C Programming Tools: Part 4
Building and Using your own Toolkit

Duncan C. White i Evangelos Ververas

d.white@imperial.ac.uk e.ververas16@imperial.ac.uk
9 4 R 4

Dept of Computing,
Imperial College London

15th June 2017

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 1/15

mailto:d.white@imperial.ac.uk
mailto:e.ververas16@imperial.ac.uk

Today's Contents

@ Last week, we started building our own tools when necessary, at a range of scales
from tiny to large.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 2/15

Today's Contents

@ Last week, we started building our own tools when necessary, at a range of scales

from tiny to large.
@ Some of our tools there - in particular, Datadec - were code generators - programs

that write programs.

C Programming Tools: Part 4 15th June 2017 2/15

Duncan White & Evangelos Ververas (Imperial)

Today's Contents

@ Last week, we started building our own tools when necessary, at a range of scales
from tiny to large.

@ Some of our tools there - in particular, Datadec - were code generators - programs
that write programs. Or as the Pragmatic Programmers put it: Write Code that
Writes Code (Tip 29).

C Programming Tools: Part 4 15th June 2017 2/15

Duncan White & Evangelos Ververas (Imperial)

Today's Contents

@ Last week, we started building our own tools when necessary, at a range of scales
from tiny to large.

@ Some of our tools there - in particular, Datadec - were code generators - programs
that write programs. Or as the Pragmatic Programmers put it: Write Code that
Writes Code (Tip 29).

@ Such tools defined some Little Language or Domain Specific Language to make our
lives easier, and then translated that into (say) valid C code.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 2/15

Today's Contents

@ Last week, we started building our own tools when necessary, at a range of scales
from tiny to large.
@ Some of our tools there - in particular, Datadec - were code generators - programs

that write programs. Or as the Pragmatic Programmers put it: Write Code that
Writes Code (Tip 29).

@ Such tools defined some Little Language or Domain Specific Language to make our
lives easier, and then translated that into (say) valid C code.

@ Today, in the last C Programming Tools lecture, we'll find how to make writing code
generators for little languages even easier.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 2/15

Today's Contents

@ Last week, we started building our own tools when necessary, at a range of scales
from tiny to large.

@ Some of our tools there - in particular, Datadec - were code generators - programs
that write programs. Or as the Pragmatic Programmers put it: Write Code that
Writes Code (Tip 29).

@ Such tools defined some Little Language or Domain Specific Language to make our
lives easier, and then translated that into (say) valid C code.

@ Today, in the last C Programming Tools lecture, we'll find how to make writing code
generators for little languages even easier.

@ Specifically, by using Parser and Lexer Generator tools: Yacc and Lex.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 2/15

Today's Contents

@ Last week, we started building our own tools when necessary, at a range of scales
from tiny to large.

@ Some of our tools there - in particular, Datadec - were code generators - programs
that write programs. Or as the Pragmatic Programmers put it: Write Code that
Writes Code (Tip 29).

@ Such tools defined some Little Language or Domain Specific Language to make our
lives easier, and then translated that into (say) valid C code.

@ Today, in the last C Programming Tools lecture, we'll find how to make writing code
generators for little languages even easier.

@ Specifically, by using Parser and Lexer Generator tools: Yacc and Lex.

@ As always, there's a tarball of examples associated with this lecture. The handout

and tarballs are available on CATE and at:
http://www.doc.ic.ac.uk/"dcw/c-tools-2017/lecture4/

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 2/15

Parser and Lexer Generator tools: Yacc and Lex [SSIEEIONEISTT-A(NSLTaH)]

@ Whenever you define a little language and want to write a code generator for it, the
first step is writing parsers and lexical analysers.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 3/15

Parser and Lexer Generator tools: Yacc and Lex [SSIEEIONEISTT-A(NSLTaH)]

@ Whenever you define a little language and want to write a code generator for it, the
first step is writing parsers and lexical analysers. This problem has been solved! Lex
and Yacc generate C code from declarative definitions of tokens and grammars.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 3/15

Parser and Lexer Generator tools: Yacc and Lex [SSIEEIONEISTT-A(NSLTaH)]

@ Whenever you define a little language and want to write a code generator for it, the
first step is writing parsers and lexical analysers. This problem has been solved! Lex
and Yacc generate C code from declarative definitions of tokens and grammars.

@ As a simple example, consider integer constant expressions such as
3% (10+16%*(123/3) mod 7).

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 3/15

Parser and Lexer Generator tools: Yacc and Lex [SSIEEIONEISTT-A(NSLTaH)]

@ Whenever you define a little language and want to write a code generator for it, the
first step is writing parsers and lexical analysers. This problem has been solved! Lex
and Yacc generate C code from declarative definitions of tokens and grammars.

@ As a simple example, consider integer constant expressions such as
3*(10+16%(123/3) mod 7). The basic ‘tokens’ needed are:
o Numeric constants (eg ‘123').
o Various one-character operators (eg. ‘(, ‘+', ¥, ‘)’ etc).
o A Haskell-inspired keyword ‘mod’ (i.e. modulus, ‘%" in C terms).

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 3/15

Parser and Lexer Generator tools: Yacc and Lex [SSIEEIONEISTT-A(NSLTaH)]

@ Whenever you define a little language and want to write a code generator for it, the
first step is writing parsers and lexical analysers. This problem has been solved! Lex
and Yacc generate C code from declarative definitions of tokens and grammars.

