
Building your own C Toolkit: Part 3

Duncan C. White,
d.white@imperial.ac.uk

Dept of Computing,
Imperial College London

12th June 2014

Duncan White (Imperial) Building your own C Toolkit: Part 3 12th June 2014 1 / 15

Today’s Contents

Last week, we continued the idea of building a C programming
toolkit, covering:

Generating prototypes automatically: proto.
Fixing memory leaks: libmem.
Optimization and Profiling.
Generating ADT modules automatically.
Reusable ADT modules: hashes, sets, lists, trees etc.

Today, we’re going to finish off our C Tools lectures, and cover:

Parser and Lexer Generator tools: Yacc and Lex.

As last week, there’s a tarball of examples associated with this
lecture. Both lectures’ slides and tarballs are available on CATE
and at: http://www.doc.ic.ac.uk/~dcw/c-tools-2014/

Duncan White (Imperial) Building your own C Toolkit: Part 3 12th June 2014 2 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression Parsing (01.expr1)

Scaling the previous idea of little languages up, you often need to
write parsers and lexical analysers. This problem has been solved!
Like Datadec, Lex and Yacc generate C code from declarative
definitions of tokens and language grammars.
As a simple example, consider integer constant expressions such
as 3*(10+16*(123/3) mod 7). The basic ‘tokens’ needed are:

Numeric constants (eg ‘123’).
Various one-character operators (eg. ‘(’, ‘+’, ‘*’, ‘)’ etc).
A Haskell-inspired keyword ‘mod’ (i.e. modulus, ‘%’ in C terms).

Specify the input tokens as regular expressions:
[0-9]+ return NUMBER;

\+ return PLUS;

- return MINUS;

* return MUL;

\/ return DIV;

mod return MOD;

\(return OPEN;

\) return CLOSE;

\n /* ignore end of line */;

[\t]+ /* ignore whitespace */;

. return TOKERR;

See lexer.l for the full Lex input file, containing the above rules and
some prelude. This file can be turned into C code via: lex -o lexer.c
lexer.l.

Duncan White (Imperial) Building your own C Toolkit: Part 3 12th June 2014 3 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression Parsing (01.expr1)

These tokens can be combined to form expressions using the
following BNF-style grammar rules (in Yacc-format):

%token PLUS MINUS MUL DIV MOD OPEN CLOSE TOKERR

%token NUMBER

%start oneexpr

%%

oneexpr : expr

;

expr : expr PLUS term

| expr MINUS term

| term

;

term : term MUL factor

| term DIV factor

| term MOD factor

| factor

;

factor : NUMBER

| OPEN expr CLOSE

;

parser.y contains these rules plus some Yacc-specific prelude, including
a short main program that calls the parser. This can be turned into C
code (parser.c and parser.h) via: yacc -vd -o parser.c parser.y

You can now compile and link parser.c and lexer.c to form expr1, just
type make. See the Makefile for details. expr1 is a recognizer: it will
say whether or not the expression (on standard input) is valid.

Duncan White (Imperial) Building your own C Toolkit: Part 3 12th June 2014 4 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression calculator (02.expr2)

Directory 02.expr2 extends our recognizer so that it calculates
the value of the expression and displays it. There are two sets of
changes from the previous version:
First, we modify one line in lexer.l to store the value of the
integer constant into ‘yylval.n’:

[0-9]+ yylval.n=atoi(yytext); return NUMBER;

Second, in parser.y there are several changes: add to the prelude:
static int expr_result = 0;

Then make main display the result after a successful parse:
printf("result: %d\n", expr_result);

Above the token definitions, add:
%union { int n; }

%token <n> NUMBER

%type <n> expr term factor

Add actions to grammar rules with more than one sub-part, taking the
calculated value from each sub-part and computing the result, plus a
top level action which sets expr result. Here’s a sample:

oneexpr : expr { expr_result = $1; }

;

expr : expr PLUS term { $$ = $1 + $3; }

| expr MINUS term { $$ = $1 - $3; }

| term

;

term : term MUL factor { $$ = $1 * $3; }

| term DIV factor { $$ = $1 / $3; }

...

After make we have expr2, an expression calculator. Play with it.
Duncan White (Imperial) Building your own C Toolkit: Part 3 12th June 2014 5 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression calculator with named constants (03.expr3)

Directory 03.expr3 extends our calculator, allowing a factor to be
an identifier - an IDENT token, representing a named constant.
There are three sets of changes from the previous version:

Add a new consthash module, which stores our named constants.
Add a line in lexer.l to recognise and return our new token:

[a-z][a-z0-9]* yylval.s=strdup(yytext);return IDENT;

parser.y has several changes: add to the prelude:
#include "consthash.h"

Then main needs to create the constant hash right at the start, destroy
it at the end:

init_consthash(argc > 1);

if(yyparse()....

destroy_consthash();

Change the union declaration to:
%union { int n; char *s; }

Tell the parser that IDENT builds a string:
%token <s> IDENT

Add the new factor rule:
| IDENT { $$ = lookup_const($1); }

After make we have expr3, a calculator with named constants. Play
with it.

