
C Programming Tools: Part 4
Building and Using your own Toolkit

Duncan C. White
d.white@imperial.ac.uk

Evangelos Ververas
e.ververas16@imperial.ac.uk

Dept of Computing,
Imperial College London

15th June 2017

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 1 / 15

mailto:d.white@imperial.ac.uk
mailto:e.ververas16@imperial.ac.uk

Today’s Contents

Last week, we started building our own tools when necessary, at a range of scales
from tiny to large.

Some of our tools there - in particular, Datadec - were code generators - programs
that write programs. Or as the Pragmatic Programmers put it: Write Code that
Writes Code (Tip 29).

Such tools defined some Little Language or Domain Specific Language to make our
lives easier, and then translated that into (say) valid C code.

Today, in the last C Programming Tools lecture, we’ll find how to make writing code
generators for little languages even easier.

Specifically, by using Parser and Lexer Generator tools: Yacc and Lex.

As always, there’s a tarball of examples associated with this lecture. The handout
and tarballs are available on CATE and at:
http://www.doc.ic.ac.uk/~dcw/c-tools-2017/lecture4/

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 2 / 15

Today’s Contents

Last week, we started building our own tools when necessary, at a range of scales
from tiny to large.

Some of our tools there - in particular, Datadec - were code generators - programs
that write programs.

Or as the Pragmatic Programmers put it: Write Code that
Writes Code (Tip 29).

Such tools defined some Little Language or Domain Specific Language to make our
lives easier, and then translated that into (say) valid C code.

Today, in the last C Programming Tools lecture, we’ll find how to make writing code
generators for little languages even easier.

Specifically, by using Parser and Lexer Generator tools: Yacc and Lex.

As always, there’s a tarball of examples associated with this lecture. The handout
and tarballs are available on CATE and at:
http://www.doc.ic.ac.uk/~dcw/c-tools-2017/lecture4/

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 2 / 15

Today’s Contents

Last week, we started building our own tools when necessary, at a range of scales
from tiny to large.

Some of our tools there - in particular, Datadec - were code generators - programs
that write programs. Or as the Pragmatic Programmers put it: Write Code that
Writes Code (Tip 29).

Such tools defined some Little Language or Domain Specific Language to make our
lives easier, and then translated that into (say) valid C code.

Today, in the last C Programming Tools lecture, we’ll find how to make writing code
generators for little languages even easier.

Specifically, by using Parser and Lexer Generator tools: Yacc and Lex.

As always, there’s a tarball of examples associated with this lecture. The handout
and tarballs are available on CATE and at:
http://www.doc.ic.ac.uk/~dcw/c-tools-2017/lecture4/

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 2 / 15

Today’s Contents

Last week, we started building our own tools when necessary, at a range of scales
from tiny to large.

Some of our tools there - in particular, Datadec - were code generators - programs
that write programs. Or as the Pragmatic Programmers put it: Write Code that
Writes Code (Tip 29).

Such tools defined some Little Language or Domain Specific Language to make our
lives easier, and then translated that into (say) valid C code.

Today, in the last C Programming Tools lecture, we’ll find how to make writing code
generators for little languages even easier.

Specifically, by using Parser and Lexer Generator tools: Yacc and Lex.

As always, there’s a tarball of examples associated with this lecture. The handout
and tarballs are available on CATE and at:
http://www.doc.ic.ac.uk/~dcw/c-tools-2017/lecture4/

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 2 / 15

Today’s Contents

Last week, we started building our own tools when necessary, at a range of scales
from tiny to large.

Some of our tools there - in particular, Datadec - were code generators - programs
that write programs. Or as the Pragmatic Programmers put it: Write Code that
Writes Code (Tip 29).

Such tools defined some Little Language or Domain Specific Language to make our
lives easier, and then translated that into (say) valid C code.

Today, in the last C Programming Tools lecture, we’ll find how to make writing code
generators for little languages even easier.

Specifically, by using Parser and Lexer Generator tools: Yacc and Lex.

As always, there’s a tarball of examples associated with this lecture. The handout
and tarballs are available on CATE and at:
http://www.doc.ic.ac.uk/~dcw/c-tools-2017/lecture4/

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 2 / 15

Today’s Contents

Last week, we started building our own tools when necessary, at a range of scales
from tiny to large.

Some of our tools there - in particular, Datadec - were code generators - programs
that write programs. Or as the Pragmatic Programmers put it: Write Code that
Writes Code (Tip 29).

Such tools defined some Little Language or Domain Specific Language to make our
lives easier, and then translated that into (say) valid C code.

Today, in the last C Programming Tools lecture, we’ll find how to make writing code
generators for little languages even easier.

Specifically, by using Parser and Lexer Generator tools: Yacc and Lex.

As always, there’s a tarball of examples associated with this lecture. The handout
and tarballs are available on CATE and at:
http://www.doc.ic.ac.uk/~dcw/c-tools-2017/lecture4/

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 2 / 15

Today’s Contents

Last week, we started building our own tools when necessary, at a range of scales
from tiny to large.

Some of our tools there - in particular, Datadec - were code generators - programs
that write programs. Or as the Pragmatic Programmers put it: Write Code that
Writes Code (Tip 29).

Such tools defined some Little Language or Domain Specific Language to make our
lives easier, and then translated that into (say) valid C code.

Today, in the last C Programming Tools lecture, we’ll find how to make writing code
generators for little languages even easier.

Specifically, by using Parser and Lexer Generator tools: Yacc and Lex.

As always, there’s a tarball of examples associated with this lecture. The handout
and tarballs are available on CATE and at:
http://www.doc.ic.ac.uk/~dcw/c-tools-2017/lecture4/

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 2 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression Parsing (01.expr1)

Whenever you define a little language and want to write a code generator for it, the
first step is writing parsers and lexical analysers.

This problem has been solved! Lex
and Yacc generate C code from declarative definitions of tokens and grammars.

As a simple example, consider integer constant expressions such as
3*(10+16*(123/3) mod 7). The basic ‘tokens’ needed are:

Numeric constants (eg ‘123’).
Various one-character operators (eg. ‘(’, ‘+’, ‘*’, ‘)’ etc).
A Haskell-inspired keyword ‘mod’ (i.e. modulus, ‘%’ in C terms).