@ As a simple example, consider integer constant expressions such as
3*(10+16%(123/3) mod 7). The basic ‘tokens’ needed are:
o Numeric constants (eg ‘123').
o Various one-character operators (eg. ‘(, ‘+', ¥, ‘)’ etc).
o A Haskell-inspired keyword ‘mod’ (i.e. modulus, ‘%" in C terms).

e With Lex, specify the tokens as regular expression/action pairs:

[0-91+ return NUMBER;
\+ return PLUS;
- return MINUS;
* return MUL;
\/ return DIV;
mod return MOD;
\ (return OPEN;
\) return CLOSE;

[\t\nl+ /* ignore whitespace */;
. return TOKERR;

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017

3/15

Parser and Lexer Generator tools: Yacc and Lex [SSIEEIONEISTT-A(NSLTaH)]

@ Whenever you define a little language and want to write a code generator for it, the
first step is writing parsers and lexical analysers. This problem has been solved! Lex
and Yacc generate C code from declarative definitions of tokens and grammars.

@ As a simple example, consider integer constant expressions such as
3*(10+16%(123/3) mod 7). The basic ‘tokens’ needed are:
o Numeric constants (eg ‘123').
o Various one-character operators (eg. ‘(, ‘+', ¥, ‘)’ etc).
o A Haskell-inspired keyword ‘mod’ (i.e. modulus, ‘%" in C terms).

e With Lex, specify the tokens as regular expression/action pairs:

[0-91+ return NUMBER;
\+ return PLUS;
- return MINUS;
* return MUL;
\/ return DIV;
mod return MOD;
\ (return OPEN;
\) return CLOSE;

[\t\nl+ /* ignore whitespace */;
. return TOKERR;

@ See lexer.| for the full Lex input file, containing the above plus some prelude. This file can be
turned into C code via: lex -o lexer.c lexer.l.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 3/15

Parser and Lexer Generator tools: Yacc and Lex [SSIEEIONEISTT-A(NSLTaH)]

@ These tokens can be combined to form expressions using the following BNF-style

grammar rules (in Yacc-format):
%token PLUS MINUS MUL DIV MOD OPEN CLOSE TOKERR
%token NUMBER

%start here

h

here : expr
;

expr : expr PLUS term
| expr MINUS term
| term
H

term : term MUL factor
| term DIV factor
| term MOD factor
| factor
H

factor : NUMBER

OPEN expr CLOSE

Duncan White & Evange erveras (Imperial) C Programming Tools: Part 4 15th June 2017 4/15

Parser and Lexer Generator tools: Yacc and Lex [SSIEEIONEISTT-A(NSLTaH)]

@ These tokens can be combined to form expressions using the following BNF-style

grammar rules (in Yacc-format):
%token PLUS MINUS MUL DIV MOD OPEN CLOSE TOKERR
%token NUMBER

%start here

h

here : expr
;

expr : expr PLUS term
| expr MINUS term
| term
H

term : term MUL factor
| term DIV factor
| term MOD factor
| factor
H

factor : NUMBER

OPEN expr CLOSE

@ parser.y contains these rules plus some Yacc-specific prelude, including a short main program
that calls the parser. This can be turned into C code (parser.c and parser.h) via: yacc -vd -o

parser.c parser.y

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 4/15

Parser and Lexer Generator tools: Yacc and Lex [SSIEEIONEISTT-A(NSLTaH)]

@ These tokens can be combined to form expressions using the following BNF-style

grammar rules (in Yacc-format):
%token PLUS MINUS MUL DIV MOD OPEN CLOSE TOKERR
%token NUMBER

%start here
Wh

here : expr
;

expr : expr PLUS term
| expr MINUS term
| term
H

term : term MUL factor

term DIV factor
term MOD factor
factor

factor : NUMBER
OPEN expr CLOSE

@ parser.y contains these rules plus some Yacc-specific prelude, including a short main program
that calls the parser. This can be turned into C code (parser.c and parser.h) via: yacc -vd -o

parser.c parser.y
@ You can now compile and link parser.c and lexer.c to form exprl, just type make. See the
Makefile for details.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 4/15

Parser and Lexer Generator tools: Yacc and Lex [SSIEEIONEISTT-A(NSLTaH)]

@ These tokens can be combined to form expressions using the following BNF-style

grammar rules (in Yacc-format):
%token PLUS MINUS MUL DIV MOD OPEN CLOSE TOKERR
%token NUMBER

%start here

Y7

here : expr
;

expr : expr PLUS term
| expr MINUS term
| term
H

term : term MUL factor

term DIV factor
term MOD factor
factor

factor : NUMBER
OPEN expr CLOSE

@ parser.y contains these rules plus some Yacc-specific prelude, including a short main program
that calls the parser. This can be turned into C code (parser.c and parser.h) via: yacc -vd -o

parser.c parser.y

@ You can now compile and link parser.c and lexer.c to form exprl, just type make. See the
Makefile for details. exprl is a recognizer: it will say whether or not the expression (on
standard input) is valid.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 4/15

FETESE N RSE SN EII TR I R ElE I WRNEl Expression calculator (02.expr2)

@ Directory 02.expr2 extends our recognizer so that it calculates the value of the
expression and displays it. There are two sets of changes from the previous version:

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 5/15

FETESE N RSE SN EII TR I R ElE I WRNEl Expression calculator (02.expr2)

@ Directory 02.expr2 extends our recognizer so that it calculates the value of the

expression and displays it. There are two sets of changes from the previous version:

o First, we modify one line in lexer.| to store the integer constant value into ‘yylval.n’:
[0-91+ yylval.n=atoi(yytext); return NUMBER;

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 5/15

FETESE N RSE SN EII TR I R ElE I WRNEl Expression calculator (02.expr2)

@ Directory 02.expr2 extends our recognizer so that it calculates the value of the
expression and displays it. There are two sets of changes from the previous version:

o First, we modify one line in lexer.| to store the integer constant value into ‘yylval.n’:
[0-91+ yylval.n=atoi(yytext); return NUMBER;

@ Second, in parser.y there are several changes: add to the prelude:

static int expr_result = 0;

C Programming Tools: Part 4 15th June 2017 5/15

Duncan White & Evangelos Ververas (Imperial)

FETESE N RSE SN EII TR I R ElE I WRNEl Expression calculator (02.expr2)

