
Building your own C Toolkit: Part 2

Duncan C. White,
d.white@imperial.ac.uk

Dept of Computing,
Imperial College London

5th June 2014

Duncan White (Imperial) Building your own C Toolkit: Part 2 5th June 2014 1 / 15

Today’s Contents

Last week, we introduced the idea of building a C programming
toolkit, and covered the following tools or techniques:

Programmer’s Editors.
Automatic Compilation: Make.
Automatic Ruthless Testing.
Debugging: gdb.
Building shortlived tools on the fly.

Today, we’re going to carry on, and cover:

Generating prototypes automatically: proto.
Fixing memory leaks: libmem.
Optimization and Profiling.
Generating ADT modules automatically.
Reusable ADT modules: hashes, sets, lists, trees etc.

As last week, there’s a tarball of examples associated with this
lecture. Both lectures’ slides and tarballs are available on CATE
and at: http://www.doc.ic.ac.uk/~dcw/c-tools-2014/

Duncan White (Imperial) Building your own C Toolkit: Part 2 5th June 2014 2 / 15

Generating Prototypes Automatically proto: (tarball 01.proto)

Irritating C problem: keeping the prototype declarations in
interfaces (.h files) in sync with the function definitions in the
implementation (.c files).

Whenever you add a public function to list.c you need to
remember to add the corresponding prototype to list.h.

Even adding or removing parameters to existing functions means
you need to make a corresponding change in the prototype too.

Don’t live with broken windows (PP tip 4) - write a tool to do
the work, then integrate it into your editor for convenience!

Years ago, I wrote proto - a tool to solve this. It reads a C file
looking for function definitions, and produces a prototype for
each function.

LIMITATION: whole function heading must be placed on one line.

Then I wrote a vi macro bound to an unused key that piped the
next paragraph into proto % (current filename). Can do same for
forward declarations of static functions using proto -s %.

Duncan White (Imperial) Building your own C Toolkit: Part 2 5th June 2014 3 / 15

Fixing memory leaks libmem (tarball 02.libmem/03.mem-eg)

Memory leaks are the most serious C problem:

Often claimed that 99% of serious C bugs are memory-allocation
related.

C uses pointers and malloc() so much, with so little checking,
that debugging memory related problems can be challenging even
with gdb.

Failing to free() what you malloc() is very bad for long running
programs, that continuously modify their data structures.

Such programs can ‘leak’ memory until they run out of memory
(use more memory than the computer has physical RAM)!

free()ing a block twice is equally dangerous.

dereferencing an uninitialized/reclaimed pointer gives
non-deterministic behaviour (really hard to debug!).

Segmentation faults - gdb where (frame stack) may show it
crashes in system libraries.

Duncan White (Imperial) Building your own C Toolkit: Part 2 5th June 2014 4 / 15

Fixing memory leaks libmem (tarball 02.libmem/03.mem-eg)

Why can’t the system diagnose these?

There are several tools that can - Electric Fence and
valgrind/memcheck among them.

Here’s a homebrew alternative:

The August 1990 Dr Dobbs Journal provided libmem, a very
simple C module which uses the C pre-processor to redefine
malloc(), free(), exit(), strdup() etc to add extra checking.
Let’s see it in action:

First make install libmem from tarball directory 02.libmem
Now go into tarball directory 03.mem-eg, 2 test programs.
make and run the programs without libmem.
Add #include <mem.h> to both .c files
Add -lmem to LDLIBS in Makefile
Rebuild using make clean all

Run the two examples now! They tell you exactly what you’ve
forgotten to free()! Magic!

You may say: but those test programs are tiny. Does libmem
scale to larger size programs?

Duncan White (Imperial) Building your own C Toolkit: Part 2 5th June 2014 5 / 15

Fixing memory leaks Large-scale leaks (tarball 04.badhash/05.badhash+mem)

Suppose we have a pre-written, pre-tested hash table module,
plus a unit test program testhash. Passes all tests (creating,
populating, finding, iterating over, freeing a single hash table).

We’ve even used it in several successful projects - so we’re pretty
confident that it works!

But we have never checked it with libmem! Why not?

When we prepare to embed our hash table in a larger system,
we’ll need to create, populate and destroy whole hash tables
thousands of times.

Voice of bitter experience: Test that scenario before doing it:-)

New test program iterate N M that (silently) performs all
previous tests N times, sleeping M seconds afterwards.

Behaviour (with M=0) should be linear with N. Test it with
time ./iterate N 0 for several values of N, graph results.

Find dramatic non-linear behaviour around 10-11k iterations on
lab machines: Twice as slow, CPU %age falls, starts doing I/O.

What on earth is happening?

Duncan White (Imperial) Building your own C Toolkit: Part 2 5th June 2014 6 / 15

Fixing memory leaks Large-scale leaks (tarball 04.badhash/05.badhash+mem)

Try monitoring with top, configured to update every second (d
1), sort by %age of memory (O n). Write this config out (W).

