
Building your own C Toolkit: Part 1

Duncan C. White,
d.white@imperial.ac.uk

Dept of Computing,
Imperial College London

29th May 2014

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 1 / 12

Introduction Why Toolkits?

When learning any new language, you go through several stages
before you achieve basic competence:

Learn the syntax.

Learn the semantics.

Learn the more tricky bits of semantics, eg. pointers (malloc(),
free()) and the related issues of shallow vs deep copies.

Learn the standard library (strcpy(), printf(), qsort(), bsearch()..).

Learn how to write multi-module programs.

Learn the idioms and best practices.

Learn how to write portable code.

These lectures try to answer: What comes after basic C competence?

Craftsmanship!

Build your own toolkit of useful tools and craft skills to make C
programming easier and more productive.

Occasionally: build your own tools!

Principle: ruthless automation - when doing something boring
and repetitive, think: can I save time by automating this?

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 2 / 12

Introduction Why Toolkits?

When learning any new language, you go through several stages
before you achieve basic competence:

Learn the syntax.

Learn the semantics.

Learn the more tricky bits of semantics, eg. pointers (malloc(),
free()) and the related issues of shallow vs deep copies.

Learn the standard library (strcpy(), printf(), qsort(), bsearch()..).

Learn how to write multi-module programs.

Learn the idioms and best practices.

Learn how to write portable code.

These lectures try to answer: What comes after basic C competence?

Craftsmanship!

Build your own toolkit of useful tools and craft skills to make C
programming easier and more productive.

Occasionally: build your own tools!

Principle: ruthless automation - when doing something boring
and repetitive, think: can I save time by automating this?

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 2 / 12

Introduction Why Toolkits?

When learning any new language, you go through several stages
before you achieve basic competence:

Learn the syntax.

Learn the semantics.

Learn the more tricky bits of semantics, eg. pointers (malloc(),
free()) and the related issues of shallow vs deep copies.

Learn the standard library (strcpy(), printf(), qsort(), bsearch()..).

Learn how to write multi-module programs.

Learn the idioms and best practices.

Learn how to write portable code.

These lectures try to answer: What comes after basic C competence?

Craftsmanship!

Build your own toolkit of useful tools and craft skills to make C
programming easier and more productive.

Occasionally: build your own tools!

Principle: ruthless automation - when doing something boring
and repetitive, think: can I save time by automating this?

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 2 / 12

Introduction Why Toolkits?

When learning any new language, you go through several stages
before you achieve basic competence:

Learn the syntax.

Learn the semantics.

Learn the more tricky bits of semantics, eg. pointers (malloc(),
free()) and the related issues of shallow vs deep copies.

Learn the standard library (strcpy(), printf(), qsort(), bsearch()..).

Learn how to write multi-module programs.

Learn the idioms and best practices.

Learn how to write portable code.

These lectures try to answer: What comes after basic C competence?

Craftsmanship!

Build your own toolkit of useful tools and craft skills to make C
programming easier and more productive.

Occasionally: build your own tools!

Principle: ruthless automation - when doing something boring
and repetitive, think: can I save time by automating this?

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 2 / 12

Introduction Why Toolkits?

When learning any new language, you go through several stages
before you achieve basic competence:

Learn the syntax.

Learn the semantics.

Learn the more tricky bits of semantics, eg. pointers (malloc(),
free()) and the related issues of shallow vs deep copies.

Learn the standard library (strcpy(), printf(), qsort(), bsearch()..).

Learn how to write multi-module programs.

Learn the idioms and best practices.

Learn how to write portable code.

These lectures try to answer: What comes after basic C competence?

Craftsmanship!

Build your own toolkit of useful tools and craft skills to make C
programming easier and more productive.

Occasionally: build your own tools!

Principle: ruthless automation - when doing something boring
and repetitive, think: can I save time by automating this?

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 2 / 12

Introduction Why Toolkits?

When learning any new language, you go through several stages
before you achieve basic competence:

Learn the syntax.

Learn the semantics.

Learn the more tricky bits of semantics, eg. pointers (malloc(),
free()) and the related issues of shallow vs deep copies.

Learn the standard library (strcpy(), printf(), qsort(), bsearch()..).

Learn how to write multi-module programs.

Learn the idioms and best practices.

Learn how to write portable code.

These lectures try to answer: What comes after basic C competence?

Craftsmanship!

Build your own toolkit of useful tools and craft skills to make C
programming easier and more productive.

Occasionally: build your own tools!

Principle: ruthless automation - when doing something boring
and repetitive, think: can I save time by automating this?

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 2 / 12

Introduction Why Toolkits?