Duncan White (Imperial) Building your own C Toolkit: Part 3 12th June 2014 6 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression treebuilder (05.expr5)

Directory 05.expr5 contains our final Yacc/Lex expression
example, which replaces calculation with treebuilding (using
Datadec): prepare types.in, add Makefile rules:
TYPE {

arithop = plus or minus or times or divide or mod;

expr = num(int n)

or id(string s)

or binop(expr l, arithop op, expr r)

;

}

parser.y has several changes: add to the prelude:
#include "types.h"

Change expr result from an int to an expr:
static expr expr_result = NULL;

main should print out the expression tree (on parse success):
print_expr(stdout, expr_result);

Change the union declaration to:
%union { int n; char *s; expr e; }

Change the type of all expression rules to e, the union’s expr:
%type <e> expr term factor

Change all the actions, for example:
expr : expr PLUS term { $$ = expr_binop($1, arithop_plus(), $3); }

| expr MINUS term { $$ = expr_binop($1, arithop_minus(), $3); }

...

factor : NUMBER { $$ = expr_num($1); }

| IDENT { $$ = expr_id($1); }

After make we have expr5, an expression parser and treebuilder.

Duncan White (Imperial) Building your own C Toolkit: Part 3 12th June 2014 7 / 15

Parser and Lexer Generator tools: Yacc and Lex HS: Tiny Haskell Subset: (06.hs-treebuilder)

Expressions are hardly impressive! But Yacc, Lex and Datadec
easily scale to much larger languages.
Let’s define a tiny Haskell subset (called HS) build a Lexer and
Parser using Lex and Yacc, build an Abstract Syntax Tree using
datadec, then add parse actions to build our AST.
Ok, what Haskell subset? Specifically, we’ll allow:

Zero-or-more function definitions, with optional type definitions,
Taking and returning a single integer value,
Implemented either by a single expression, or
A sequence of guarded expressions involving simple boolean
expressions, eg. x==0,
Followed by a compulsory integer expression (often a call to one of
the functions defined earlier).

For example:
f x = 1

abs x | x>0 = x

| x==0 = 0

| 0>x = 0-x

f(20) + abs(10) * 30

In a break with strict Haskell-syntax, we’ll decide that brackets on a
function call like abs(10) are compulsory.

Duncan White (Imperial) Building your own C Toolkit: Part 3 12th June 2014 8 / 15

Parser and Lexer Generator tools: Yacc and Lex HS: Tiny Haskell Subset: (06.hs-treebuilder)

Note in passing that we reuse (and extend) our expression
grammar rules – hence any valid expression is also a valid HS
program, one with no function definitions.

Ok, first we define our lexer rules, regexps and tokens:
[0-9]+ yylval.n=atoi(yytext); return NUMBER;

mod return MOD;

Int return INTTYPE;

True return TRUEV;

[a-z][a-z0-9]* yylval.s=strdup(yytext);return IDENT;

:: return COLONCOLON;

-> return IMPLIES;

== return EQ;

= return IS;

> return GT;

!= return NE;

\+ return PLUS;

- return MINUS;

* return MUL;

\/ return DIV;

\(return OPEN;

\) return CLOSE;

\| return GUARD;

\n /* ignore end of line */;

[\t]+ /* ignore whitespace */;

. return TOKERR;

Note that we are being extremely minimal with our tokens, including
(for example) True but not False.

Duncan White (Imperial) Building your own C Toolkit: Part 3 12th June 2014 9 / 15

Parser and Lexer Generator tools: Yacc and Lex HS: Tiny Haskell Subset: (06.hs-treebuilder)

As usual, our grammar and (datadec-generated) AST intertwine,
let’s start by looking at types.in - our datadec input file:

arithop = plus or minus or times or divide or mod;

expr = num(int n)

or id(string s)

or call(string s, expr e)

or binop(expr l, arithop op, expr r);

boolop = eq or ne or gt;

bexpr = truev

or binop(expr l, boolop op, expr r);

guard = pair(bexpr cond, expr e);

guardlist = nil

or cons(guard hd, guardlist tl);

fdefn = onerule(string fname, string param, expr e)

or manyrules(string fname, string param, guardlist l);

flist = nil

or cons(fdefn hd, flist tl);

program = pair(flist l, expr e);

In parser.y, here’s our %union declaration, which lists all possible types
of data associated with tokens and grammar rules:

%union

{

int n;

char *s;

expr e;

bexpr b;

guard g;

guardlist gl;

fdefn f;

flist fl;

}

Duncan White (Imperial) Building your own C Toolkit: Part 3 12th June 2014 10 / 15

Parser and Lexer Generator tools: Yacc and Lex HS: Tiny Haskell Subset: (06.hs-treebuilder)

Here are some of the declarations that associate tokens and
grammar rules with specific members of the union:

%token <n> NUMBER

%token <s> IDENT

%type <e> factor term expr

%type bexpr

%type <g> guard;

...