@ Directory 02.expr2 extends our recognizer so that it calculates the value of the
expression and displays it. There are two sets of changes from the previous version:

o First, we modify one line in lexer.| to store the integer constant value into ‘yylval.n’:
[0-91+ yylval.n=atoi(yytext); return NUMBER;

@ Second, in parser.y there are several changes: add to the prelude:
static int expr_result = 0;
Then make main display the result after a successful parse:
printf("result: %d\n", expr_result);

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 5/15

FETESE N RSE SN EII TR I R ElE I WRNEl Expression calculator (02.expr2)

@ Directory 02.expr2 extends our recognizer so that it calculates the value of the

expression and displays it. There are two sets of changes from the previous version:

o First, we modify one line in lexer.| to store the integer constant value into ‘yylval.n’:
[0-91+ yylval.n=atoi(yytext); return NUMBER;

@ Second, in parser.y there are several changes: add to the prelude:
static int expr_result = 0;

Then make main display the result after a successful parse:
printf("result: %d\n", expr_result);

@ Above the token definitions, add:

%union { int n; }
%token <n> NUMBER
%type <n> expr term factor

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 5/15

FETESE N RSE SN EII TR I R ElE I WRNEl Expression calculator (02.expr2)

@ Directory 02.expr2 extends our recognizer so that it calculates the value of the

expression and displays it. There are two sets of changes from the previous version:
o First, we modify one line in lexer.| to store the integer constant value into ‘yylval.n’:
[0-91+ yylval.n=atoi(yytext); return NUMBER;
@ Second, in parser.y there are several changes: add to the prelude:

static int expr_result = 0;
Then make main display the result after a successful parse:
printf("result: %d\n", expr_result);

@ Above the token definitions, add:

Y%union { int n; }
%token <n> NUMBER
%type <n> expr term factor
@ Add actions to grammar rules taking the calculated value from each sub-part and computing
the result, plus a top level action which sets expr_result. Here's a sample:

here 1 expr { expr_result = $1; }
expr : expr PLUS term { $$ = $1 + $3; }

| expr MINUS term { $$ = $1 - $3; }

| term {83 = 813 ¥
term : term MUL factor { $$ H

o
@
hed
*
@
@

$1/ $3; }

term DIV factor { $$

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 5/15

FETESE N RSE SN EII TR I R ElE I WRNEl Expression calculator (02.expr2)

@ Directory 02.expr2 extends our recognizer so that it calculates the value of the

expression and displays it. There are two sets of changes from the previous version:
o First, we modify one line in lexer.| to store the integer constant value into ‘yylval.n’:
[0-91+ yylval.n=atoi(yytext); return NUMBER;
@ Second, in parser.y there are several changes: add to the prelude:

static int expr_result = 0;
Then make main display the result after a successful parse:
printf("result: %d\n", expr_result);

@ Above the token definitions, add:

Y%union { int n; }
%token <n> NUMBER
%type <n> expr term factor
@ Add actions to grammar rules taking the calculated value from each sub-part and computing
the result, plus a top level action which sets expr_result. Here's a sample:

here 1 expr { expr_result = $1; }
expr : expr PLUS term { $$ = $1 + $3; }

| expr MINUS term { $$ = $1 - $3; }

| term {83 = 813 ¥
term : term MUL factor { $$ H

o
@
hed
*
@
@

term DIV factor { $$ = $1 / $3; }

@ After make we have expr2, an expression calculator. Play with it.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 5/15

EEIEEEL LN RS E EIIR I I EIGEN RN Expression calculator with named constants (03.expr3)

@ Directory 03.expr3 extends our expression language, allowing a factor to be an
identifier - an IDENT token - representing a named constant. There are three sets of
changes from the previous version:

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 6 /15

EEIEEEL LN RS E EIIR I I EIGEN RN Expression calculator with named constants (03.expr3)

@ Directory 03.expr3 extends our expression language, allowing a factor to be an
identifier - an IDENT token - representing a named constant. There are three sets of

changes from the previous version:
@ Add a new consthash module, which stores our named constants.

C Programming Tools: Part 4 15th June 2017 6 /15

Duncan White & Evangelos Ververas (Imperial)

EEIEEEL LN RS E EIIR I I EIGEN RN Expression calculator with named constants (03.expr3)

@ Directory 03.expr3 extends our expression language, allowing a factor to be an
identifier - an IDENT token - representing a named constant. There are three sets of

changes from the previous version:

@ Add a new consthash module, which stores our named constants.

@ Add a line in lexer.| to recognise and return our new token:
[a-2z] [a-z0-9] * yylval.s=strdup(yytext);return IDENT;

C Programming Tools: Part 4 15th June 2017 6 /15

Duncan White & Evangelos Ververas (Imperial)

EEIEEEL LN RS E EIIR I I EIGEN RN Expression calculator with named constants (03.expr3)

@ Directory 03.expr3 extends our expression language, allowing a factor to be an
identifier - an IDENT token - representing a named constant. There are three sets of

changes from the previous version:

@ Add a new consthash module, which stores our named constants.