When learning any new language, you go through several stages
before you achieve basic competence:

Learn the syntax.

Learn the semantics.

Learn the more tricky bits of semantics, eg. pointers (malloc(),
free()) and the related issues of shallow vs deep copies.

Learn the standard library (strcpy(), printf(), qsort(), bsearch()..).

Learn how to write multi-module programs.

Learn the idioms and best practices.

Learn how to write portable code.

These lectures try to answer: What comes after basic C competence?

Craftsmanship!

Build your own toolkit of useful tools and craft skills to make C
programming easier and more productive.

Occasionally: build your own tools!

Principle: ruthless automation - when doing something boring
and repetitive, think: can I save time by automating this?

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 2 / 12

Introduction Contents

Today, and the next two Thursdays, I’ll show you some of the tools in
my toolkit, in the hope they’ll be useful to you! Today, we’ll cover:

Programmer’s Editors: Use a single editor well.

Automating Compilation (reminder): Use make.

Automating Testing: Test often, test ruthlessly.

Debugging: Use a debugger and know it well.

Building shortlived tools on the fly.

Notes:

I strongly recommend The Pragmatic Programmer (PP) book, by
Hunt & Thomas. The woodworking metaphor - and a series of
excellent programming Tips - comes from there.

There’s a tarball of examples associated with each lecture, as a
shorthand tarball 01.list refers to the directory called 01.list
inside the tarball. Each directory contains a README file.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 3 / 12

Introduction Contents

Today, and the next two Thursdays, I’ll show you some of the tools in
my toolkit, in the hope they’ll be useful to you! Today, we’ll cover:

Programmer’s Editors: Use a single editor well.

Automating Compilation (reminder): Use make.

Automating Testing: Test often, test ruthlessly.

Debugging: Use a debugger and know it well.

Building shortlived tools on the fly.

Notes:

I strongly recommend The Pragmatic Programmer (PP) book, by
Hunt & Thomas. The woodworking metaphor - and a series of
excellent programming Tips - comes from there.

There’s a tarball of examples associated with each lecture, as a
shorthand tarball 01.list refers to the directory called 01.list
inside the tarball. Each directory contains a README file.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 3 / 12

Introduction Contents

Today, and the next two Thursdays, I’ll show you some of the tools in
my toolkit, in the hope they’ll be useful to you! Today, we’ll cover:

Programmer’s Editors: Use a single editor well.

Automating Compilation (reminder): Use make.

Automating Testing: Test often, test ruthlessly.

Debugging: Use a debugger and know it well.

Building shortlived tools on the fly.

Notes:

I strongly recommend The Pragmatic Programmer (PP) book, by
Hunt & Thomas. The woodworking metaphor - and a series of
excellent programming Tips - comes from there.

There’s a tarball of examples associated with each lecture, as a
shorthand tarball 01.list refers to the directory called 01.list
inside the tarball. Each directory contains a README file.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 3 / 12

Programmer’s Editors Use a Single Editor Well (PP tip 22)

Hunt & Thomas write (in Tip 22):

The editor should be an extension of your hand; make
sure your editor is configurable, extensible and
programmable.

Not my business to tell you which editor to use; avoid editor wars.

IDEs such as Eclipse provide an editor, an automated compilation
system and a debugging environment. If you’re going to use an
IDE, invest time learning how to use it well, and how to extend
and program it.

I use Vi/Vim, terse but powerful, extensible in several ways - eg.
macros and a “pipe through external command” mechanism.

Others like Emacs, very powerful and extensible. Like Eclipse,
Emacs can be a whole development environment.

After initial exploration of the possibilities, learn your chosen
editor thoroughly and become expert in its use, including how to
plug external tools into it.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 4 / 12

Programmer’s Editors Use a Single Editor Well (PP tip 22)

Hunt & Thomas write (in Tip 22):

The editor should be an extension of your hand; make
sure your editor is configurable, extensible and
programmable.

Not my business to tell you which editor to use; avoid editor wars.

IDEs such as Eclipse provide an editor, an automated compilation
system and a debugging environment. If you’re going to use an
IDE, invest time learning how to use it well, and how to extend
and program it.

I use Vi/Vim, terse but powerful, extensible in several ways - eg.
macros and a “pipe through external command” mechanism.

Others like Emacs, very powerful and extensible. Like Eclipse,
Emacs can be a whole development environment.

After initial exploration of the possibilities, learn your chosen
editor thoroughly and become expert in its use, including how to
plug external tools into it.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 4 / 12

Programmer’s Editors Use a Single Editor Well (PP tip 22)

Hunt & Thomas write (in Tip 22):

The editor should be an extension of your hand; make
sure your editor is configurable, extensible and
programmable.

