean all

Run the two examples now!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 11 / 19

Advanced Tools Fixing memory leaks: libmem (tarball 04.libmem/05.mem-eg)

Why can’t the system diagnose these?

There are several tools that can - Electric Fence and
valgrind/memcheck among them.

Here’s a homebrew alternative: the August 1990 Dr Dobbs
Journal provided libmem, a very simple C module which uses the
C pre-processor to redefine malloc(), free(), exit() etc to add
extra checking.

Let’s see it in action:

First install libmem from tarball directory 04.libmem
Now go into tarball directory 05.mem-eg, 2 test programs.
make and run the programs without libmem.
Add #include <mem.h> to both .c files
Add -lmem to LDLIBS in Makefile

Rebuild using make clean all

Run the two examples now!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 11 / 19

Advanced Tools Fixing memory leaks: libmem (tarball 04.libmem/05.mem-eg)

Why can’t the system diagnose these?

There are several tools that can - Electric Fence and
valgrind/memcheck among them.

Here’s a homebrew alternative: the August 1990 Dr Dobbs
Journal provided libmem, a very simple C module which uses the
C pre-processor to redefine malloc(), free(), exit() etc to add
extra checking.

Let’s see it in action:

First install libmem from tarball directory 04.libmem
Now go into tarball directory 05.mem-eg, 2 test programs.
make and run the programs without libmem.
Add #include <mem.h> to both .c files
Add -lmem to LDLIBS in Makefile
Rebuild using make clean all

Run the two examples now!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 11 / 19

Advanced Tools Large-scale leaks: (tarball 06.badhash/07.badhash+mem)

Suppose we have a pre-written, pre-tested hash table module.
Passes all tests (creating, populating, finding, iterating over,
freeing a single hash table). Pretty confident that it works!

But we haven’t checked it with libmem yet!

When we embed it in a larger system, we’ll create, populate and
destroy whole hash tables thousands of times.

Voice of bitter experience: Test that scenario before doing it:-)

New test program iterate N M that (silently) performs all
previous tests N times, sleeping M seconds afterwards.

Behaviour should be linear with N. Test it with
time ./iterate N 0 for several values of N, graph results.

Find dramatic non-linear behaviour around 6-7k iterations on
some older lab machines: Twice as slow, CPU %age falls, starts
doing I/O.

What’s happening?

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 12 / 19

Advanced Tools Large-scale leaks: (tarball 06.badhash/07.badhash+mem)

Suppose we have a pre-written, pre-tested hash table module.
Passes all tests (creating, populating, finding, iterating over,
freeing a single hash table). Pretty confident that it works!

But we haven’t checked it with libmem yet!

When we embed it in a larger system, we’ll create, populate and
destroy whole hash tables thousands of times.

Voice of bitter experience: Test that scenario before doing it:-)

New test program iterate N M that (silently) performs all
previous tests N times, sleeping M seconds afterwards.

Behaviour should be linear with N. Test it with
time ./iterate N 0 for several values of N, graph results.

Find dramatic non-linear behaviour around 6-7k iterations on
some older lab machines: Twice as slow, CPU %age falls, starts
doing I/O.

What’s happening?

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 12 / 19

Advanced Tools Large-scale leaks: (tarball 06.badhash/07.badhash+mem)

Suppose we have a pre-written, pre-tested hash table module.
Passes all tests (creating, populating, finding, iterating over,
freeing a single hash table). Pretty confident that it works!

But we haven’t checked it with libmem yet!

When we embed it in a larger system, we’ll create, populate and
destroy whole hash tables thousands of times.

Voice of bitter experience: Test that scenario before doing it:-)

New test program iterate N M that (silently) performs all
previous tests N times, sleeping M seconds afterwards.

Behaviour should be linear with N. Test it with
time ./iterate N 0 for several values of N, graph results.

Find dramatic non-linear behaviour around 6-7k iterations on
some older lab machines: Twice as slow, CPU %age falls, starts
doing I/O.

What’s happening?

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 12 / 19

Advanced Tools Large-scale leaks: (tarball 06.badhash/07.badhash+mem)

Suppose we have a pre-written, pre-tested hash table module.
Passes all tests (creating, populating, finding, iterating over,
freeing a single hash table). Pretty confident that it works!