@ Add a line in lexer.| to recognise and return our new token:
[a-2z] [a-z0-9] * yylval.s=strdup(yytext);return IDENT;

@ parser.y has several changes: add to the prelude: #inciude "consthash.n

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 6 /15

EEIEEEL LN RS E EIIR I I EIGEN RN Expression calculator with named constants (03.expr3)

@ Directory 03.expr3 extends our expression language, allowing a factor to be an
identifier - an IDENT token - representing a named constant. There are three sets of
changes from the previous version:

@ Add a new consthash module, which stores our named constants.
@ Add a line in lexer.| to recognise and return our new token:

[a-2z] [a-z0-9] * yylval.s=strdup(yytext);return IDENT;

@ parser.y has several changes: add to the prelude: #inciude "consthash.n
Then main() needs to create the constant hash right at the start, destroy it at the end:

init_consthash(argc, argv);
if(yyparse()....
destroy_consthash() ;

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 6 /15

EEIEEEL LN RS E EIIR I I EIGEN RN Expression calculator with named constants (03.expr3)

@ Directory 03.expr3 extends our expression language, allowing a factor to be an
identifier - an IDENT token - representing a named constant. There are three sets of
changes from the previous version:

@ Add a new consthash module, which stores our named constants.
@ Add a line in lexer.| to recognise and return our new token:
[a-2z] [a-z0-9] * yylval.s=strdup(yytext);return IDENT;
@ parser.y has several changes: add to the prelude: #inciude "consthash.n
Then main() needs to create the constant hash right at the start, destroy it at the end:
init_consthash(argc, argv);

if(yyparse()....
destroy_consthash() ;

@ Change the union declaration to: %union { int n; char *s; }

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 6 /15

EEIEEEL LN RS E EIIR I I EIGEN RN Expression calculator with named constants (03.expr3)

@ Directory 03.expr3 extends our expression language, allowing a factor to be an
identifier - an IDENT token - representing a named constant. There are three sets of
changes from the previous version:

@ Add a new consthash module, which stores our named constants.

@ Add a line in lexer.| to recognise and return our new token:
[a-2z] [a-z0-9] * yylval.s=strdup(yytext);return IDENT;

@ parser.y has several changes: add to the prelude: #inciude "consthash.n
Then main() needs to create the constant hash right at the start, destroy it at the end:

init_consthash(argc, argv);
if(yyparse()....
destroy_consthash() ;

@ Change the union declaration to: %union { int n; char *s; }

@ Declare that the IDENT token has an associated string value: #token <s> 10ENT

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 6 /15

EEIEEEL LN RS E EIIR I I EIGEN RN Expression calculator with named constants (03.expr3)

@ Directory 03.expr3 extends our expression language, allowing a factor to be an
identifier - an IDENT token - representing a named constant. There are three sets of
changes from the previous version:

@ Add a new consthash module, which stores our named constants.
@ Add a line in lexer.| to recognise and return our new token:

[a-2z] [a-z0-9] * yylval.s=strdup(yytext);return IDENT;

@ parser.y has several changes: add to the prelude: #inciude "consthash.n
Then main() needs to create the constant hash right at the start, destroy it at the end:
init_consthash(argc, argv);

if(yyparse()....
destroy_consthash() ;

@ Change the union declaration to: %union { int n; char *s; }

@ Declare that the IDENT token has an associated string value: #token <s> 10ENT

@ Add the new factor rule:
| IDENT { $$ = lookup_const($1); }

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 6 /15

EEIEEEL LN RS E EIIR I I EIGEN RN Expression calculator with named constants (03.expr3)

@ Directory 03.expr3 extends our expression language, allowing a factor to be an
identifier - an IDENT token - representing a named constant. There are three sets of
changes from the previous version:

@ Add a new consthash module, which stores our named constants.

@ Add a line in lexer.| to recognise and return our new token:
[a-2z] [a-z0-9] * yylval.s=strdup(yytext);return IDENT;

@ parser.y has several changes: add to the prelude: #inciude "consthash.n
Then main() needs to create the constant hash right at the start, destroy it at the end:
init_consthash(argc, argv);

if(yyparse()....
destroy_consthash() ;

@ Change the union declaration to: %union { int n; char *s; }

@ Declare that the IDENT token has an associated string value: #token <s> 10ENT

@ Add the new factor rule:
| IDENT { $$ = lookup_const($1); }

@ After make we have expr3, a calculator with named constants. Play with it.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 6 /15

Parser and Lexer Generator tools: Yacc and Lex [ISSSEESILRIG I (VRNIG)]

@ Directory 05.expr5 contains our final Yacc/Lex expression example, which replaces
calculation with treebuilding (using Datadec).

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 7/15

Parser and Lexer Generator tools: Yacc and Lex [ISSSEESILRIG I (VRNIG)]

@ Directory 05.expr5 contains our final Yacc/Lex expression example, which replaces
calculation with treebuilding (using Datadec). Prepare types.in file:

TYPE {
arithop = plus or minus or times or divide or mod;
expr = num(int n)
or id(string s)
or binop(expr 1, arithop op, expr r);
¥

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 7/15

Parser and Lexer Generator tools: Yacc and Lex [ISSSEESILRIG I (VRNIG)]

@ Directory 05.expr5 contains our final Yacc/Lex expression example, which replaces
calculation with treebuilding (using Datadec). Prepare types.in file:

TYPE {
arithop = plus or minus or times or divide or mod;
expr = num(int n)
or id(string s)
or binop(expr 1, arithop op, expr r);
¥

@ Alter the Makefile to invoke datadec generating types.c and types.h. parser.y has several
ChangeS: add to the pre|ude: #include "types.h"

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 7/15

Parser and Lexer Generator tools: Yacc and Lex [ISSSEESILRIG I (VRNIG)]

@ Directory 05.expr5 contains our final Yacc/Lex expression example, which replaces
calculation with treebuilding (using Datadec). Prepare types.in file:

TYPE {
arithop = plus or minus or times or divide or mod;
expr = num(int n)
or id(string s)
or binop(expr 1, arithop op, expr r);
¥

@ Alter the Makefile to invoke datadec generating types.c and types.h. parser.y has several
ChangeS: add to the pre|ude: #include "types.h"
@ Change expr_result from an int to an expr: ssatic expr expr_result = NULL;

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 7/15

Parser and Lexer Generator tools: Yacc and Lex [ISSSEESILRIG I (VRNIG)]

@ Directory 05.expr5 contains our final Yacc/Lex expression example, which replaces
calculation with treebuilding (using Datadec). Prepare types.in file:

TYPE {
arithop = plus or minus or times or divide or mod;
expr = num(int n)
or id(string s)
or binop(expr 1, arithop op, expr r);
¥

@ Alter the Makefile to invoke datadec generating types.c and types.h. parser.y has several
ChangeS: add to the pre|ude: #include "types.h"

@ Change expr_result from an int to an expr: ssatic expr expr_result = NULL;
@ main should print out the expression tree (on parse success):

print_expr(stdout, expr_result);

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 7/15

Parser and Lexer Generator tools: Yacc and Lex [ISSSEESILRIG I (VRNIG)]

@ Directory 05.expr5 contains our final Yacc/Lex expression example, which replaces
calculation with treebuilding (using Datadec). Prepare types.in file:

TYPE {
arithop = plus or minus or times or divide or mod;
expr = num(int n)
or id(string s)
or binop(expr 1, arithop op, expr r);
¥

@ Alter the Makefile to invoke datadec generating types.c and types.h. parser.y has several
changes: add to the prelude: #inciude "types.n

@ Change expr_result from an int to an expr: ssatic expr expr_result = NULL;

@ main should print out the expression tree (on parse success):

print_expr(stdout, expr_result);

o Change the Union declaration tO: Y%union { int n; char *s; expr e; }

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 7/15

Parser and Lexer Generator tools: Yacc and Lex [ISSSEESILRIG I (VRNIG)]

@ Directory 05.expr5 contains our final Yacc/Lex expression example, which replaces
calculation with treebuilding (using Datadec). Prepare types.in file:

TYPE {
arithop = plus or minus or times or divide or mod;
expr = num(int n)
or id(string s)
or binop(expr 1, arithop op, expr r);
¥

@ Alter the Makefile to invoke datadec generating types.c and types.h. parser.y has several
ChangeS: add to the pre|ude: #include "types.h"

@ Change expr_result from an int to an expr: ssatic expr expr_result = NULL;
@ main should print out the expression tree (on parse success):
print_expr(stdout, expr_result);
o Change the Union declaration tO: Y%union { int n; char *s; expr e; }
@ Change the type of all expression rules to e, the union's expr: #type <e> expr term tactor

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 7/15

Parser and Lexer Generator tools: Yacc and Lex [ISSSEESILRIG I (VRNIG)]

@ Directory 05.expr5 contains our final Yacc/Lex expression example, which replaces
calculation with treebuilding (using Datadec). Prepare types.in file:

TYPE {
arithop = plus or minus or times or divide or mod;
expr = num(int n)
or id(string s)
or binop(expr 1, arithop op, expr r);
¥

@ Alter the Makefile to invoke datadec generating types.c and types.h. parser.y has several
changes: add to the prelude: #inciude "types.n

@ Change expr_result from an int to an expr: ssatic expr expr_result = NULL;

@ main should print out the expression tree (on parse success):

print_expr(stdout, expr_result);

o Change the Union declaration tO: Y%union { int n; char *s; expr e; }

Change the type of all expression rules to e, the union's expr: #type <e> expr term tactor

@ Change all the actions, for example:
expr : expr PLUS term { $$ = expr_binop($1, arithop_plus(), $3); }
| expr MINUS term { $$ = expr_binop($1, arithop_minus(), $3); }

factol"” : NUMBER { 3%
| IDENT { 3%

expr_num($1); }
expr_id($1); }

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 7/15

Parser and Lexer Generator tools: Yacc and Lex [ISSSEESILRIG I (VRNIG)]

@ Directory 05.expr5 contains our final Yacc/Lex expression example, which replaces
calculation with treebuilding (using Datadec). Prepare types.in file:

TYPE {
arithop = plus or minus or times or divide or mod;
expr = num(int n)
or id(string s)
or binop(expr 1, arithop op, expr r);
¥

@ Alter the Makefile to invoke datadec generating types.c and types.h. parser.y has several
changes: add to the prelude: #inciude "types.n

@ Change expr_result from an int to an expr: ssatic expr expr_result = NULL;

@ main should print out the expression tree (on parse success):

print_expr(stdout, expr_result);

o Change the Union declaration tO: Y%union { int n; char *s; expr e; }

Change the type of all expression rules to e, the union's expr: #type <e> expr term tactor

@ Change all the actions, for example:
expr : expr PLUS term { $$ = expr_binop($1, arithop_plus(), $3); }
| expr MINUS term { $$ = expr_binop($1, arithop_minus(), $3); }

factol"” : NUMBER { 3%
| IDENT { 3%

expr_num($1); }
expr_id($1); }

@ After make we have expr5, an expression parser and treebuilder.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 7/15

EEIEEEL LN RS ENSEIR IEGEN RGN THS: Tiny Haskell Subset: (06.ths-treebuilder)

@ Expressions are hardly impressive! But Yacc, Lex and Datadec easily scale to much
larger languages.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 8 /15

EEIEEEL LN RS ENSEIR IEGEN RGN THS: Tiny Haskell Subset: (06.ths-treebuilder)

@ Expressions are hardly impressive! But Yacc, Lex and Datadec easily scale to much
larger languages.

@ Define a tiny Haskell subset called THS, build a Lexer and Parser using Lex and Yacc,
build an Abstract Syntax Tree using Datadec, with parse actions to build our AST.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 8 /15

EEIEEEL LN RS ENSEIR IEGEN RGN THS: Tiny Haskell Subset: (06.ths-treebuilder)

@ Expressions are hardly impressive! But Yacc, Lex and Datadec easily scale to much
larger languages.

@ Define a tiny Haskell subset called THS, build a Lexer and Parser using Lex and Yacc,
build an Abstract Syntax Tree using Datadec, with parse actions to build our AST.
@ Ok, what Haskell subset? Specifically, we'll allow:
e Zero-or-more function definitions, with optional type definitions,

Followed by a compulsory integer expression (often a call to one of those functions).
Each function takes and returns a single integer value,

Each function implemented either by a single expression, or
A sequence of guarded expressions involving simple boolean expressions, eg. x==0,

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 8/15

EEIEEEL LN RS ENSEIR IEGEN RGN THS: Tiny Haskell Subset: (06.ths-treebuilder)

Expressions are hardly impressive! But Yacc, Lex and Datadec easily scale to much
larger languages.