Not my business to tell you which editor to use; avoid editor wars.

IDEs such as Eclipse provide an editor, an automated compilation
system and a debugging environment. If you’re going to use an
IDE, invest time learning how to use it well, and how to extend
and program it.

I use Vi/Vim, terse but powerful, extensible in several ways - eg.
macros and a “pipe through external command” mechanism.

Others like Emacs, very powerful and extensible. Like Eclipse,
Emacs can be a whole development environment.

After initial exploration of the possibilities, learn your chosen
editor thoroughly and become expert in its use, including how to
plug external tools into it.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 4 / 12

Programmer’s Editors Use a Single Editor Well (PP tip 22)

Hunt & Thomas write (in Tip 22):

The editor should be an extension of your hand; make
sure your editor is configurable, extensible and
programmable.

Not my business to tell you which editor to use; avoid editor wars.

IDEs such as Eclipse provide an editor, an automated compilation
system and a debugging environment. If you’re going to use an
IDE, invest time learning how to use it well, and how to extend
and program it.

I use Vi/Vim, terse but powerful, extensible in several ways - eg.
macros and a “pipe through external command” mechanism.

Others like Emacs, very powerful and extensible. Like Eclipse,
Emacs can be a whole development environment.

After initial exploration of the possibilities, learn your chosen
editor thoroughly and become expert in its use, including how to
plug external tools into it.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 4 / 12

Automatic Compilation Make (tarball 01.list)

When multi-file C programming, eg:

list.c

list.h

testlist.c

mainprog.c

defns.h

Many source files:

Module list comprising two files
(interface list.h and impln list.c).

Test program testlist.c

Main program mainprog.c

Separate basic defns header file
defns.h.

Dependencies between the files
are vital, determined by the
#include structure:

list.c includes list.h (check
impln vs interface).

testlist.c includes list.h

mainprog.c includes list.h
and defns.h

Make uses such file dependencies,
encoded in a Makefile, to
automatically compile your
programs. A Makefile contains
dependency rules between target
and source files with actions
(commands) to generate each
target from its’ sources.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 5 / 12

Automatic Compilation Make (tarball 01.list)

Here’s the Makefile for the multi-module example:

CC = gcc

CFLAGS = -Wall

PROGS = testlist mainprog

all: $(PROGS)

clean:

/bin/rm -f $(PROGS) *.o core

testlist: testlist.o list.o

mainprog: mainprog.o list.o

mainprog.o: list.h defns.h

testlist.o: list.h

list.o: list.h

If list.h is altered, then list.c, testlist.c and mainprog.c need
recompiling, and testlist and mainprog need relinking against the list
object file (list.o).

Summary: Always use make. Keep your Makefile up to date.

Exercise: why not auto generate your Makefiles? Many tools generate
Makefiles automatically, easy to write.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 6 / 12

Automatic Compilation Make (tarball 01.list)

Here’s the Makefile for the multi-module example:

CC = gcc

CFLAGS = -Wall

PROGS = testlist mainprog

all: $(PROGS)

clean:

/bin/rm -f $(PROGS) *.o core

testlist: testlist.o list.o

mainprog: mainprog.o list.o

mainprog.o: list.h defns.h

testlist.o: list.h

list.o: list.h

If list.h is altered, then list.c, testlist.c and mainprog.c need
recompiling, and testlist and mainprog need relinking against the list
object file (list.o).

Summary: Always use make. Keep your Makefile up to date.

Exercise: why not auto generate your Makefiles? Many tools generate
Makefiles automatically, easy to write.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 6 / 12

Automatic Compilation Make (tarball 01.list)

Here’s the Makefile for the multi-module example:

CC = gcc

CFLAGS = -Wall

PROGS = testlist mainprog

all: $(PROGS)

clean:

/bin/rm -f $(PROGS) *.o core

testlist: testlist.o list.o

mainprog: mainprog.o list.o

mainprog.o: list.h defns.h

testlist.o: list.h

list.o: list.h

If list.h is altered, then list.c, testlist.c and mainprog.c need
recompiling, and testlist and mainprog need relinking against the list
object file (list.o).

Summary: Always use make. Keep your Makefile up to date.

Exercise: why not auto generate your Makefiles? Many tools generate
Makefiles automatically, easy to write.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 6 / 12

Automatic Compilation Make (tarball 01.list)

Here’s the Makefile for the multi-module example:

CC = gcc

CFLAGS = -Wall

PROGS = testlist mainprog

all: $(PROGS)

clean:

/bin/rm -f $(PROGS) *.o core

testlist: testlist.o list.o

mainprog: mainprog.o list.o

mainprog.o: list.h defns.h

testlist.o: list.h

list.o: list.h

If list.h is altered, then list.c, testlist.c and mainprog.c need
recompiling, and testlist and mainprog need relinking against the list
object file (list.o).