With Lex, specify the tokens as regular expression/action pairs:
[0-9]+ return NUMBER;

\+ return PLUS;

- return MINUS;

* return MUL;

\/ return DIV;

mod return MOD;

\(return OPEN;

\) return CLOSE;

[\t\n]+ /* ignore whitespace */;

. return TOKERR;

See lexer.l for the full Lex input file, containing the above plus some prelude. This file can be
turned into C code via: lex -o lexer.c lexer.l.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 3 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression Parsing (01.expr1)

Whenever you define a little language and want to write a code generator for it, the
first step is writing parsers and lexical analysers. This problem has been solved! Lex
and Yacc generate C code from declarative definitions of tokens and grammars.

As a simple example, consider integer constant expressions such as
3*(10+16*(123/3) mod 7). The basic ‘tokens’ needed are:

Numeric constants (eg ‘123’).
Various one-character operators (eg. ‘(’, ‘+’, ‘*’, ‘)’ etc).
A Haskell-inspired keyword ‘mod’ (i.e. modulus, ‘%’ in C terms).

With Lex, specify the tokens as regular expression/action pairs:
[0-9]+ return NUMBER;

\+ return PLUS;

- return MINUS;

* return MUL;

\/ return DIV;

mod return MOD;

\(return OPEN;

\) return CLOSE;

[\t\n]+ /* ignore whitespace */;

. return TOKERR;

See lexer.l for the full Lex input file, containing the above plus some prelude. This file can be
turned into C code via: lex -o lexer.c lexer.l.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 3 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression Parsing (01.expr1)

Whenever you define a little language and want to write a code generator for it, the
first step is writing parsers and lexical analysers. This problem has been solved! Lex
and Yacc generate C code from declarative definitions of tokens and grammars.

As a simple example, consider integer constant expressions such as
3*(10+16*(123/3) mod 7).

The basic ‘tokens’ needed are:
Numeric constants (eg ‘123’).
Various one-character operators (eg. ‘(’, ‘+’, ‘*’, ‘)’ etc).
A Haskell-inspired keyword ‘mod’ (i.e. modulus, ‘%’ in C terms).

With Lex, specify the tokens as regular expression/action pairs:
[0-9]+ return NUMBER;

\+ return PLUS;

- return MINUS;

* return MUL;

\/ return DIV;

mod return MOD;

\(return OPEN;

\) return CLOSE;

[\t\n]+ /* ignore whitespace */;

. return TOKERR;

See lexer.l for the full Lex input file, containing the above plus some prelude. This file can be
turned into C code via: lex -o lexer.c lexer.l.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 3 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression Parsing (01.expr1)

Whenever you define a little language and want to write a code generator for it, the
first step is writing parsers and lexical analysers. This problem has been solved! Lex
and Yacc generate C code from declarative definitions of tokens and grammars.

As a simple example, consider integer constant expressions such as
3*(10+16*(123/3) mod 7). The basic ‘tokens’ needed are:

Numeric constants (eg ‘123’).
Various one-character operators (eg. ‘(’, ‘+’, ‘*’, ‘)’ etc).
A Haskell-inspired keyword ‘mod’ (i.e. modulus, ‘%’ in C terms).

With Lex, specify the tokens as regular expression/action pairs:
[0-9]+ return NUMBER;

\+ return PLUS;

- return MINUS;

* return MUL;

\/ return DIV;

mod return MOD;

\(return OPEN;

\) return CLOSE;

[\t\n]+ /* ignore whitespace */;

. return TOKERR;

See lexer.l for the full Lex input file, containing the above plus some prelude. This file can be
turned into C code via: lex -o lexer.c lexer.l.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 3 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression Parsing (01.expr1)

Whenever you define a little language and want to write a code generator for it, the
first step is writing parsers and lexical analysers. This problem has been solved! Lex
and Yacc generate C code from declarative definitions of tokens and grammars.

As a simple example, consider integer constant expressions such as
3*(10+16*(123/3) mod 7). The basic ‘tokens’ needed are:

Numeric constants (eg ‘123’).
Various one-character operators (eg. ‘(’, ‘+’, ‘*’, ‘)’ etc).
A Haskell-inspired keyword ‘mod’ (i.e. modulus, ‘%’ in C terms).

With Lex, specify the tokens as regular expression/action pairs:
[0-9]+ return NUMBER;

\+ return PLUS;

- return MINUS;

* return MUL;

\/ return DIV;

mod return MOD;

\(return OPEN;

\) return CLOSE;

[\t\n]+ /* ignore whitespace */;

. return TOKERR;

See lexer.l for the full Lex input file, containing the above plus some prelude. This file can be
turned into C code via: lex -o lexer.c lexer.l.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 3 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression Parsing (01.expr1)

Whenever you define a little language and want to write a code generator for it, the
first step is writing parsers and lexical analysers. This problem has been solved! Lex
and Yacc generate C code from declarative definitions of tokens and grammars.

As a simple example, consider integer constant expressions such as
3*(10+16*(123/3) mod 7). The basic ‘tokens’ needed are:

Numeric constants (eg ‘123’).
Various one-character operators (eg. ‘(’, ‘+’, ‘*’, ‘)’ etc).
A Haskell-inspired keyword ‘mod’ (i.e. modulus, ‘%’ in C terms).

With Lex, specify the tokens as regular expression/action pairs:
[0-9]+ return NUMBER;

\+ return PLUS;

- return MINUS;

* return MUL;

\/ return DIV;

mod return MOD;

\(return OPEN;

\) return CLOSE;

[\t\n]+ /* ignore whitespace */;

. return TOKERR;

See lexer.l for the full Lex input file, containing the above plus some prelude. This file can be
turned into C code via: lex -o lexer.c lexer.l.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 3 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression Parsing (01.expr1)

These tokens can be combined to form expressions using the following BNF-style
grammar rules (in Yacc-format):

%token PLUS MINUS MUL DIV MOD OPEN CLOSE TOKERR

%token NUMBER

%start here

%%

here : expr

;

expr : expr PLUS term

| expr MINUS term

| term

;

term : term MUL factor

| term DIV factor

| term MOD factor

| factor

;

factor : NUMBER

| OPEN expr CLOSE

;

parser.y contains these rules plus some Yacc-specific prelude, including a short main program
that calls the parser. This can be turned into C code (parser.c and parser.h) via: yacc -vd -o
parser.c parser.y
You can now compile and link parser.c and lexer.c to form expr1, just type make. See the
Makefile for details. expr1 is a recognizer: it will say whether or not the expression (on
standard input) is valid.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 4 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression Parsing (01.expr1)