Define a tiny Haskell subset called THS, build a Lexer and Parser using Lex and Yacc,
build an Abstract Syntax Tree using Datadec, with parse actions to build our AST.
Ok, what Haskell subset? Specifically, we'll allow:

Zero-or-more function definitions, with optional type definitions,

Followed by a compulsory integer expression (often a call to one of those functions).
Each function takes and returns a single integer value,

Each function implemented either by a single expression, or
e A sequence of guarded expressions involving simple boolean expressions, eg. x==0,

For example:
fx=1

abs x | x>0
| x==0
| 0>x

X
0
0-x

£(20) + abs(10) * 30

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 8/15

EEIEEEL LN RS ENSEIR IEGEN RGN THS: Tiny Haskell Subset: (06.ths-treebuilder)

@ Expressions are hardly impressive! But Yacc, Lex and Datadec easily scale to much
larger languages.
@ Define a tiny Haskell subset called THS, build a Lexer and Parser using Lex and Yacc,
build an Abstract Syntax Tree using Datadec, with parse actions to build our AST.
@ Ok, what Haskell subset? Specifically, we'll allow:
e Zero-or-more function definitions, with optional type definitions,
o Followed by a compulsory integer expression (often a call to one of those functions).
e Each function takes and returns a single integer value,
o Each function implemented either by a single expression, or
e A sequence of guarded expressions involving simple boolean expressions, eg. x==0,
@ For example:
fx=1
abs x | x>0 = x
| x==0 = 0
| 0>x = 0-x
£(20) + abs(10) * 30
@ In a break with strict Haskell-syntax, we'll decide that brackets on function calls like abs (10)

are compulsory.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 8 /15

EEIEEEL LN RS ENSEIR IEGEN RGN THS: Tiny Haskell Subset: (06.ths-treebuilder)

o Note in passing that we reuse (and extend) our expression grammar rules — hence
any valid expression is also a valid THS program, one with no function definitions.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 9/15

EEIEEEL LN RS ENSEIR IEGEN RGN THS: Tiny Haskell Subset: (06.ths-treebuilder)

o Note in passing that we reuse (and extend) our expression grammar rules — hence
any valid expression is also a valid THS program, one with no function definitions.

o Ok, first we define our lexer rules, regexps and actions:

[0-9]+ yylval.n=atoi(yytext); return NUMBER;
mod return MOD;
Int return INTTYPE;
True return TRUEV;
[a-z] [a-z0-9]* yylval.s=strdup(yytext);return IDENT;
HH return COLONCOLON;
-> return IMPLIES;
== return EQ;
= return IS;
return GT;
I= return NE;
\+ return PLUS;
- return MINUS;
* return MUL;
\/ return DIV;
\(return OPEN;
\) return CLOSE;
\ return GUARD;

[\t\nl+ /* ignore whitespace */;
. return TOKERR;

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 9/15

EEIEEEL LN RS ENSEIR IEGEN RGN THS: Tiny Haskell Subset: (06.ths-treebuilder)

o Note in passing that we reuse (and extend) our expression grammar rules — hence
any valid expression is also a valid THS program, one with no function definitions.

o Ok, first we define our lexer rules, regexps and actions:

[0-9]+ yylval.n=atoi(yytext); return NUMBER;
mod return MOD;
Int return INTTYPE;
True return TRUEV;
[a-z] [a-z0-9]* yylval.s=strdup(yytext);return IDENT;
HH return COLONCOLON;
-> return IMPLIES;
== return EQ;
= return IS;
return GT;
I= return NE;
\+ return PLUS;
- return MINUS;
* return MUL;
\/ return DIV;
\(return OPEN;
\) return CLOSE;
\ return GUARD;

[\t\nl+ /* ignore whitespace */;
. return TOKERR;

@ Note that we are being extremely minimal with our tokens, including (for example) True but
not False. These can trivially be added.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 9/15

EEIEEEL LN RS ENSEIR IEGEN RGN THS: Tiny Haskell Subset: (06.ths-treebuilder)

@ As usual, our grammar and (Datadec-generated) AST intertwine, let’s start by
looking at types.in - our Datadec input file:

arithop = plus or minus or times or divide or mod;
expr = num(int n)
or id(string s)
or call(string s, expr e)
or binop(expr 1, arithop op, expr r);
boolop = eq or ne or gt;
bexpr = truev
or binop(expr 1, boolop op, expr r);
guard = pair(bexpr cond, expr e);
guardlist = nil
or cons(guard hd, guardlist tl);
fdefn = onerule(string fname, string param, expr e)
or manyrules(string fname, string param, guardlist 1);
flist = nil
or cons(fdefn hd, flist tl);
program = pair(flist 1, expr e);

@ In parser.y, here's our %union declaration, which lists all possible types of data associated
with tokens and grammar rules:

%union

{
int n; char *S;
expr e; bexpr b;
guard g; guardlist gl;
fdefn f; flist f1;

}

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 10 / 15

EEIEEEL LN RS ENSEIR IEGEN RGN THS: Tiny Haskell Subset: (06.ths-treebuilder)

@ Here are some of the declarations that associate tokens and grammar rules with

specific members of the union:
%token <n> NUMBER
%token <s> IDENT
%type <e> factor term expr
%type bexpr
%type <g> guard;