Summary: Always use make. Keep your Makefile up to date.

Exercise: why not auto generate your Makefiles? Many tools generate
Makefiles automatically, easy to write.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 6 / 12

Automatic Compilation Make (tarball 01.list)

Here’s the Makefile for the multi-module example:

CC = gcc

CFLAGS = -Wall

PROGS = testlist mainprog

all: $(PROGS)

clean:

/bin/rm -f $(PROGS) *.o core

testlist: testlist.o list.o

mainprog: mainprog.o list.o

mainprog.o: list.h defns.h

testlist.o: list.h

list.o: list.h

If list.h is altered, then list.c, testlist.c and mainprog.c need
recompiling, and testlist and mainprog need relinking against the list
object file (list.o).

Summary: Always use make. Keep your Makefile up to date.

Exercise: why not auto generate your Makefiles? Many tools generate
Makefiles automatically, easy to write.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 6 / 12

Automatic Compilation Make (tarball 01.list)

Here’s the Makefile for the multi-module example:

CC = gcc

CFLAGS = -Wall

PROGS = testlist mainprog

all: $(PROGS)

clean:

/bin/rm -f $(PROGS) *.o core

testlist: testlist.o list.o

mainprog: mainprog.o list.o

mainprog.o: list.h defns.h

testlist.o: list.h

list.o: list.h

If list.h is altered, then list.c, testlist.c and mainprog.c need
recompiling, and testlist and mainprog need relinking against the list
object file (list.o).

Summary: Always use make. Keep your Makefile up to date.

Exercise: why not auto generate your Makefiles? Many tools generate
Makefiles automatically, easy to write.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 6 / 12

Testing Test Early, Test Often, Test Automatically (PP Tip 62)

In Tip 62, Hunt & Thomas write:

Tests that run with every build are much more effective
than test plans that sit on a shelf.

Test ruthlessly and automatically by building unit test programs
(one per module) plus overall program tests.

Add make test target to run the tests. Run them frequently.

Can run make test when you check a new version into git!

Test programs should check for correct results themselves
(essentially, hardcoding the correct answers in them).
make test could run all test programs in sequence:
test: testprogram1 testprogram2 ...

./testprogram1

./testprogram2

or invoke a test framework script with testprograms as arguments.
Exercise: add test target to 01.list to run the obvious ./testlist, or
./testlist|grep -v ok to only report failures.
Test Driven Development (TDD) writes the test programs before
implementing the feature to test.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 7 / 12

Testing Test Early, Test Often, Test Automatically (PP Tip 62)

In Tip 62, Hunt & Thomas write:

Tests that run with every build are much more effective
than test plans that sit on a shelf.

Test ruthlessly and automatically by building unit test programs
(one per module) plus overall program tests.

Add make test target to run the tests. Run them frequently.

Can run make test when you check a new version into git!

Test programs should check for correct results themselves
(essentially, hardcoding the correct answers in them).
make test could run all test programs in sequence:
test: testprogram1 testprogram2 ...

./testprogram1

./testprogram2

or invoke a test framework script with testprograms as arguments.
Exercise: add test target to 01.list to run the obvious ./testlist, or
./testlist|grep -v ok to only report failures.

Test Driven Development (TDD) writes the test programs before
implementing the feature to test.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 7 / 12

Testing Test Early, Test Often, Test Automatically (PP Tip 62)

In Tip 62, Hunt & Thomas write:

Tests that run with every build are much more effective
than test plans that sit on a shelf.

Test ruthlessly and automatically by building unit test programs
(one per module) plus overall program tests.

Add make test target to run the tests. Run them frequently.

Can run make test when you check a new version into git!

Test programs should check for correct results themselves
(essentially, hardcoding the correct answers in them).
make test could run all test programs in sequence:
test: testprogram1 testprogram2 ...

./testprogram1

./testprogram2

or invoke a test framework script with testprograms as arguments.
Exercise: add test target to 01.list to run the obvious ./testlist, or
./testlist|grep -v ok to only report failures.
Test Driven Development (TDD) writes the test programs before
implementing the feature to test.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 7 / 12

Debugging Know a single debugger well (tarball 02.string-debug)

Suppose your program crashes or produces the wrong answers;
you want to debug it. Example in 02.string-debug.