These tokens can be combined to form expressions using the following BNF-style
grammar rules (in Yacc-format):

%token PLUS MINUS MUL DIV MOD OPEN CLOSE TOKERR

%token NUMBER

%start here

%%

here : expr

;

expr : expr PLUS term

| expr MINUS term

| term

;

term : term MUL factor

| term DIV factor

| term MOD factor

| factor

;

factor : NUMBER

| OPEN expr CLOSE

;

parser.y contains these rules plus some Yacc-specific prelude, including a short main program
that calls the parser. This can be turned into C code (parser.c and parser.h) via: yacc -vd -o
parser.c parser.y

You can now compile and link parser.c and lexer.c to form expr1, just type make. See the
Makefile for details. expr1 is a recognizer: it will say whether or not the expression (on
standard input) is valid.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 4 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression Parsing (01.expr1)

These tokens can be combined to form expressions using the following BNF-style
grammar rules (in Yacc-format):

%token PLUS MINUS MUL DIV MOD OPEN CLOSE TOKERR

%token NUMBER

%start here

%%

here : expr

;

expr : expr PLUS term

| expr MINUS term

| term

;

term : term MUL factor

| term DIV factor

| term MOD factor

| factor

;

factor : NUMBER

| OPEN expr CLOSE

;

parser.y contains these rules plus some Yacc-specific prelude, including a short main program
that calls the parser. This can be turned into C code (parser.c and parser.h) via: yacc -vd -o
parser.c parser.y
You can now compile and link parser.c and lexer.c to form expr1, just type make. See the
Makefile for details.

expr1 is a recognizer: it will say whether or not the expression (on
standard input) is valid.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 4 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression Parsing (01.expr1)

These tokens can be combined to form expressions using the following BNF-style
grammar rules (in Yacc-format):

%token PLUS MINUS MUL DIV MOD OPEN CLOSE TOKERR

%token NUMBER

%start here

%%

here : expr

;

expr : expr PLUS term

| expr MINUS term

| term

;

term : term MUL factor

| term DIV factor

| term MOD factor

| factor

;

factor : NUMBER

| OPEN expr CLOSE

;

parser.y contains these rules plus some Yacc-specific prelude, including a short main program
that calls the parser. This can be turned into C code (parser.c and parser.h) via: yacc -vd -o
parser.c parser.y
You can now compile and link parser.c and lexer.c to form expr1, just type make. See the
Makefile for details. expr1 is a recognizer: it will say whether or not the expression (on
standard input) is valid.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 4 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression calculator (02.expr2)

Directory 02.expr2 extends our recognizer so that it calculates the value of the
expression and displays it. There are two sets of changes from the previous version:

First, we modify one line in lexer.l to store the integer constant value into ‘yylval.n’:
[0-9]+ yylval.n=atoi(yytext); return NUMBER;

Second, in parser.y there are several changes: add to the prelude:
static int expr_result = 0;

Then make main display the result after a successful parse:
printf("result: %d\n", expr_result);

Above the token definitions, add:
%union { int n; }

%token <n> NUMBER

%type <n> expr term factor

Add actions to grammar rules taking the calculated value from each sub-part and computing
the result, plus a top level action which sets expr result. Here’s a sample:

here : expr { expr_result = $1; }

;

expr : expr PLUS term { $$ = $1 + $3; }

| expr MINUS term { $$ = $1 - $3; }

| term { $$ = $1; }

;

term : term MUL factor { $$ = $1 * $3; }

| term DIV factor { $$ = $1 / $3; }

...

After make we have expr2, an expression calculator. Play with it.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 5 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression calculator (02.expr2)

Directory 02.expr2 extends our recognizer so that it calculates the value of the
expression and displays it. There are two sets of changes from the previous version:
First, we modify one line in lexer.l to store the integer constant value into ‘yylval.n’:

[0-9]+ yylval.n=atoi(yytext); return NUMBER;

Second, in parser.y there are several changes: add to the prelude:
static int expr_result = 0;

Then make main display the result after a successful parse:
printf("result: %d\n", expr_result);

Above the token definitions, add:
%union { int n; }

%token <n> NUMBER

%type <n> expr term factor

Add actions to grammar rules taking the calculated value from each sub-part and computing
the result, plus a top level action which sets expr result. Here’s a sample:

here : expr { expr_result = $1; }

;

expr : expr PLUS term { $$ = $1 + $3; }

| expr MINUS term { $$ = $1 - $3; }

| term { $$ = $1; }

;

term : term MUL factor { $$ = $1 * $3; }

| term DIV factor { $$ = $1 / $3; }

...

After make we have expr2, an expression calculator. Play with it.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 5 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression calculator (02.expr2)

Directory 02.expr2 extends our recognizer so that it calculates the value of the
expression and displays it. There are two sets of changes from the previous version:
First, we modify one line in lexer.l to store the integer constant value into ‘yylval.n’:

[0-9]+ yylval.n=atoi(yytext); return NUMBER;

Second, in parser.y there are several changes: add to the prelude:
static int expr_result = 0;

Then make main display the result after a successful parse:
printf("result: %d\n", expr_result);

Above the token definitions, add:
%union { int n; }

%token <n> NUMBER

%type <n> expr term factor

Add actions to grammar rules taking the calculated value from each sub-part and computing
the result, plus a top level action which sets expr result. Here’s a sample:

here : expr { expr_result = $1; }

;

expr : expr PLUS term { $$ = $1 + $3; }

| expr MINUS term { $$ = $1 - $3; }

| term { $$ = $1; }

;

term : term MUL factor { $$ = $1 * $3; }

| term DIV factor { $$ = $1 / $3; }

...

After make we have expr2, an expression calculator. Play with it.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 5 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression calculator (02.expr2)

Directory 02.expr2 extends our recognizer so that it calculates the value of the
expression and displays it. There are two sets of changes from the previous version:
First, we modify one line in lexer.l to store the integer constant value into ‘yylval.n’:

[0-9]+ yylval.n=atoi(yytext); return NUMBER;

Second, in parser.y there are several changes: add to the prelude:
static int expr_result = 0;

Then make main display the result after a successful parse:
printf("result: %d\n", expr_result);

Above the token definitions, add:
%union { int n; }

%token <n> NUMBER

%type <n> expr term factor

Add actions to grammar rules taking the calculated value from each sub-part and computing
the result, plus a top level action which sets expr result. Here’s a sample:

here : expr { expr_result = $1; }

;

expr : expr PLUS term { $$ = $1 + $3; }

| expr MINUS term { $$ = $1 - $3; }

| term { $$ = $1; }

;

term : term MUL factor { $$ = $1 * $3; }

| term DIV factor { $$ = $1 / $3; }

...