Run iterate with a time delay: time ./iterate 11000 10 and
watch top! iterate’s memory grows bigger than the physical
memory, tops out at about 85% of physical memory, the system
starts swapping (%wait goes busy), load average goes high,
machine goes very slow!

Hypothesis: the hash table module is leaking some memory, ie.
failing to free everything that it mallocs. A job for libmem!

Proceed as before:
append -lmem to LDLIBS in the Makefile
edit *.c and add #include <mem.h> to each
rebuild using ’make clean all’
run ./testhash [simpler test program]
result: 2 non-freed 256K chunks reported:

File Line Size

hash.c 114 260264

hash.c 75 260264

Duncan White (Imperial) Building your own C Toolkit: Part 2 5th June 2014 7 / 15

Fixing memory leaks Large-scale leaks (tarball 04.badhash/05.badhash+mem)

Libmem debugging session continued:

look at those two lines: line 75 is in hashCreate(...):

h->data = (tree *) malloc(NHASH*sizeof(tree));

and line 114 is nearly identical in hashCopy().

result->data = (tree *) malloc(NHASH*sizeof(tree));

Look in corresponding hashFree(hash h) function.
Aha! h->data is NOT FREED.
Add the missing free(h->data), recompile (make).
Rerun ./testhash and it reports no unfree()d blocks.
Rerun ./iterate 11000 10 again - no non linear behaviour, no
memory leak reported. Job done! libmem rocks!

Summary: compile everything with libmem from day one. Save
yourself loads of grief, double your confidence.

Exercise: verify that the list example (in Lecture 1’s 01.list) runs
cleanly with libmem. (Import CFLAGS and LDLIBS from
03.mem-eg’s Makefile).

Duncan White (Imperial) Building your own C Toolkit: Part 2 5th June 2014 8 / 15

Optimization and Profiling tarball 06.hash-profile

gcc and most other C compilers can be asked to optimize the
code they generate, gcc’s option for this is -O. Worth trying,
rarely makes a significant difference.

What makes far more difference is finding the hot spots using a
profiler and selectively optimizing them. Can produce dramatic
speedups, and profiling often produces surprises.

Let’s try profiling the bugfixed hash module’s iterate 10000 test
program, and see what surprises there may be:

Add -pg to CFLAGS and LDLIBS in Makefile.
Run make clean all (compile and link with -pg, which generates
instrumented code which tracks function entry and exit times.
Run ./iterate 10000, which runs a bit slower than normal
(because profiling slows it down a bit), producing a binary
profiling file called gmon.out.
The tool gprof then analyzes the executable and the data file,
producing a report showing the top 10 functions (across all their
calls) sorted by percentage of total runtime. Run:
gprof ./iterate gmon.out > profile.orig

Duncan White (Imperial) Building your own C Toolkit: Part 2 5th June 2014 9 / 15

Optimization and Profiling tarball 06.hash-profile

head profile.orig shows results like:

% cumul self self total

time seconds seconds calls us/call us/call name

38.71 3.37 3.37 20000 168.37 206.96 hashFree

22.92 5.36 1.99 10000 199.44 289.14 hashCopy

11.29 6.34 0.98 10000 98.22 98.22 hashCreate

10.31 7.24 0.90 325330000 0.00 0.00 copy_tree

8.87 8.01 0.77 650660000 0.00 0.00 free_tree

650 million calls to free tree and 325 million calls to copy tree are
suspicious. Aha! The hash table’s array of trees has 32533 entries!

hashFree and hashCopy have the same structure, iterating over the
array of trees making one call to free tree/copy tree per tree. The vast
majority of these trees are empty.

We can double the speed of iterate by adding if(the tree != NULL)
conditions on tree calls in hashFree, hashCopy and others.

We might also consider shrinking the size of the array of trees to some
smaller prime number - or, more radically, adding code to dynamically
resize the array (and rehash all the keys) when the hash gets full.

Duncan White (Imperial) Building your own C Toolkit: Part 2 5th June 2014 10 / 15

Autogenerating ADTs datadec (08.datadec/09.datadec-eg)

Principle: It’s often an excellent idea to import cool features
from other languages.

For example, Perl teaches us the importance of hashes (aka Java
dictionaries) - (key,value) storage implemented using hash tables.
We’ve already seen a hash module bring this ability to C.

Many years ago, I realised that one of the best features of
functional programming languages such as Haskell is the ability
to define inductive data types, as in:

intlist = nil or cons(int head, intlist tail);

I’d dearly love to have that ability in C. If only there was a tool
that reads such type definitions and automatically writes a C
module that implements them..

I looked around, couldn’t find anything anywhere. Noone seemed
to have ever suggested that such a tool could be useful!

Decision time: do I abandon my brilliant idea, or make the tool?

Think hard: a serious tool, parser, lexical analyser, data
structures, tree walking code generator: at least a week’s work!