Choose one debugger and know it well. I recommend gdb, the
GNU debugger, which works with C++ too:

First, recompile all source code with gcc -g flag:

Set CFLAGS = -Wall -g in your Makefile.
Recompile everything via make clean all.

Start gdb by gdb PROGRAMNAME. Inside gdb, type
run COMMANDLINEARGS. Work with your program until it crashes.

Back at the gdb prompt: type where to see the call frame stack
- the sequence of function calls leading to the crash.

frame N allows you to switch to the Nth function call on the
frame stack, i.e. select which of the function calls you want to
look at, in order to examine that function’s local variables.

Also, up and down move up or down one level on the frame stack.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 8 / 12

Debugging Know a single debugger well (tarball 02.string-debug)

Suppose your program crashes or produces the wrong answers;
you want to debug it. Example in 02.string-debug.

Choose one debugger and know it well. I recommend gdb, the
GNU debugger, which works with C++ too:

First, recompile all source code with gcc -g flag:

Set CFLAGS = -Wall -g in your Makefile.
Recompile everything via make clean all.

Start gdb by gdb PROGRAMNAME. Inside gdb, type
run COMMANDLINEARGS. Work with your program until it crashes.

Back at the gdb prompt: type where to see the call frame stack
- the sequence of function calls leading to the crash.

frame N allows you to switch to the Nth function call on the
frame stack, i.e. select which of the function calls you want to
look at, in order to examine that function’s local variables.

Also, up and down move up or down one level on the frame stack.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 8 / 12

Debugging Know a single debugger well (tarball 02.string-debug)

Suppose your program crashes or produces the wrong answers;
you want to debug it. Example in 02.string-debug.

Choose one debugger and know it well. I recommend gdb, the
GNU debugger, which works with C++ too:

First, recompile all source code with gcc -g flag:

Set CFLAGS = -Wall -g in your Makefile.
Recompile everything via make clean all.

Start gdb by gdb PROGRAMNAME. Inside gdb, type
run COMMANDLINEARGS. Work with your program until it crashes.

Back at the gdb prompt: type where to see the call frame stack
- the sequence of function calls leading to the crash.

frame N allows you to switch to the Nth function call on the
frame stack, i.e. select which of the function calls you want to
look at, in order to examine that function’s local variables.

Also, up and down move up or down one level on the frame stack.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 8 / 12

Debugging Know a single debugger well (tarball 02.string-debug)

Suppose your program crashes or produces the wrong answers;
you want to debug it. Example in 02.string-debug.

Choose one debugger and know it well. I recommend gdb, the
GNU debugger, which works with C++ too:

First, recompile all source code with gcc -g flag:

Set CFLAGS = -Wall -g in your Makefile.

Recompile everything via make clean all.

Start gdb by gdb PROGRAMNAME. Inside gdb, type
run COMMANDLINEARGS. Work with your program until it crashes.

Back at the gdb prompt: type where to see the call frame stack
- the sequence of function calls leading to the crash.

frame N allows you to switch to the Nth function call on the
frame stack, i.e. select which of the function calls you want to
look at, in order to examine that function’s local variables.

Also, up and down move up or down one level on the frame stack.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 8 / 12

Debugging Know a single debugger well (tarball 02.string-debug)

Suppose your program crashes or produces the wrong answers;
you want to debug it. Example in 02.string-debug.

Choose one debugger and know it well. I recommend gdb, the
GNU debugger, which works with C++ too:

First, recompile all source code with gcc -g flag:

Set CFLAGS = -Wall -g in your Makefile.
Recompile everything via make clean all.

Start gdb by gdb PROGRAMNAME. Inside gdb, type
run COMMANDLINEARGS. Work with your program until it crashes.

Back at the gdb prompt: type where to see the call frame stack
- the sequence of function calls leading to the crash.

frame N allows you to switch to the Nth function call on the
frame stack, i.e. select which of the function calls you want to
look at, in order to examine that function’s local variables.

Also, up and down move up or down one level on the frame stack.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 8 / 12

Debugging Know a single debugger well (tarball 02.string-debug)

Suppose your program crashes or produces the wrong answers;
you want to debug it. Example in 02.string-debug.

Choose one debugger and know it well. I recommend gdb, the
GNU debugger, which works with C++ too:

First, recompile all source code with gcc -g flag:

Set CFLAGS = -Wall -g in your Makefile.
Recompile everything via make clean all.

Start gdb by gdb PROGRAMNAME. Inside gdb, type
run COMMANDLINEARGS. Work with your program until it crashes.

Back at the gdb prompt: type where to see the call frame stack
- the sequence of function calls leading to the crash.

frame N allows you to switch to the Nth function call on the
frame stack, i.e. select which of the function calls you want to
look at, in order to examine that function’s local variables.