But we haven’t checked it with libmem yet!

When we embed it in a larger system, we’ll create, populate and
destroy whole hash tables thousands of times.

Voice of bitter experience: Test that scenario before doing it:-)

New test program iterate N M that (silently) performs all
previous tests N times, sleeping M seconds afterwards.

Behaviour should be linear with N. Test it with
time ./iterate N 0 for several values of N, graph results.

Find dramatic non-linear behaviour around 6-7k iterations on
some older lab machines: Twice as slow, CPU %age falls, starts
doing I/O.

What’s happening?

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 12 / 19

Advanced Tools Large-scale leaks: (tarball 06.badhash/07.badhash+mem)

Try monitoring with top, configured to update every minute (d
1), sort by %age of memory (O n). Write this config out (W).

Run iterate with a time delay: time ./iterate 8000 10 and
watch top! iterate’s memory grows bigger than the physical
memory, tops out at about 85% of physical memory, the system
starts swapping (%wait goes busy), machine goes very slow!

A job for libmem: Find the details in 07.badhash+mem’s
README, but in summary libmem enables us to track down a
missing free() pretty easily.

Conclusion: compile everything with libmem from day one. Save
yourself loads of grief, double your confidence.

Exercise: verify that the list example (in 01.list) runs cleanly with
libmem. (Import CFLAGS and LDLIBS from 05.mem-eg’s
Makefile).

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 13 / 19

Advanced Tools Large-scale leaks: (tarball 06.badhash/07.badhash+mem)

Try monitoring with top, configured to update every minute (d
1), sort by %age of memory (O n). Write this config out (W).

Run iterate with a time delay: time ./iterate 8000 10 and
watch top! iterate’s memory grows bigger than the physical
memory, tops out at about 85% of physical memory, the system
starts swapping (%wait goes busy), machine goes very slow!

A job for libmem: Find the details in 07.badhash+mem’s
README, but in summary libmem enables us to track down a
missing free() pretty easily.

Conclusion: compile everything with libmem from day one. Save
yourself loads of grief, double your confidence.

Exercise: verify that the list example (in 01.list) runs cleanly with
libmem. (Import CFLAGS and LDLIBS from 05.mem-eg’s
Makefile).

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 13 / 19

Advanced Tools Large-scale leaks: (tarball 06.badhash/07.badhash+mem)

Try monitoring with top, configured to update every minute (d
1), sort by %age of memory (O n). Write this config out (W).

Run iterate with a time delay: time ./iterate 8000 10 and
watch top! iterate’s memory grows bigger than the physical
memory, tops out at about 85% of physical memory, the system
starts swapping (%wait goes busy), machine goes very slow!

A job for libmem: Find the details in 07.badhash+mem’s
README, but in summary libmem enables us to track down a
missing free() pretty easily.

Conclusion: compile everything with libmem from day one. Save
yourself loads of grief, double your confidence.

Exercise: verify that the list example (in 01.list) runs cleanly with
libmem. (Import CFLAGS and LDLIBS from 05.mem-eg’s
Makefile).

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 13 / 19

Advanced Tools Large-scale leaks: (tarball 06.badhash/07.badhash+mem)

Try monitoring with top, configured to update every minute (d
1), sort by %age of memory (O n). Write this config out (W).

Run iterate with a time delay: time ./iterate 8000 10 and
watch top! iterate’s memory grows bigger than the physical
memory, tops out at about 85% of physical memory, the system
starts swapping (%wait goes busy), machine goes very slow!

A job for libmem: Find the details in 07.badhash+mem’s
README, but in summary libmem enables us to track down a
missing free() pretty easily.

Conclusion: compile everything with libmem from day one. Save
yourself loads of grief, double your confidence.

Exercise: verify that the list example (in 01.list) runs cleanly with
libmem. (Import CFLAGS and LDLIBS from 05.mem-eg’s
Makefile).

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 13 / 19

Advanced Tools Optimization and Profiling (tarball 08.hash-profile)

gcc and most other C compilers can be asked to optimize the
code they generate, gcc’s option for this is -O. This is worth
trying, but doesn’t often make a significant difference.