After make we have expr2, an expression calculator. Play with it.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 5 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression calculator (02.expr2)

Directory 02.expr2 extends our recognizer so that it calculates the value of the
expression and displays it. There are two sets of changes from the previous version:
First, we modify one line in lexer.l to store the integer constant value into ‘yylval.n’:

[0-9]+ yylval.n=atoi(yytext); return NUMBER;

Second, in parser.y there are several changes: add to the prelude:
static int expr_result = 0;

Then make main display the result after a successful parse:
printf("result: %d\n", expr_result);

Above the token definitions, add:
%union { int n; }

%token <n> NUMBER

%type <n> expr term factor

Add actions to grammar rules taking the calculated value from each sub-part and computing
the result, plus a top level action which sets expr result. Here’s a sample:

here : expr { expr_result = $1; }

;

expr : expr PLUS term { $$ = $1 + $3; }

| expr MINUS term { $$ = $1 - $3; }

| term { $$ = $1; }

;

term : term MUL factor { $$ = $1 * $3; }

| term DIV factor { $$ = $1 / $3; }

...

After make we have expr2, an expression calculator. Play with it.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 5 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression calculator (02.expr2)

Directory 02.expr2 extends our recognizer so that it calculates the value of the
expression and displays it. There are two sets of changes from the previous version:
First, we modify one line in lexer.l to store the integer constant value into ‘yylval.n’:

[0-9]+ yylval.n=atoi(yytext); return NUMBER;

Second, in parser.y there are several changes: add to the prelude:
static int expr_result = 0;

Then make main display the result after a successful parse:
printf("result: %d\n", expr_result);

Above the token definitions, add:
%union { int n; }

%token <n> NUMBER

%type <n> expr term factor

Add actions to grammar rules taking the calculated value from each sub-part and computing
the result, plus a top level action which sets expr result. Here’s a sample:

here : expr { expr_result = $1; }

;

expr : expr PLUS term { $$ = $1 + $3; }

| expr MINUS term { $$ = $1 - $3; }

| term { $$ = $1; }

;

term : term MUL factor { $$ = $1 * $3; }

| term DIV factor { $$ = $1 / $3; }

...

After make we have expr2, an expression calculator. Play with it.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 5 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression calculator (02.expr2)

Directory 02.expr2 extends our recognizer so that it calculates the value of the
expression and displays it. There are two sets of changes from the previous version:
First, we modify one line in lexer.l to store the integer constant value into ‘yylval.n’:

[0-9]+ yylval.n=atoi(yytext); return NUMBER;

Second, in parser.y there are several changes: add to the prelude:
static int expr_result = 0;

Then make main display the result after a successful parse:
printf("result: %d\n", expr_result);

Above the token definitions, add:
%union { int n; }

%token <n> NUMBER

%type <n> expr term factor

Add actions to grammar rules taking the calculated value from each sub-part and computing
the result, plus a top level action which sets expr result. Here’s a sample:

here : expr { expr_result = $1; }

;

expr : expr PLUS term { $$ = $1 + $3; }

| expr MINUS term { $$ = $1 - $3; }

| term { $$ = $1; }

;

term : term MUL factor { $$ = $1 * $3; }

| term DIV factor { $$ = $1 / $3; }

...

After make we have expr2, an expression calculator. Play with it.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 5 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression calculator with named constants (03.expr3)

Directory 03.expr3 extends our expression language, allowing a factor to be an
identifier - an IDENT token - representing a named constant. There are three sets of
changes from the previous version:

Add a new consthash module, which stores our named constants.
Add a line in lexer.l to recognise and return our new token:

[a-z][a-z0-9]* yylval.s=strdup(yytext);return IDENT;

parser.y has several changes: add to the prelude: #include "consthash.h"

Then main() needs to create the constant hash right at the start, destroy it at the end:

init_consthash(argc, argv);

if(yyparse()....

destroy_consthash();

Change the union declaration to: %union { int n; char *s; }

Declare that the IDENT token has an associated string value: %token <s> IDENT

Add the new factor rule:
| IDENT { $$ = lookup_const($1); }

After make we have expr3, a calculator with named constants. Play with it.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 6 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression calculator with named constants (03.expr3)

Directory 03.expr3 extends our expression language, allowing a factor to be an
identifier - an IDENT token - representing a named constant. There are three sets of
changes from the previous version:

Add a new consthash module, which stores our named constants.

Add a line in lexer.l to recognise and return our new token:
[a-z][a-z0-9]* yylval.s=strdup(yytext);return IDENT;

parser.y has several changes: add to the prelude: #include "consthash.h"

Then main() needs to create the constant hash right at the start, destroy it at the end:

init_consthash(argc, argv);

if(yyparse()....

destroy_consthash();

Change the union declaration to: %union { int n; char *s; }

Declare that the IDENT token has an associated string value: %token <s> IDENT

Add the new factor rule:
| IDENT { $$ = lookup_const($1); }

After make we have expr3, a calculator with named constants. Play with it.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 6 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression calculator with named constants (03.expr3)

Directory 03.expr3 extends our expression language, allowing a factor to be an
identifier - an IDENT token - representing a named constant. There are three sets of
changes from the previous version:

Add a new consthash module, which stores our named constants.
Add a line in lexer.l to recognise and return our new token:

[a-z][a-z0-9]* yylval.s=strdup(yytext);return IDENT;

parser.y has several changes: add to the prelude: #include "consthash.h"

Then main() needs to create the constant hash right at the start, destroy it at the end:

init_consthash(argc, argv);

if(yyparse()....

destroy_consthash();

Change the union declaration to: %union { int n; char *s; }

Declare that the IDENT token has an associated string value: %token <s> IDENT

Add the new factor rule:
| IDENT { $$ = lookup_const($1); }

After make we have expr3, a calculator with named constants. Play with it.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 6 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression calculator with named constants (03.expr3)

Directory 03.expr3 extends our expression language, allowing a factor to be an
identifier - an IDENT token - representing a named constant. There are three sets of
changes from the previous version:

Add a new consthash module, which stores our named constants.
Add a line in lexer.l to recognise and return our new token:

[a-z][a-z0-9]* yylval.s=strdup(yytext);return IDENT;

parser.y has several changes: add to the prelude: #include "consthash.h"

Then main() needs to create the constant hash right at the start, destroy it at the end:

init_consthash(argc, argv);

if(yyparse()....

destroy_consthash();

Change the union declaration to: %union { int n; char *s; }

Declare that the IDENT token has an associated string value: %token <s> IDENT

Add the new factor rule:
| IDENT { $$ = lookup_const($1); }

After make we have expr3, a calculator with named constants. Play with it.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 6 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression calculator with named constants (03.expr3)

Directory 03.expr3 extends our expression language, allowing a factor to be an
identifier - an IDENT token - representing a named constant. There are three sets of
changes from the previous version:

Add a new consthash module, which stores our named constants.
Add a line in lexer.l to recognise and return our new token:

[a-z][a-z0-9]* yylval.s=strdup(yytext);return IDENT;

parser.y has several changes: add to the prelude: #include "consthash.h"

Then main() needs to create the constant hash right at the start, destroy it at the end:

init_consthash(argc, argv);

if(yyparse()....

destroy_consthash();

Change the union declaration to: %union { int n; char *s; }

Declare that the IDENT token has an associated string value: %token <s> IDENT

Add the new factor rule:
| IDENT { $$ = lookup_const($1); }

After make we have expr3, a calculator with named constants. Play with it.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 6 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression calculator with named constants (03.expr3)

Directory 03.expr3 extends our expression language, allowing a factor to be an
identifier - an IDENT token - representing a named constant. There are three sets of
changes from the previous version:

Add a new consthash module, which stores our named constants.
Add a line in lexer.l to recognise and return our new token:

[a-z][a-z0-9]* yylval.s=strdup(yytext);return IDENT;

parser.y has several changes: add to the prelude: #include "consthash.h"

Then main() needs to create the constant hash right at the start, destroy it at the end:

init_consthash(argc, argv);

if(yyparse()....

destroy_consthash();

Change the union declaration to: %union { int n; char *s; }

Declare that the IDENT token has an associated string value: %token <s> IDENT

Add the new factor rule:
| IDENT { $$ = lookup_const($1); }

After make we have expr3, a calculator with named constants. Play with it.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 6 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression calculator with named constants (03.expr3)

Directory 03.expr3 extends our expression language, allowing a factor to be an
identifier - an IDENT token - representing a named constant. There are three sets of
changes from the previous version:

Add a new consthash module, which stores our named constants.
Add a line in lexer.l to recognise and return our new token:

[a-z][a-z0-9]* yylval.s=strdup(yytext);return IDENT;

parser.y has several changes: add to the prelude: #include "consthash.h"

Then main() needs to create the constant hash right at the start, destroy it at the end:

init_consthash(argc, argv);

if(yyparse()....

destroy_consthash();

Change the union declaration to: %union { int n; char *s; }

Declare that the IDENT token has an associated string value: %token <s> IDENT

Add the new factor rule:
| IDENT { $$ = lookup_const($1); }

After make we have expr3, a calculator with named constants. Play with it.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 6 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression calculator with named constants (03.expr3)

Directory 03.expr3 extends our expression language, allowing a factor to be an
identifier - an IDENT token - representing a named constant. There are three sets of
changes from the previous version:

Add a new consthash module, which stores our named constants.
Add a line in lexer.l to recognise and return our new token:

[a-z][a-z0-9]* yylval.s=strdup(yytext);return IDENT;

parser.y has several changes: add to the prelude: #include "consthash.h"

Then main() needs to create the constant hash right at the start, destroy it at the end:

init_consthash(argc, argv);

if(yyparse()....

destroy_consthash();

Change the union declaration to: %union { int n; char *s; }

Declare that the IDENT token has an associated string value: %token <s> IDENT

Add the new factor rule:
| IDENT { $$ = lookup_const($1); }

After make we have expr3, a calculator with named constants. Play with it.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 6 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression calculator with named constants (03.expr3)

Directory 03.expr3 extends our expression language, allowing a factor to be an
identifier - an IDENT token - representing a named constant. There are three sets of
changes from the previous version:

Add a new consthash module, which stores our named constants.
Add a line in lexer.l to recognise and return our new token:

[a-z][a-z0-9]* yylval.s=strdup(yytext);return IDENT;

parser.y has several changes: add to the prelude: #include "consthash.h"

Then main() needs to create the constant hash right at the start, destroy it at the end:

init_consthash(argc, argv);

if(yyparse()....

destroy_consthash();

Change the union declaration to: %union { int n; char *s; }

Declare that the IDENT token has an associated string value: %token <s> IDENT

Add the new factor rule:
| IDENT { $$ = lookup_const($1); }

After make we have expr3, a calculator with named constants. Play with it.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 6 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression treebuilder (05.expr5)

Directory 05.expr5 contains our final Yacc/Lex expression example, which replaces
calculation with treebuilding (using Datadec).

Prepare types.in file:
TYPE {

arithop = plus or minus or times or divide or mod;

expr = num(int n)

or id(string s)

or binop(expr l, arithop op, expr r);

}

Alter the Makefile to invoke datadec generating types.c and types.h. parser.y has several
changes: add to the prelude: #include "types.h"

Change expr result from an int to an expr: static expr expr_result = NULL;

main should print out the expression tree (on parse success):
print_expr(stdout, expr_result);

Change the union declaration to: %union { int n; char *s; expr e; }

Change the type of all expression rules to e, the union’s expr: %type <e> expr term factor

Change all the actions, for example:
expr : expr PLUS term { $$ = expr_binop($1, arithop_plus(), $3); }

| expr MINUS term { $$ = expr_binop($1, arithop_minus(), $3); }

...

factor : NUMBER { $$ = expr_num($1); }

| IDENT { $$ = expr_id($1); }

After make we have expr5, an expression parser and treebuilder.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 7 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression treebuilder (05.expr5)

Directory 05.expr5 contains our final Yacc/Lex expression example, which replaces
calculation with treebuilding (using Datadec). Prepare types.in file:
TYPE {

arithop = plus or minus or times or divide or mod;

expr = num(int n)

or id(string s)

or binop(expr l, arithop op, expr r);