Also, up and down move up or down one level on the frame stack.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 8 / 12

Debugging Know a single debugger well (tarball 02.string-debug)

Suppose your program crashes or produces the wrong answers;
you want to debug it. Example in 02.string-debug.

Choose one debugger and know it well. I recommend gdb, the
GNU debugger, which works with C++ too:

First, recompile all source code with gcc -g flag:

Set CFLAGS = -Wall -g in your Makefile.
Recompile everything via make clean all.

Start gdb by gdb PROGRAMNAME. Inside gdb, type
run COMMANDLINEARGS. Work with your program until it crashes.

Back at the gdb prompt: type where to see the call frame stack
- the sequence of function calls leading to the crash.

frame N allows you to switch to the Nth function call on the
frame stack, i.e. select which of the function calls you want to
look at, in order to examine that function’s local variables.

Also, up and down move up or down one level on the frame stack.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 8 / 12

Debugging Know a single debugger well (tarball 02.string-debug)

list will list 10 lines of the current function.

p EXPR will print any C expression, including global variables and
local variables in the current stack frame.

whatis VAR displays the type of VAR.

x is a flexible memory dumper:

x/12c &str would print out the first 12 bytes of data from str

in ASCII.

x/12xb &str as hexadecimal etc.
help x (inside gdb) for more info.

You can also set breakpoints (break LINENO|FUNCTIONNAME),
attach conditions on the breakpoints, single step through your
program (step and next), continue until you hit another
breakpoint (cont), and even watch variables as they are altered
or accessed (watch, rwatch).

Google for gdb tutorial for more info.

Most important, leave gdb by quit.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 9 / 12

Debugging Know a single debugger well (tarball 02.string-debug)

list will list 10 lines of the current function.

p EXPR will print any C expression, including global variables and
local variables in the current stack frame.

whatis VAR displays the type of VAR.

x is a flexible memory dumper:

x/12c &str would print out the first 12 bytes of data from str

in ASCII.
x/12xb &str as hexadecimal etc.

help x (inside gdb) for more info.

You can also set breakpoints (break LINENO|FUNCTIONNAME),
attach conditions on the breakpoints, single step through your
program (step and next), continue until you hit another
breakpoint (cont), and even watch variables as they are altered
or accessed (watch, rwatch).

Google for gdb tutorial for more info.

Most important, leave gdb by quit.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 9 / 12

Debugging Know a single debugger well (tarball 02.string-debug)

list will list 10 lines of the current function.

p EXPR will print any C expression, including global variables and
local variables in the current stack frame.

whatis VAR displays the type of VAR.

x is a flexible memory dumper:

x/12c &str would print out the first 12 bytes of data from str

in ASCII.
x/12xb &str as hexadecimal etc.
help x (inside gdb) for more info.

You can also set breakpoints (break LINENO|FUNCTIONNAME),
attach conditions on the breakpoints, single step through your
program (step and next), continue until you hit another
breakpoint (cont), and even watch variables as they are altered
or accessed (watch, rwatch).

Google for gdb tutorial for more info.

Most important, leave gdb by quit.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 9 / 12

Debugging Know a single debugger well (tarball 02.string-debug)

list will list 10 lines of the current function.

p EXPR will print any C expression, including global variables and
local variables in the current stack frame.

whatis VAR displays the type of VAR.

x is a flexible memory dumper:

x/12c &str would print out the first 12 bytes of data from str

in ASCII.
x/12xb &str as hexadecimal etc.
help x (inside gdb) for more info.

You can also set breakpoints (break LINENO|FUNCTIONNAME),
attach conditions on the breakpoints, single step through your
program (step and next), continue until you hit another
breakpoint (cont), and even watch variables as they are altered
or accessed (watch, rwatch).

Google for gdb tutorial for more info.

Most important, leave gdb by quit.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 9 / 12

Building Shortlived tools on the fly Pattern Instances (03.tiny-tool)

We often find ourselves writing hundreds of repetitive “pattern
instances”, eg:

int plus(int a, int b) { return (a+b); }

int minus(int a, int b) { return (a-b); }

int times(int a, int b) { return (a*b); }

...

Generate such lines automatically using a shortlived tool, scaffolding
that you build on demand, use a few times, then discard: All that varies
from line to line is (funcname,operator), eg. (plus,+).