What makes far more difference is finding the hot spots using a
profiler and selectively optimizing the hot spots. Can produce
dramatic speedups, and profiling often produces surprises.

Compile and link with -pg, which generates instrumented code
which, when run, produces a binary profiling data file. The tool
gprof then relates the data file to the executable and produces a
report showing the top 10 functions (across all their calls) sorted
by percentage of total runtime.

Let’s try profiling the bugfixed hash module’s iterate test
program, and see what surprises there may be.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 14 / 19

Advanced Tools Optimization and Profiling (tarball 08.hash-profile)

gcc and most other C compilers can be asked to optimize the
code they generate, gcc’s option for this is -O. This is worth
trying, but doesn’t often make a significant difference.

What makes far more difference is finding the hot spots using a
profiler and selectively optimizing the hot spots. Can produce
dramatic speedups, and profiling often produces surprises.

Compile and link with -pg, which generates instrumented code
which, when run, produces a binary profiling data file. The tool
gprof then relates the data file to the executable and produces a
report showing the top 10 functions (across all their calls) sorted
by percentage of total runtime.

Let’s try profiling the bugfixed hash module’s iterate test
program, and see what surprises there may be.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 14 / 19

Advanced Tools Optimization and Profiling (tarball 08.hash-profile)

gcc and most other C compilers can be asked to optimize the
code they generate, gcc’s option for this is -O. This is worth
trying, but doesn’t often make a significant difference.

What makes far more difference is finding the hot spots using a
profiler and selectively optimizing the hot spots. Can produce
dramatic speedups, and profiling often produces surprises.

Compile and link with -pg, which generates instrumented code
which, when run, produces a binary profiling data file. The tool
gprof then relates the data file to the executable and produces a
report showing the top 10 functions (across all their calls) sorted
by percentage of total runtime.

Let’s try profiling the bugfixed hash module’s iterate test
program, and see what surprises there may be.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 14 / 19

Advanced Tools Optimization and Profiling (tarball 08.hash-profile)

gcc and most other C compilers can be asked to optimize the
code they generate, gcc’s option for this is -O. This is worth
trying, but doesn’t often make a significant difference.

What makes far more difference is finding the hot spots using a
profiler and selectively optimizing the hot spots. Can produce
dramatic speedups, and profiling often produces surprises.

Compile and link with -pg, which generates instrumented code
which, when run, produces a binary profiling data file. The tool
gprof then relates the data file to the executable and produces a
report showing the top 10 functions (across all their calls) sorted
by percentage of total runtime.

Let’s try profiling the bugfixed hash module’s iterate test
program, and see what surprises there may be.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 14 / 19

Advanced Tools Optimization and Profiling (tarball 08.hash-profile)

Profiling iterate 10000 gives the following table:

% cumul self self total

time seconds seconds calls us/call us/call name

38.71 3.37 3.37 20000 168.37 206.96 hashFree

22.92 5.36 1.99 10000 199.44 289.14 hashCopy

11.29 6.34 0.98 10000 98.22 98.22 hashCreate

10.31 7.24 0.90 325330000 0.00 0.00 copy_tree

8.87 8.01 0.77 650660000 0.00 0.00 free_tree

650 million calls to free tree and 325 million calls to copy tree are highly
suspicious. Aha! The hash table’s array of trees has 32533 entries!

hashFree and hashCopy have the same structure, iterating over the
array of trees making one call to free tree/copy tree per tree. The vast
majority of these trees are empty.

We double the speed of iterate by adding if(the tree != NULL)
conditions on tree calls in hashFree, hashCopy and others.

We might also consider shrinking the size of the array of trees to some
smaller prime number - or, more radically, adding code to dynamically
resize the array (and rehash all the keys?) while in flight.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 15 / 19

Advanced Tools Optimization and Profiling (tarball 08.hash-profile)

Profiling iterate 10000 gives the following table:

% cumul self self total

time seconds seconds calls us/call us/call name

38.71 3.37 3.37 20000 168.37 206.96 hashFree

22.92 5.36 1.99 10000 199.44 289.14 hashCopy

11.29 6.34 0.98 10000 98.22 98.22 hashCreate

10.31 7.24 0.90 325330000 0.00 0.00 copy_tree

8.87 8.01 0.77 650660000 0.00 0.00 free_tree

650 million calls to free tree and 325 million calls to copy tree are highly
suspicious. Aha! The hash table’s array of trees has 32533 entries!

hashFree and hashCopy have the same structure, iterating over the
array of trees making one call to free tree/copy tree per tree. The vast
majority of these trees are empty.