Duncan White (Imperial) Building your own C Toolkit: Part 2 5th June 2014 11 / 15

Autogenerating ADTs datadec (08.datadec/09.datadec-eg)

I made the tool! After a fortnight’s work, the result was datadec
- in the 08.datadec directory, older version installed on DoC linux
machines. After installing it, use it as follows:

In 09.datadec-eg you’ll find an input file types.in containing:

TYPE {

intlist = nil or cons(int first, intlist next);

illist = nil or cons(intlist first, illist next);

idtree = leaf(string id)

or node(idtree left, idtree right);

}

To generate a C module called datatypes from types.in, invoke:

datadec datatypes types.in

datatypes.c and datatypes.h are normal C files, you can read them,
write test programs against the interface, use them in production code.
But don’t modify these files - if you do then you can’t...

... change types.in later - suppose you realise that an idtree node needs
to store an id as well as the trees. Change the type defn, rerun
datadec. The idtree_node() constructor now takes 3 arguments!

Duncan White (Imperial) Building your own C Toolkit: Part 2 5th June 2014 12 / 15

Autogenerating ADTs datadec (08.datadec/09.datadec-eg)

Let’s look inside datatypes.h, to find what idtree functions
datadec generates. First we find two constructors:

extern idtree idtree_leaf(string);

extern idtree idtree_node(idtree, idtree);

Then we find a function telling you whether a tree is a leaf or a node:
extern kind_of_idtree idtree_kind(idtree);

Using the enumerated type:
typedef enum { idtree_is_leaf, idtree_is_node } kind_of_idtree;

Then two deconstructor functions which, given a tree of the appropriate
shape, breaks it into it’s constituent pieces:

extern void get_idtree_leaf(idtree, string *);

extern void get_idtree_node(idtree, idtree *, idtree *);

The final function prints a tree to a file in human readable format
(which you can control):

extern void print_idtree(FILE *, idtree);

By default, there’s no free functions. Surprisingly hard to automatically
generate due to shallow vs deep considerations.

New this year: run datadec -f.. and get experimental free TYPE()
functions. If you don’t want a parameter freed, mark it in the input file
with a ‘-’, as in:

idtree = leaf(-string id)

or node(idtree left, idtree right);

Duncan White (Imperial) Building your own C Toolkit: Part 2 5th June 2014 13 / 15

Autogenerating ADTs datadec (08.datadec/09.datadec-eg)

Looking in testidtree.c, we build two leaves, and then test that
we can break them apart again:

idtree t1 = idtree_leaf("absolutely");

testleaf(t1, "absolutely", "ab");

idtree t2 = idtree_leaf("fabulous");

testleaf(t2, "fabulous", "fab");

testleaf(t, expected, treename) tests that t is a leaf with the expected
id, treename is a symbolic name for the tree:

void testleaf(idtree t, char *expected, char *treename)

{

char label[1024];

sprintf(label, "isnode(%s)", treename);

inteqtest(idtree_kind(t), idtree_is_leaf, label);

string id;

get_idtree_leaf(t, &id);

sprintf(label, "getleaf(%s)", treename);

streqtest(id, expected, label);

}

inteqtest(value, expected, label) and streqtest(value, expected, label)
are integer and string equality tests that print ok/fail messages.
Next, testidtree.c constructs a node from our two leaves, and tests that
we can break it apart correctly:

idtree t = idtree_node(t1, t2);

inteqtest(idtree_kind(t), idtree_is_node,

"isnode((ab,fab))");

idtree l, r;

get_idtree_node(t, &l, &r);

testleaf(l, "absolutely", "left((ab,fab))");

testleaf(r, "fabulous", "right((ab,fab))");

Duncan White (Imperial) Building your own C Toolkit: Part 2 5th June 2014 14 / 15

Reusable ADT modules hashes, lists, trees, sets etc

Most problems are made a lot easier by having a library of
trusted modules - whether datadec-generated or handwritten:

indefinite length dynamic strings
indefinite length dynamic arrays
indefinite length sparse dynamic arrays
linked lists (single or double linked)
stacks (can just use lists)
queues and priority queues
binary trees
hashes
sets - hashes with no values? trees? sparse arrays?
bags - frequency hashes
anything else you find useful (.ini file parsers? test frameworks?)

The C standard library fails to provide any of the following (C++
provides the Standard Template Library): So build them yourself
as and when you need them, and reuse them at every
opportunity, to raise C to a higher level!

Reuse can be done without object orientation, it’s not hard!

Duncan White (Imperial) Building your own C Toolkit: Part 2 5th June 2014 15 / 15

	Today's Contents
	Generating Prototypes Automatically
	proto: (tarball 01.proto)

	Fixing memory leaks
	libmem (tarball 02.libmem/03.mem-eg)
	Large-scale leaks (tarball 04.badhash/05.badhash+mem)

	Optimization and Profiling
	tarball 06.hash-profile

	Autogenerating ADTs
	datadec (08.datadec/09.datadec-eg)

	Reusable ADT modules
	hashes, lists, trees, sets etc