Specify input format (as a little language) and corresponding output:
INPUT:

foreach line: F, Op pairs

OUTPUT:

foreach line: "int F(int a, int b) { return (a Op b); }"

Simple job for a scripting language like Perl - here’s a Perl oneliner I
composed in about two minutes:

perl -nle ’($f,$op)=split(/,/); print "int ${f}(int a, int b) { return (a ${op} b); }"’ < input

Don’t know Perl? write it in C instead - took me 15 minutes using
standard library function strtok(). See 03.tiny-tool/genfuncs1.c for a C
implementation.

Note that our tool doesn’t have to be perfect; just good enough to
save us time.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 10 / 12

Building Shortlived tools on the fly Pattern Instances (03.tiny-tool)

We often find ourselves writing hundreds of repetitive “pattern
instances”, eg:

int plus(int a, int b) { return (a+b); }

int minus(int a, int b) { return (a-b); }

int times(int a, int b) { return (a*b); }

...

Generate such lines automatically using a shortlived tool, scaffolding
that you build on demand, use a few times, then discard: All that varies
from line to line is (funcname,operator), eg. (plus,+).

Specify input format (as a little language) and corresponding output:
INPUT:

foreach line: F, Op pairs

OUTPUT:

foreach line: "int F(int a, int b) { return (a Op b); }"

Simple job for a scripting language like Perl - here’s a Perl oneliner I
composed in about two minutes:

perl -nle ’($f,$op)=split(/,/); print "int ${f}(int a, int b) { return (a ${op} b); }"’ < input

Don’t know Perl? write it in C instead - took me 15 minutes using
standard library function strtok(). See 03.tiny-tool/genfuncs1.c for a C
implementation.

Note that our tool doesn’t have to be perfect; just good enough to
save us time.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 10 / 12

Building Shortlived tools on the fly Pattern Instances (03.tiny-tool)

We often find ourselves writing hundreds of repetitive “pattern
instances”, eg:

int plus(int a, int b) { return (a+b); }

int minus(int a, int b) { return (a-b); }

int times(int a, int b) { return (a*b); }

...

Generate such lines automatically using a shortlived tool, scaffolding
that you build on demand, use a few times, then discard: All that varies
from line to line is (funcname,operator), eg. (plus,+).

Specify input format (as a little language) and corresponding output:
INPUT:

foreach line: F, Op pairs

OUTPUT:

foreach line: "int F(int a, int b) { return (a Op b); }"

Simple job for a scripting language like Perl - here’s a Perl oneliner I
composed in about two minutes:

perl -nle ’($f,$op)=split(/,/); print "int ${f}(int a, int b) { return (a ${op} b); }"’ < input

Don’t know Perl? write it in C instead - took me 15 minutes using
standard library function strtok(). See 03.tiny-tool/genfuncs1.c for a C
implementation.

Note that our tool doesn’t have to be perfect; just good enough to
save us time.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 10 / 12

Building Shortlived tools on the fly Pattern Instances (03.tiny-tool)

We often find ourselves writing hundreds of repetitive “pattern
instances”, eg:

int plus(int a, int b) { return (a+b); }

int minus(int a, int b) { return (a-b); }

int times(int a, int b) { return (a*b); }

...

Generate such lines automatically using a shortlived tool, scaffolding
that you build on demand, use a few times, then discard: All that varies
from line to line is (funcname,operator), eg. (plus,+).

Specify input format (as a little language) and corresponding output:
INPUT:

foreach line: F, Op pairs

OUTPUT:

foreach line: "int F(int a, int b) { return (a Op b); }"

Simple job for a scripting language like Perl - here’s a Perl oneliner I
composed in about two minutes:

perl -nle ’($f,$op)=split(/,/); print "int ${f}(int a, int b) { return (a ${op} b); }"’ < input

Don’t know Perl? write it in C instead - took me 15 minutes using
standard library function strtok(). See 03.tiny-tool/genfuncs1.c for a C
implementation.

Note that our tool doesn’t have to be perfect; just good enough to
save us time.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 10 / 12

Building Shortlived tools on the fly Pattern Instances (03.tiny-tool)

We often find ourselves writing hundreds of repetitive “pattern
instances”, eg:

int plus(int a, int b) { return (a+b); }

int minus(int a, int b) { return (a-b); }

int times(int a, int b) { return (a*b); }

...

Generate such lines automatically using a shortlived tool, scaffolding
that you build on demand, use a few times, then discard: All that varies
from line to line is (funcname,operator), eg. (plus,+).

Specify input format (as a little language) and corresponding output:
INPUT:

foreach line: F, Op pairs

OUTPUT:

foreach line: "int F(int a, int b) { return (a Op b); }"

Simple job for a scripting language like Perl - here’s a Perl oneliner I
composed in about two minutes:

perl -nle ’($f,$op)=split(/,/); print "int ${f}(int a, int b) { return (a ${op} b); }"’ < input

Don’t know Perl? write it in C instead - took me 15 minutes using
standard library function strtok(). See 03.tiny-tool/genfuncs1.c for a C
implementation.