}

Alter the Makefile to invoke datadec generating types.c and types.h. parser.y has several
changes: add to the prelude: #include "types.h"

Change expr result from an int to an expr: static expr expr_result = NULL;

main should print out the expression tree (on parse success):
print_expr(stdout, expr_result);

Change the union declaration to: %union { int n; char *s; expr e; }

Change the type of all expression rules to e, the union’s expr: %type <e> expr term factor

Change all the actions, for example:
expr : expr PLUS term { $$ = expr_binop($1, arithop_plus(), $3); }

| expr MINUS term { $$ = expr_binop($1, arithop_minus(), $3); }

...

factor : NUMBER { $$ = expr_num($1); }

| IDENT { $$ = expr_id($1); }

After make we have expr5, an expression parser and treebuilder.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 7 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression treebuilder (05.expr5)

Directory 05.expr5 contains our final Yacc/Lex expression example, which replaces
calculation with treebuilding (using Datadec). Prepare types.in file:
TYPE {

arithop = plus or minus or times or divide or mod;

expr = num(int n)

or id(string s)

or binop(expr l, arithop op, expr r);

}

Alter the Makefile to invoke datadec generating types.c and types.h. parser.y has several
changes: add to the prelude: #include "types.h"

Change expr result from an int to an expr: static expr expr_result = NULL;

main should print out the expression tree (on parse success):
print_expr(stdout, expr_result);

Change the union declaration to: %union { int n; char *s; expr e; }

Change the type of all expression rules to e, the union’s expr: %type <e> expr term factor

Change all the actions, for example:
expr : expr PLUS term { $$ = expr_binop($1, arithop_plus(), $3); }

| expr MINUS term { $$ = expr_binop($1, arithop_minus(), $3); }

...

factor : NUMBER { $$ = expr_num($1); }

| IDENT { $$ = expr_id($1); }

After make we have expr5, an expression parser and treebuilder.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 7 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression treebuilder (05.expr5)

Directory 05.expr5 contains our final Yacc/Lex expression example, which replaces
calculation with treebuilding (using Datadec). Prepare types.in file:
TYPE {

arithop = plus or minus or times or divide or mod;

expr = num(int n)

or id(string s)

or binop(expr l, arithop op, expr r);

}

Alter the Makefile to invoke datadec generating types.c and types.h. parser.y has several
changes: add to the prelude: #include "types.h"

Change expr result from an int to an expr: static expr expr_result = NULL;

main should print out the expression tree (on parse success):
print_expr(stdout, expr_result);

Change the union declaration to: %union { int n; char *s; expr e; }

Change the type of all expression rules to e, the union’s expr: %type <e> expr term factor

Change all the actions, for example:
expr : expr PLUS term { $$ = expr_binop($1, arithop_plus(), $3); }

| expr MINUS term { $$ = expr_binop($1, arithop_minus(), $3); }

...

factor : NUMBER { $$ = expr_num($1); }

| IDENT { $$ = expr_id($1); }

After make we have expr5, an expression parser and treebuilder.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 7 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression treebuilder (05.expr5)

Directory 05.expr5 contains our final Yacc/Lex expression example, which replaces
calculation with treebuilding (using Datadec). Prepare types.in file:
TYPE {

arithop = plus or minus or times or divide or mod;

expr = num(int n)

or id(string s)

or binop(expr l, arithop op, expr r);

}

Alter the Makefile to invoke datadec generating types.c and types.h. parser.y has several
changes: add to the prelude: #include "types.h"

Change expr result from an int to an expr: static expr expr_result = NULL;

main should print out the expression tree (on parse success):
print_expr(stdout, expr_result);

Change the union declaration to: %union { int n; char *s; expr e; }

Change the type of all expression rules to e, the union’s expr: %type <e> expr term factor

Change all the actions, for example:
expr : expr PLUS term { $$ = expr_binop($1, arithop_plus(), $3); }

| expr MINUS term { $$ = expr_binop($1, arithop_minus(), $3); }

...

factor : NUMBER { $$ = expr_num($1); }

| IDENT { $$ = expr_id($1); }

After make we have expr5, an expression parser and treebuilder.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 7 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression treebuilder (05.expr5)

Directory 05.expr5 contains our final Yacc/Lex expression example, which replaces
calculation with treebuilding (using Datadec). Prepare types.in file:
TYPE {

arithop = plus or minus or times or divide or mod;

expr = num(int n)

or id(string s)

or binop(expr l, arithop op, expr r);

}

Alter the Makefile to invoke datadec generating types.c and types.h. parser.y has several
changes: add to the prelude: #include "types.h"

Change expr result from an int to an expr: static expr expr_result = NULL;

main should print out the expression tree (on parse success):
print_expr(stdout, expr_result);

Change the union declaration to: %union { int n; char *s; expr e; }

Change the type of all expression rules to e, the union’s expr: %type <e> expr term factor

Change all the actions, for example:
expr : expr PLUS term { $$ = expr_binop($1, arithop_plus(), $3); }

| expr MINUS term { $$ = expr_binop($1, arithop_minus(), $3); }

...

factor : NUMBER { $$ = expr_num($1); }

| IDENT { $$ = expr_id($1); }

After make we have expr5, an expression parser and treebuilder.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 7 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression treebuilder (05.expr5)

Directory 05.expr5 contains our final Yacc/Lex expression example, which replaces
calculation with treebuilding (using Datadec). Prepare types.in file:
TYPE {

arithop = plus or minus or times or divide or mod;

expr = num(int n)

or id(string s)

or binop(expr l, arithop op, expr r);

}

Alter the Makefile to invoke datadec generating types.c and types.h. parser.y has several
changes: add to the prelude: #include "types.h"

Change expr result from an int to an expr: static expr expr_result = NULL;

main should print out the expression tree (on parse success):
print_expr(stdout, expr_result);

Change the union declaration to: %union { int n; char *s; expr e; }

Change the type of all expression rules to e, the union’s expr: %type <e> expr term factor

Change all the actions, for example:
expr : expr PLUS term { $$ = expr_binop($1, arithop_plus(), $3); }

| expr MINUS term { $$ = expr_binop($1, arithop_minus(), $3); }

...

factor : NUMBER { $$ = expr_num($1); }

| IDENT { $$ = expr_id($1); }

After make we have expr5, an expression parser and treebuilder.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 7 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression treebuilder (05.expr5)