@ Let's look at a few grammar rules to give a flavour:
program : defns expr { prog_result = program_pair($1, $2); }

defns : /% empty */ { $$ = flist_nilQ; }
defns ftypedefn { $$ = $1; /* ignore type defns */ }
defns fdefinition { $$ = flist_cons($2, $1); }

ftypedefn : IDENT COLONCOLON type IMPLIES type { free_string($1); }
type : INTTYPE

fdefinition : IDENT IDENT IS expr { $$ = fdefn_onerule($1, $2, $4); }
IDENT IDENT guardrules

{
guardlist rightorder = reverse_guardlist($3);
$$ = fdefn_manyrules($1, $2, rightorder);
free_guardlist_without_guard($3);
}
H
guardrules : guard { $$ = guardlist_cons($1, guardlist_nil()); }

| guardrules guard { $$ = guardlist_cons($2, $1); }

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 11 /15

EEIEEEL LN RS ENSEIR IEGEN RGN THS: Tiny Haskell Subset: (06.ths-treebuilder)

@ Note that recursive rules in Yacc, such as:
guardrules : guardrules guard
must place the recursive invocation first, hence when we build the AST guardlist it's in the
reverse order. To fix this, we defined our own reverse_guardlist() function in the prelude.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 12 / 15

EEIEEEL LN RS ENSEIR IEGEN RGN THS: Tiny Haskell Subset: (06.ths-treebuilder)

@ Note that recursive rules in Yacc, such as:
guardrules : guardrules guard
must place the recursive invocation first, hence when we build the AST guardlist it's in the
reverse order. To fix this, we defined our own reverse_guardlist() function in the prelude.

@ |'ve attempted to free() everything | malloc(), checking with valgrind. The reversing exposes
a shared pointers subtlety: we build a new guardlist with the same heads (guards) as the
original list. We must only free each guard once!

@ To fix this, we had to add free_guardlist_without_guard() to the prelude, and call it from the
above Yacc action to free the original guardlist.

@ free_guardlist_without_guard() is a copy of the automatically generated free_guardlist()
function, with the free_guard(head) call commented out.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 12 / 15

EEIEEEL LN RS ENSEIR IEGEN RGN THS: Tiny Haskell Subset: (06.ths-treebuilder)

@ Note that recursive rules in Yacc, such as:
guardrules : guardrules guard
must place the recursive invocation first, hence when we build the AST guardlist it's in the
reverse order. To fix this, we defined our own reverse_guardlist() function in the prelude.

@ |'ve attempted to free() everything | malloc(), checking with valgrind. The reversing exposes
a shared pointers subtlety: we build a new guardlist with the same heads (guards) as the
original list. We must only free each guard once!

@ To fix this, we had to add free_guardlist_without_guard() to the prelude, and call it from the
above Yacc action to free the original guardlist.

@ free_guardlist_without_guard() is a copy of the automatically generated free_guardlist()
function, with the free_guard(head) call commented out.

@ Putting it altogether, adding named constants (via the hash module), using datadec and our
macro tool from the previous lecture, we end up with a THS (Tiny Haskell subset) parser and
treebuilder, of which we only write about 460 lines of code.

@ Give it a try!

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 12 / 15

Parser and Lexer Generator tools: Yacc and Lex [EENERRCCUISN(OFAT R IT-E))

o 07.ths-codegen extends our treebuilder, adding semantic checking (eg. checking that
we define every function we call) and then code generation - translating THS to C!

@ How do we do semantic checks? A semantic checker involves walking the AST and
building convenient data structures. We create a hash and a set: the hash maps from
functionname to AST function definition (for every defined function); the set names
all called functions. Then we check that every called function is defined, exactly once.

@ How do we do code generation? A code generator is just another ASTwalker, one
with suitable print statements!

@ In fact, using datadec's print hints mechanism, 80% of the C code generation was
done by making each AST type print itself in valid C form. The remaining 20% was
custom C code, mainly printing boilerplate and then invoking datadec-generated
print_TYPE() functions.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 13 / 15

@ We're now using so many tools to build our code, let's see what percentage of the
source code we're writing manually.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 14 / 15

@ We're now using so many tools to build our code, let's see what percentage of the
source code we're writing manually.

@ In 07.ths-codegen, we have only written about 900 lines of code ourselves.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 14 / 15

@ We're now using so many tools to build our code, let's see what percentage of the
source code we're writing manually.

@ In 07.ths-codegen, we have only written about 900 lines of code ourselves.

@ However, after datadec, macro, Yacc and Lex have run, there are approximately 5400
lines of C code (including headers) overall.

Duncan White & Evangelos Ververas (Imperial)

C Programming Tools: Part 4 15th June 2017 14 / 15

@ We're now using so many tools to build our code, let's see what percentage of the
source code we're writing manually.

@ In 07.ths-codegen, we have only written about 900 lines of code ourselves.

@ However, after datadec, macro, Yacc and Lex have run, there are approximately 5400
lines of C code (including headers) overall.

@ 900/5400 is about 16%.

Duncan White & Evangelos Ververas (Imperial)

C Programming Tools: Part 4 15th June 2017 14 / 15

@ We're now using so many tools to build our code, let's see what percentage of the
source code we're writing manually.

@ In 07.ths-codegen, we have only written about 900 lines of code ourselves.

@ However, after datadec, macro, Yacc and Lex have run, there are approximately 5400
lines of C code (including headers) overall.

@ 900/5400 is about 16%.

@ To put that another way: our tools wrote 84% of the code for us.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 14 / 15

@ We're now using so many tools to build our code, let's see what percentage of the
source code we're writing manually.

In 07.ths-codegen, we have only written about 900 lines of code ourselves.

However, after datadec, macro, Yacc and Lex have run, there are approximately 5400
lines of C code (including headers) overall.

900/5400 is about 16%.

To put that another way: our tools wrote 84% of the code for us.

Ok, let's sum up what we've been trying to say in these lectures:

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 14 / 15

@ We're now using so many tools to build our code, let's see what percentage of the
source code we're writing manually.