Note that our tool doesn’t have to be perfect; just good enough to
save us time.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 10 / 12

Building Shortlived tools on the fly Pattern Instances (03.tiny-tool)

We often find ourselves writing hundreds of repetitive “pattern
instances”, eg:

int plus(int a, int b) { return (a+b); }

int minus(int a, int b) { return (a-b); }

int times(int a, int b) { return (a*b); }

...

Generate such lines automatically using a shortlived tool, scaffolding
that you build on demand, use a few times, then discard: All that varies
from line to line is (funcname,operator), eg. (plus,+).

Specify input format (as a little language) and corresponding output:
INPUT:

foreach line: F, Op pairs

OUTPUT:

foreach line: "int F(int a, int b) { return (a Op b); }"

Simple job for a scripting language like Perl - here’s a Perl oneliner I
composed in about two minutes:

perl -nle ’($f,$op)=split(/,/); print "int ${f}(int a, int b) { return (a ${op} b); }"’ < input

Don’t know Perl? write it in C instead - took me 15 minutes using
standard library function strtok(). See 03.tiny-tool/genfuncs1.c for a C
implementation.

Note that our tool doesn’t have to be perfect; just good enough to
save us time.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 10 / 12

Building Shortlived tools on the fly Improving our Tiny tool

Once you have a tiny tool, don’t be afraid to modify it when your
needs change, or just for your convenience:

Left-justify the function names in a field of some suitable width:
perl -nle ’($f,$op)=split(/,/); printf "int %-15s(int a, int b) { return (a${op}b); }\n", $f’ < input

Prefix the typename onto function names, eg. int_plus:
perl -nle ’($f,$op)=split(/,/); printf "int %-15s(int a, int b) { return (a${op}b); }\n", "int_${f}"’ < input

Noticing all those ”int”s, let’s make it easier to change:
perl -nle ’$t="int"; ($f,$op)=split(/,/);

printf "${t} %-15s(${t} a, $t b) { return (a${op}b); }\n", "${t}_${f}"’ < input

We could let the user set the type within the input, perhaps the first
line of input, see 03.tiny-tool/README for details.

More usefully, let the user change the type at any point in the input:
TYPE,int

plus,+

minus,-

TYPE,double

plus,+

minus,-

generates:
int int_plus (int a, int b) { return (a+b); }

int int_minus (int a, int b) { return (a-b); }

double double_plus (double a, double b) { return (a+b); }

double double_minus (double a, double b) { return (a-b); }

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 11 / 12

Building Shortlived tools on the fly Improving our Tiny tool

To implement this, change the specification to:
INPUT:

foreach line: F, Op pair

special case: if F=="TYPE" then T=Op

OUTPUT:

foreach F, Op pair where F!="TYPE":

"T T_F(T a, T b) { return (a Op b); }"

Make our Perl one-liner:
perl -nle ’($f,$op)=split(/,/); if($f eq "TYPE") { $t=$op; next; }

printf "${t} %-15s(${t} a, ${t} b) { return (a${op}b); }\n", "${t}_${f}"’ < input

See 03.tiny-tool/genfuncs3.c for a C implementation.

Final thought, instead of hardcoding the output format in the printf, we
could replace TYPEs with output TEMPLATEs, for example:

TEMPLATE,int int_<0>(int a, int b) { return (a<1>b); }

plus,+

minus,-

TEMPLATE,double double_<0>(double a, double b) { return (a<1>b); }

plus,+

minus,-

Here, the marker <0> means ”replace this marker with the current
value of the first field”. Our Perl one-liner becomes:

perl -nle ’@f=split(/,/,$_,2); if($f[0] eq "TEMPLATE") { $t=$f[1]; next; }

$_=$t; s/<(\d+)>/$f[$1]/g; print’ < input

This is now a very simple macro processor.

Duncan White (Imperial) Building your own C Toolkit: Part 1 29th May 2014 12 / 12

	Introduction
	Why Toolkits?
	Contents

	Programmer's Editors
	Use a Single Editor Well (PP tip 22)

	Automatic Compilation
	Make (tarball 01.list)

	Testing
	Test Early, Test Often, Test Automatically (PP Tip 62)

	Debugging
	Know a single debugger well (tarball 02.string-debug)

	Building Shortlived tools on the fly
	Pattern Instances (03.tiny-tool)
	Improving our Tiny tool