Directory 05.expr5 contains our final Yacc/Lex expression example, which replaces
calculation with treebuilding (using Datadec). Prepare types.in file:
TYPE {

arithop = plus or minus or times or divide or mod;

expr = num(int n)

or id(string s)

or binop(expr l, arithop op, expr r);

}

Alter the Makefile to invoke datadec generating types.c and types.h. parser.y has several
changes: add to the prelude: #include "types.h"

Change expr result from an int to an expr: static expr expr_result = NULL;

main should print out the expression tree (on parse success):
print_expr(stdout, expr_result);

Change the union declaration to: %union { int n; char *s; expr e; }

Change the type of all expression rules to e, the union’s expr: %type <e> expr term factor

Change all the actions, for example:
expr : expr PLUS term { $$ = expr_binop($1, arithop_plus(), $3); }

| expr MINUS term { $$ = expr_binop($1, arithop_minus(), $3); }

...

factor : NUMBER { $$ = expr_num($1); }

| IDENT { $$ = expr_id($1); }

After make we have expr5, an expression parser and treebuilder.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 7 / 15

Parser and Lexer Generator tools: Yacc and Lex Expression treebuilder (05.expr5)

Directory 05.expr5 contains our final Yacc/Lex expression example, which replaces
calculation with treebuilding (using Datadec). Prepare types.in file:
TYPE {

arithop = plus or minus or times or divide or mod;

expr = num(int n)

or id(string s)

or binop(expr l, arithop op, expr r);

}

Alter the Makefile to invoke datadec generating types.c and types.h. parser.y has several
changes: add to the prelude: #include "types.h"

Change expr result from an int to an expr: static expr expr_result = NULL;

main should print out the expression tree (on parse success):
print_expr(stdout, expr_result);

Change the union declaration to: %union { int n; char *s; expr e; }

Change the type of all expression rules to e, the union’s expr: %type <e> expr term factor

Change all the actions, for example:
expr : expr PLUS term { $$ = expr_binop($1, arithop_plus(), $3); }

| expr MINUS term { $$ = expr_binop($1, arithop_minus(), $3); }

...

factor : NUMBER { $$ = expr_num($1); }

| IDENT { $$ = expr_id($1); }

After make we have expr5, an expression parser and treebuilder.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 7 / 15

Parser and Lexer Generator tools: Yacc and Lex THS: Tiny Haskell Subset: (06.ths-treebuilder)

Expressions are hardly impressive! But Yacc, Lex and Datadec easily scale to much
larger languages.

Define a tiny Haskell subset called THS, build a Lexer and Parser using Lex and Yacc,
build an Abstract Syntax Tree using Datadec, with parse actions to build our AST.

Ok, what Haskell subset? Specifically, we’ll allow:
Zero-or-more function definitions, with optional type definitions,
Followed by a compulsory integer expression (often a call to one of those functions).
Each function takes and returns a single integer value,
Each function implemented either by a single expression, or
A sequence of guarded expressions involving simple boolean expressions, eg. x==0,

For example:
f x = 1

abs x | x>0 = x

| x==0 = 0

| 0>x = 0-x

f(20) + abs(10) * 30

In a break with strict Haskell-syntax, we’ll decide that brackets on function calls like abs(10)

are compulsory.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 8 / 15

Parser and Lexer Generator tools: Yacc and Lex THS: Tiny Haskell Subset: (06.ths-treebuilder)

Expressions are hardly impressive! But Yacc, Lex and Datadec easily scale to much
larger languages.

Define a tiny Haskell subset called THS, build a Lexer and Parser using Lex and Yacc,
build an Abstract Syntax Tree using Datadec, with parse actions to build our AST.

Ok, what Haskell subset? Specifically, we’ll allow:
Zero-or-more function definitions, with optional type definitions,
Followed by a compulsory integer expression (often a call to one of those functions).
Each function takes and returns a single integer value,
Each function implemented either by a single expression, or
A sequence of guarded expressions involving simple boolean expressions, eg. x==0,

For example:
f x = 1

abs x | x>0 = x

| x==0 = 0

| 0>x = 0-x

f(20) + abs(10) * 30

In a break with strict Haskell-syntax, we’ll decide that brackets on function calls like abs(10)

are compulsory.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 8 / 15

Parser and Lexer Generator tools: Yacc and Lex THS: Tiny Haskell Subset: (06.ths-treebuilder)

Expressions are hardly impressive! But Yacc, Lex and Datadec easily scale to much
larger languages.

Define a tiny Haskell subset called THS, build a Lexer and Parser using Lex and Yacc,
build an Abstract Syntax Tree using Datadec, with parse actions to build our AST.

Ok, what Haskell subset? Specifically, we’ll allow:
Zero-or-more function definitions, with optional type definitions,
Followed by a compulsory integer expression (often a call to one of those functions).
Each function takes and returns a single integer value,
Each function implemented either by a single expression, or
A sequence of guarded expressions involving simple boolean expressions, eg. x==0,

For example:
f x = 1

abs x | x>0 = x

| x==0 = 0

| 0>x = 0-x

f(20) + abs(10) * 30

In a break with strict Haskell-syntax, we’ll decide that brackets on function calls like abs(10)

are compulsory.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 8 / 15

Parser and Lexer Generator tools: Yacc and Lex THS: Tiny Haskell Subset: (06.ths-treebuilder)

Expressions are hardly impressive! But Yacc, Lex and Datadec easily scale to much
larger languages.

Define a tiny Haskell subset called THS, build a Lexer and Parser using Lex and Yacc,
build an Abstract Syntax Tree using Datadec, with parse actions to build our AST.

Ok, what Haskell subset? Specifically, we’ll allow:
Zero-or-more function definitions, with optional type definitions,
Followed by a compulsory integer expression (often a call to one of those functions).
Each function takes and returns a single integer value,
Each function implemented either by a single expression, or
A sequence of guarded expressions involving simple boolean expressions, eg. x==0,

For example:
f x = 1

abs x | x>0 = x

| x==0 = 0

| 0>x = 0-x

f(20) + abs(10) * 30

In a break with strict Haskell-syntax, we’ll decide that brackets on function calls like abs(10)

are compulsory.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 8 / 15

Parser and Lexer Generator tools: Yacc and Lex THS: Tiny Haskell Subset: (06.ths-treebuilder)

Expressions are hardly impressive! But Yacc, Lex and Datadec easily scale to much
larger languages.