Let’s look at a few grammar rules to give a flavour:
program : defns expr { prog_result = program_pair($1, $2); }

;

defns : /* empty */ { $$ = flist_nil(); }

| defns ftypedefn /* ignore type defns */

| defns fdefinition { $$ = flist_cons($2, $1); }

;

ftypedefn : IDENT COLONCOLON type IMPLIES type { free_string($1); }

;

type : INTTYPE;

fdefinition : IDENT IDENT IS expr { $$ = fdefn_onerule($1, $2, $4); }

| IDENT IDENT guardrules

{

guardlist rightorder = reverse_guardlist($3);

$$ = fdefn_manyrules($1, $2, rightorder);

free_guardlist_without_guard($3);

}

;

guardrules : guard { $$ = guardlist_cons($1, guardlist_nil()); }

| guardrules guard { $$ = guardlist_cons($2, $1); }

;

...

Duncan White (Imperial) Building your own C Toolkit: Part 3 12th June 2014 11 / 15

Parser and Lexer Generator tools: Yacc and Lex HS: Tiny Haskell Subset: (06.hs-treebuilder)

Note that recursive rules in Yacc, such as:
guardrules : guardrules guard

must place the recursive invocation first, hence when we build the AST
guardlist it’s in the reverse order. To fix this, we defined our own
reverse guardlist() function in the prelude.
New this year: having added experimental free TYPE() support to
datadec, I’ve attempted to free() everything I malloc() (using libmem
to help out). The reversing exposes a shared pointers subtlety: we build
a new guardlist with the same heads (guards) as the original list. We
must only free each guard once!
To fix this, we had to add free guardlist without guard() to the prelude,
and call it from the above Yacc action to free the original guardlist.
free guardlist without guard() is a copy of the automatically generated
free guardlist() function, with the free guard(head) call commented out.
Finally, datadec has a feature I didn’t mention last time, you can
specify how to print each shape of each data type via print hints. Read
datadec’s man page, and look inside types.in to see how this works.
Putting it altogether, adding named constants (via the hash module),
and generating some boilerplate using our tiny tool from the first
lecture, we end up with a HS (Haskell subset) parser and treebuilder.
Give it a try!

Duncan White (Imperial) Building your own C Toolkit: Part 3 12th June 2014 12 / 15

Parser and Lexer Generator tools: Yacc and Lex HS cont: (07.hs-codegen)

07.hs-codegen extends our treebuilder, adding semantic checking
(eg. checking that every function call is to a defined function)
and then code generation - translating HS to C!

How do we do semantic checks? A semantic checker involves
walking the AST and building convenient data structures. We
create two hashes: one maps from functionname to AST function
definition (for every defined function); the other represents a set
of all called functions. Then we check that every called function
is defined, exactly once.

How do we do code generation? A code generator is just another
ASTwalker, one with suitable print statements!

In fact, using datadec’s print hints mechanism, 80% of the C
code generation was done by making each AST type print itself
in valid C form. The remaining 20% was custom C code, mainly
printing boilerplate and then invoking datadec-generated
print TYPE() functions.

Duncan White (Imperial) Building your own C Toolkit: Part 3 12th June 2014 13 / 15

Parser and Lexer Generator tools: Yacc and Lex HS cont: (07.hs-codegen and 08.hs2dafny-codege)

We’re now using so many tools to build our code, let’s see what
percentage of the source code we’re writing manually.

In 07.hs-codegen there are approx 5400 lines of C code (including
headers), we wrote about 900 lines ourselves. That’s about 16 %.

Left for you: Remember Dafny from Sophia’s first year logic
lectures?

08.hs2dafny-codegen translates HS to Dafny for verification.

The basic work we need to do is change the codegen treewalker
and some of the print hints.

In fact, I made a few extra changes to generate better Dafny
code: added a few more boolean operators and an ”otherwise”
keyword, and sneakily overrode one of the datadec-generated
print functions with one I wrote myself.

I didn’t have the time to add libmem checking to this version,
feel free to have a go yourself.

Duncan White (Imperial) Building your own C Toolkit: Part 3 12th June 2014 14 / 15

Summary Everyone needs their toolkit!

Follow 100,000 years of human history by tool-using and
tool-making. Build yourself a powerful toolkit. Choose tools you
like; become expert in each.

When necessary, build tools yourself to solve problems that
irritate you. Don’t be afraid! Try to build tools that save you
more time than they cost you to make.

I didn’t mention: regular expression libraries; all the things you
can do with function pointers; text processing tools; OO
programming in C etc etc.

Most importantly: enjoy your C programming! Build your toolkit
- and let me know if you write any particularly cool tools!

Finally, scripting languages like Perl, Ruby or Python are
fantastic timesavers. I run a Perl course each January, notes
available at: http://www.doc.ic.ac.uk/~dcw/perl2013/

Duncan White (Imperial) Building your own C Toolkit: Part 3 12th June 2014 15 / 15

	Today's Contents
	Parser and Lexer Generator tools: Yacc and Lex
	Expression Parsing (01.expr1)
	Expression calculator (02.expr2)
	Expression calculator with named constants (03.expr3)
	Expression treebuilder (05.expr5)
	HS: Tiny Haskell Subset: (06.hs-treebuilder)
	HS cont: (07.hs-codegen)
	HS cont: (07.hs-codegen and 08.hs2dafny-codege)

	Summary
	Everyone needs their toolkit!