We double the speed of iterate by adding if(the tree != NULL)
conditions on tree calls in hashFree, hashCopy and others.

We might also consider shrinking the size of the array of trees to some
smaller prime number - or, more radically, adding code to dynamically
resize the array (and rehash all the keys?) while in flight.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 15 / 19

Advanced Tools Optimization and Profiling (tarball 08.hash-profile)

Profiling iterate 10000 gives the following table:

% cumul self self total

time seconds seconds calls us/call us/call name

38.71 3.37 3.37 20000 168.37 206.96 hashFree

22.92 5.36 1.99 10000 199.44 289.14 hashCopy

11.29 6.34 0.98 10000 98.22 98.22 hashCreate

10.31 7.24 0.90 325330000 0.00 0.00 copy_tree

8.87 8.01 0.77 650660000 0.00 0.00 free_tree

650 million calls to free tree and 325 million calls to copy tree are highly
suspicious. Aha! The hash table’s array of trees has 32533 entries!

hashFree and hashCopy have the same structure, iterating over the
array of trees making one call to free tree/copy tree per tree. The vast
majority of these trees are empty.

We double the speed of iterate by adding if(the tree != NULL)
conditions on tree calls in hashFree, hashCopy and others.

We might also consider shrinking the size of the array of trees to some
smaller prime number - or, more radically, adding code to dynamically
resize the array (and rehash all the keys?) while in flight.

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 15 / 19

Advanced Tools Autogenerating ADTs: datadec (09.datadec/10.datadec-eg)

Principle: It’s often an excellent idea to import cool features
from other languages.

For example, Perl teaches us the importance of hashes (aka Java
dictionaries) - (key,value) storage implemented using hash tables.
We’ve already seen a hash module bring this ability to C.

Many years ago, I realised that one of the best features of
functional programming languages such as Haskell is the ability
to define recursive shaped data types, as in:

intlist = nil or cons(int head, intlist tail);

I’d dearly love to have that ability in C. If only there was a tool
that reads such type definitions and automatically writes a C
module that implements them..

I looked around, couldn’t find anything anywhere. Noone but me
seemed to have ever thought that such a tool might even be
useful!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 16 / 19

Advanced Tools Autogenerating ADTs: datadec (09.datadec/10.datadec-eg)

Principle: It’s often an excellent idea to import cool features
from other languages.

For example, Perl teaches us the importance of hashes (aka Java
dictionaries) - (key,value) storage implemented using hash tables.
We’ve already seen a hash module bring this ability to C.

Many years ago, I realised that one of the best features of
functional programming languages such as Haskell is the ability
to define recursive shaped data types, as in:

intlist = nil or cons(int head, intlist tail);

I’d dearly love to have that ability in C. If only there was a tool
that reads such type definitions and automatically writes a C
module that implements them..

I looked around, couldn’t find anything anywhere. Noone but me
seemed to have ever thought that such a tool might even be
useful!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 16 / 19

Advanced Tools Autogenerating ADTs: datadec (09.datadec/10.datadec-eg)

Principle: It’s often an excellent idea to import cool features
from other languages.

For example, Perl teaches us the importance of hashes (aka Java
dictionaries) - (key,value) storage implemented using hash tables.
We’ve already seen a hash module bring this ability to C.

Many years ago, I realised that one of the best features of
functional programming languages such as Haskell is the ability
to define recursive shaped data types, as in:

intlist = nil or cons(int head, intlist tail);

I’d dearly love to have that ability in C. If only there was a tool
that reads such type definitions and automatically writes a C
module that implements them..