@ In 07.ths-codegen, we have only written about 900 lines of code ourselves.

@ However, after datadec, macro, Yacc and Lex have run, there are approximately 5400
lines of C code (including headers) overall.

@ 900/5400 is about 16%.

@ To put that another way: our tools wrote 84% of the code for us.
Ok, let's sum up what we've been trying to say in these lectures:

@ Follow 100,000 years of human history by tool-using and tool-making.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 14 / 15

@ We're now using so many tools to build our code, let's see what percentage of the
source code we're writing manually.

@ In 07.ths-codegen, we have only written about 900 lines of code ourselves.

@ However, after datadec, macro, Yacc and Lex have run, there are approximately 5400
lines of C code (including headers) overall.

@ 900/5400 is about 16%.

@ To put that another way: our tools wrote 84% of the code for us.
Ok, let's sum up what we've been trying to say in these lectures:

@ Follow 100,000 years of human history by tool-using and tool-making.

@ Are we Homo sapiens - or Homo faber, man the toolmaker?

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 14 / 15

@ We're now using so many tools to build our code, let's see what percentage of the
source code we're writing manually.

@ In 07.ths-codegen, we have only written about 900 lines of code ourselves.

@ However, after datadec, macro, Yacc and Lex have run, there are approximately 5400
lines of C code (including headers) overall.

@ 900/5400 is about 16%.

@ To put that another way: our tools wrote 84% of the code for us.
Ok, let's sum up what we've been trying to say in these lectures:

@ Follow 100,000 years of human history by tool-using and tool-making.
@ Are we Homo sapiens - or Homo faber, man the toolmaker?

@ Build yourself a powerful toolkit.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 14 / 15

@ We're now using so many tools to build our code, let's see what percentage of the
source code we're writing manually.

In 07.ths-codegen, we have only written about 900 lines of code ourselves.

However, after datadec, macro, Yacc and Lex have run, there are approximately 5400
lines of C code (including headers) overall.

900/5400 is about 16%.

To put that another way: our tools wrote 84% of the code for us.

Ok, let's sum up what we've been trying to say in these lectures:

@ Follow 100,000 years of human history by tool-using and tool-making.
@ Are we Homo sapiens - or Homo faber, man the toolmaker?

@ Build yourself a powerful toolkit.
°

Choose tools you like; become expert in each.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 14 / 15

@ When necessary and practical, build tools yourself to solve problems that irritate you.
Don't be afraid!

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 15 / 15

@ When necessary and practical, build tools yourself to solve problems that irritate you.
Don't be afraid!

@ Tools may save you much more time than they cost you to make.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 15 / 15

@ When necessary and practical, build tools yourself to solve problems that irritate you.

Don't be afraid!
@ Tools may save you much more time than they cost you to make.

@ Other possible tools | didn't mention: regular expression libraries; all the things you
can do with function pointers; text processing tools; OO programming in C etc etc.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017

15 /15

@ When necessary and practical, build tools yourself to solve problems that irritate you.
Don't be afraid!

@ Tools may save you much more time than they cost you to make.

@ Other possible tools | didn't mention: regular expression libraries; all the things you
can do with function pointers; text processing tools; OO programming in C etc etc.

@ Most importantly: enjoy your C programming! Build your toolkit - and let me know
if you write any particularly cool tools!

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 15 / 15

@ When necessary and practical, build tools yourself to solve problems that irritate you.
Don't be afraid!

@ Tools may save you much more time than they cost you to make.

@ Other possible tools | didn't mention: regular expression libraries; all the things you
can do with function pointers; text processing tools; OO programming in C etc etc.

@ Most importantly: enjoy your C programming! Build your toolkit - and let me know
if you write any particularly cool tools!

@ Scripting languages like Perl, Ruby or Python are fantastic timesavers. | used to run
a Perl course until it got cancelled, notes available at:
http://www.doc.ic.ac.uk/ dcw/perl2014/

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 15 / 15

@ When necessary and practical, build tools yourself to solve problems that irritate you.
Don't be afraid!

@ Tools may save you much more time than they cost you to make.

@ Other possible tools | didn't mention: regular expression libraries; all the things you
can do with function pointers; text processing tools; OO programming in C etc etc.

@ Most importantly: enjoy your C programming! Build your toolkit - and let me know
if you write any particularly cool tools!

@ Scripting languages like Perl, Ruby or Python are fantastic timesavers. | used to run
a Perl course until it got cancelled, notes available at:
http://www.doc.ic.ac.uk/ dcw/perl2014/

o Finally, I've also written an occasional series of Practical Software Development
articles, see: http://www.doc.ic.ac.uk/“dcw/PSD/

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 15 / 15

@ When necessary and practical, build tools yourself to solve problems that irritate you.
Don't be afraid!

@ Tools may save you much more time than they cost you to make.

@ Other possible tools | didn't mention: regular expression libraries; all the things you
can do with function pointers; text processing tools; OO programming in C etc etc.

@ Most importantly: enjoy your C programming! Build your toolkit - and let me know
if you write any particularly cool tools!

@ Scripting languages like Perl, Ruby or Python are fantastic timesavers. | used to run

a Perl course until it got cancelled, notes available at:
http://www.doc.ic.ac.uk/ dcw/perl2014/

o Finally, I've also written an occasional series of Practical Software Development
articles, see: http://www.doc.ic.ac.uk/“dcw/PSD/

@ That's all folks!

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 15 / 15

	Today's Contents
	Parser and Lexer Generator tools: Yacc and Lex
	Expression Parsing (01.expr1)
	Expression calculator (02.expr2)
	Expression calculator with named constants (03.expr3)
	Expression treebuilder (05.expr5)
	THS: Tiny Haskell Subset: (06.ths-treebuilder)
	THS cont: (07.ths-codegen)

	Summary
	07.ths-codegen; Everyone needs their toolkit!
	Everyone needs their toolkit!