I looked around, couldn’t find anything anywhere. Noone but me
seemed to have ever thought that such a tool might even be
useful!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 16 / 19

Advanced Tools Autogenerating ADTs: datadec (09.datadec/10.datadec-eg)

So I wrote one! A week or two’s work one summer, the result
was datadec - in the 09.datadec directory, also installed on DoC
linux machines. After installing it, use it as follows:

In 10.datadec-eg you’ll find an input file types.in containing:

TYPE {

intlist = nil or cons(int first, intlist next);

illist = nil or cons(intlist first, illist next);

idtree = leaf(string id)

or node(idtree left, idtree right);

}

To generate a C module called datatypes from types.in, invoke:

datadec datatypes types.in

datatypes.c and datatypes.h are normal C files, write test programs
against their interfaces, use them. Don’t modify them!

But you can modify the input file - suppose you realise that an idtree
leaf needs two strings not one. Simply change the type defn and rerun
datadec. Now the idtree_leaf() constructor takes two arguments
not one!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 17 / 19

Advanced Tools Autogenerating ADTs: datadec (09.datadec/10.datadec-eg)

So I wrote one! A week or two’s work one summer, the result
was datadec - in the 09.datadec directory, also installed on DoC
linux machines. After installing it, use it as follows:

In 10.datadec-eg you’ll find an input file types.in containing:

TYPE {

intlist = nil or cons(int first, intlist next);

illist = nil or cons(intlist first, illist next);

idtree = leaf(string id)

or node(idtree left, idtree right);

}

To generate a C module called datatypes from types.in, invoke:

datadec datatypes types.in

datatypes.c and datatypes.h are normal C files, write test programs
against their interfaces, use them. Don’t modify them!

But you can modify the input file - suppose you realise that an idtree
leaf needs two strings not one. Simply change the type defn and rerun
datadec. Now the idtree_leaf() constructor takes two arguments
not one!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 17 / 19

Advanced Tools Reusable ADT modules: hashs, lists, trees, sets etc

Whether generated by datadec or written by hand, most
problems are made a lot easier by a library of trusted modules:

indefinite length dynamic strings
indefinite length dynamic arrays
linked lists (single or double linked)
queues and priority queues
binary trees
hashes
sets - hashes with no values? trees? sparse arrays?
bags - frequency hashes
anything else you find useful (.ini file parsers? test frameworks?)

The C standard library fails to provide any of these (C++
provides the Standard Template Library of course).

So build them yourself as and when you need them, and reuse
them at every opportunity, to raise C to a higher level!

Reuse can be done without object orientation, it’s not hard!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 18 / 19

Advanced Tools Reusable ADT modules: hashs, lists, trees, sets etc

Whether generated by datadec or written by hand, most
problems are made a lot easier by a library of trusted modules:

indefinite length dynamic strings
indefinite length dynamic arrays
linked lists (single or double linked)
queues and priority queues
binary trees
hashes
sets - hashes with no values? trees? sparse arrays?
bags - frequency hashes
anything else you find useful (.ini file parsers? test frameworks?)

The C standard library fails to provide any of these (C++
provides the Standard Template Library of course).

So build them yourself as and when you need them, and reuse
them at every opportunity, to raise C to a higher level!

Reuse can be done without object orientation, it’s not hard!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 18 / 19

Advanced Tools Reusable ADT modules: hashs, lists, trees, sets etc

Whether generated by datadec or written by hand, most
problems are made a lot easier by a library of trusted modules:

indefinite length dynamic strings
indefinite length dynamic arrays
linked lists (single or double linked)
queues and priority queues
binary trees
hashes
sets - hashes with no values? trees? sparse arrays?
bags - frequency hashes
anything else you find useful (.ini file parsers? test frameworks?)

The C standard library fails to provide any of these (C++
provides the Standard Template Library of course).

So build them yourself as and when you need them, and reuse
them at every opportunity, to raise C to a higher level!

Reuse can be done without object orientation, it’s not hard!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 18 / 19

Summary Everyone needs their toolkit!

Grow your C skills by building a powerful toolkit that makes C
programming simpler.

Choose tools you like; become an expert in each one.

When necessary, build tools yourself. Don’t be afraid!

I didn’t mention: lexical analysers (lex/flex), parser generators
(yacc/bison); regular expression libraries; all the things you can
do with function pointers; defining little languages; text
processing tools; OO programming in C etc etc.

These slides and the C-tools tarball are available at

http://www.doc.ic.ac.uk/~dcw/c-tools/

Most importantly: enjoy your C programming! Build your
toolbox - and let me know if you write any particularly cool tools!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 19 / 19

Summary Everyone needs their toolkit!

Grow your C skills by building a powerful toolkit that makes C
programming simpler.

Choose tools you like; become an expert in each one.

When necessary, build tools yourself. Don’t be afraid!

I didn’t mention: lexical analysers (lex/flex), parser generators
(yacc/bison); regular expression libraries; all the things you can
do with function pointers; defining little languages; text
processing tools; OO programming in C etc etc.

These slides and the C-tools tarball are available at

http://www.doc.ic.ac.uk/~dcw/c-tools/

Most importantly: enjoy your C programming! Build your
toolbox - and let me know if you write any particularly cool tools!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 19 / 19

Summary Everyone needs their toolkit!

Grow your C skills by building a powerful toolkit that makes C
programming simpler.

Choose tools you like; become an expert in each one.

When necessary, build tools yourself. Don’t be afraid!

I didn’t mention: lexical analysers (lex/flex), parser generators
(yacc/bison); regular expression libraries; all the things you can
do with function pointers; defining little languages; text
processing tools; OO programming in C etc etc.

These slides and the C-tools tarball are available at

http://www.doc.ic.ac.uk/~dcw/c-tools/

Most importantly: enjoy your C programming! Build your
toolbox - and let me know if you write any particularly cool tools!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 19 / 19

Summary Everyone needs their toolkit!

Grow your C skills by building a powerful toolkit that makes C
programming simpler.

Choose tools you like; become an expert in each one.

When necessary, build tools yourself. Don’t be afraid!

I didn’t mention: lexical analysers (lex/flex), parser generators
(yacc/bison); regular expression libraries; all the things you can
do with function pointers; defining little languages; text
processing tools; OO programming in C etc etc.

These slides and the C-tools tarball are available at

http://www.doc.ic.ac.uk/~dcw/c-tools/

Most importantly: enjoy your C programming! Build your
toolbox - and let me know if you write any particularly cool tools!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 19 / 19

Summary Everyone needs their toolkit!

Grow your C skills by building a powerful toolkit that makes C
programming simpler.

Choose tools you like; become an expert in each one.

When necessary, build tools yourself. Don’t be afraid!

I didn’t mention: lexical analysers (lex/flex), parser generators
(yacc/bison); regular expression libraries; all the things you can
do with function pointers; defining little languages; text
processing tools; OO programming in C etc etc.

These slides and the C-tools tarball are available at

http://www.doc.ic.ac.uk/~dcw/c-tools/

Most importantly: enjoy your C programming! Build your
toolbox - and let me know if you write any particularly cool tools!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 19 / 19

Summary Everyone needs their toolkit!

Grow your C skills by building a powerful toolkit that makes C
programming simpler.

Choose tools you like; become an expert in each one.

When necessary, build tools yourself. Don’t be afraid!

I didn’t mention: lexical analysers (lex/flex), parser generators
(yacc/bison); regular expression libraries; all the things you can
do with function pointers; defining little languages; text
processing tools; OO programming in C etc etc.

These slides and the C-tools tarball are available at

http://www.doc.ic.ac.uk/~dcw/c-tools/

Most importantly: enjoy your C programming! Build your
toolbox - and let me know if you write any particularly cool tools!

Duncan White (Imperial) Building your own C Toolkit 31st May 2012 19 / 19

	Introduction
	Why Toolkits?
	Contents

	Basic Tools
	Programmer's Editors: Use a Single Editor Well (PP tip 22)
	Automatic Compilation: Make (tarball 01.list)
	Testing: Test Early, Test Often, Test Automatically (PP Tip 62)
	Debugging: Know a single debugger well (tarball 02.string-debug)

	Advanced Tools
	Generating Prototypes Automatically: proto (tarball 03.proto)
	Fixing memory leaks: libmem (tarball 04.libmem/05.mem-eg)
	Large-scale leaks: (tarball 06.badhash/07.badhash+mem)
	Optimization and Profiling (tarball 08.hash-profile)
	Autogenerating ADTs: datadec (09.datadec/10.datadec-eg)
	Reusable ADT modules: hashs, lists, trees, sets etc

	Summary
	Everyone needs their toolkit!