Define a tiny Haskell subset called THS, build a Lexer and Parser using Lex and Yacc,
build an Abstract Syntax Tree using Datadec, with parse actions to build our AST.

Ok, what Haskell subset? Specifically, we’ll allow:
Zero-or-more function definitions, with optional type definitions,
Followed by a compulsory integer expression (often a call to one of those functions).
Each function takes and returns a single integer value,
Each function implemented either by a single expression, or
A sequence of guarded expressions involving simple boolean expressions, eg. x==0,

For example:
f x = 1

abs x | x>0 = x

| x==0 = 0

| 0>x = 0-x

f(20) + abs(10) * 30

In a break with strict Haskell-syntax, we’ll decide that brackets on function calls like abs(10)

are compulsory.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 8 / 15

Parser and Lexer Generator tools: Yacc and Lex THS: Tiny Haskell Subset: (06.ths-treebuilder)

Note in passing that we reuse (and extend) our expression grammar rules – hence
any valid expression is also a valid THS program, one with no function definitions.

Ok, first we define our lexer rules, regexps and actions:
[0-9]+ yylval.n=atoi(yytext); return NUMBER;

mod return MOD;

Int return INTTYPE;

True return TRUEV;

[a-z][a-z0-9]* yylval.s=strdup(yytext);return IDENT;

:: return COLONCOLON;

-> return IMPLIES;

== return EQ;

= return IS;

> return GT;

!= return NE;

\+ return PLUS;

- return MINUS;

* return MUL;

\/ return DIV;

\(return OPEN;

\) return CLOSE;

\| return GUARD;

[\t\n]+ /* ignore whitespace */;

. return TOKERR;

Note that we are being extremely minimal with our tokens, including (for example) True but
not False. These can trivially be added.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 9 / 15

Parser and Lexer Generator tools: Yacc and Lex THS: Tiny Haskell Subset: (06.ths-treebuilder)

Note in passing that we reuse (and extend) our expression grammar rules – hence
any valid expression is also a valid THS program, one with no function definitions.

Ok, first we define our lexer rules, regexps and actions:
[0-9]+ yylval.n=atoi(yytext); return NUMBER;

mod return MOD;

Int return INTTYPE;

True return TRUEV;

[a-z][a-z0-9]* yylval.s=strdup(yytext);return IDENT;

:: return COLONCOLON;

-> return IMPLIES;

== return EQ;

= return IS;

> return GT;

!= return NE;

\+ return PLUS;

- return MINUS;

* return MUL;

\/ return DIV;

\(return OPEN;

\) return CLOSE;

\| return GUARD;

[\t\n]+ /* ignore whitespace */;

. return TOKERR;

Note that we are being extremely minimal with our tokens, including (for example) True but
not False. These can trivially be added.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 9 / 15

Parser and Lexer Generator tools: Yacc and Lex THS: Tiny Haskell Subset: (06.ths-treebuilder)

Note in passing that we reuse (and extend) our expression grammar rules – hence
any valid expression is also a valid THS program, one with no function definitions.

Ok, first we define our lexer rules, regexps and actions:
[0-9]+ yylval.n=atoi(yytext); return NUMBER;

mod return MOD;

Int return INTTYPE;

True return TRUEV;

[a-z][a-z0-9]* yylval.s=strdup(yytext);return IDENT;

:: return COLONCOLON;

-> return IMPLIES;

== return EQ;

= return IS;

> return GT;

!= return NE;

\+ return PLUS;

- return MINUS;

* return MUL;

\/ return DIV;

\(return OPEN;

\) return CLOSE;

\| return GUARD;

[\t\n]+ /* ignore whitespace */;

. return TOKERR;

Note that we are being extremely minimal with our tokens, including (for example) True but
not False. These can trivially be added.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 9 / 15

Parser and Lexer Generator tools: Yacc and Lex THS: Tiny Haskell Subset: (06.ths-treebuilder)

As usual, our grammar and (Datadec-generated) AST intertwine, let’s start by
looking at types.in - our Datadec input file:

arithop = plus or minus or times or divide or mod;

expr = num(int n)

or id(string s)

or call(string s, expr e)

or binop(expr l, arithop op, expr r);

boolop = eq or ne or gt;

bexpr = truev

or binop(expr l, boolop op, expr r);

guard = pair(bexpr cond, expr e);

guardlist = nil

or cons(guard hd, guardlist tl);

fdefn = onerule(string fname, string param, expr e)

or manyrules(string fname, string param, guardlist l);

flist = nil

or cons(fdefn hd, flist tl);

program = pair(flist l, expr e);

In parser.y, here’s our %union declaration, which lists all possible types of data associated
with tokens and grammar rules:

%union

{

int n; char *s;

expr e; bexpr b;

guard g; guardlist gl;

fdefn f; flist fl;

}

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 10 / 15

Parser and Lexer Generator tools: Yacc and Lex THS: Tiny Haskell Subset: (06.ths-treebuilder)

Here are some of the declarations that associate tokens and grammar rules with
specific members of the union:

%token <n> NUMBER

%token <s> IDENT

%type <e> factor term expr

%type bexpr

%type <g> guard;

...

Let’s look at a few grammar rules to give a flavour:
program : defns expr { prog_result = program_pair($1, $2); }

;

defns : /* empty */ { $$ = flist_nil(); }

| defns ftypedefn { $$ = $1; /* ignore type defns */ }

| defns fdefinition { $$ = flist_cons($2, $1); }

;

ftypedefn : IDENT COLONCOLON type IMPLIES type { free_string($1); }

;

type : INTTYPE

;

fdefinition : IDENT IDENT IS expr { $$ = fdefn_onerule($1, $2, $4); }

| IDENT IDENT guardrules

{

guardlist rightorder = reverse_guardlist($3);

$$ = fdefn_manyrules($1, $2, rightorder);

free_guardlist_without_guard($3);

}

;

guardrules : guard { $$ = guardlist_cons($1, guardlist_nil()); }

| guardrules guard { $$ = guardlist_cons($2, $1); }

;

...

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 11 / 15

Parser and Lexer Generator tools: Yacc and Lex THS: Tiny Haskell Subset: (06.ths-treebuilder)

Note that recursive rules in Yacc, such as:
guardrules : guardrules guard

must place the recursive invocation first, hence when we build the AST guardlist it’s in the
reverse order. To fix this, we defined our own reverse guardlist() function in the prelude.

I’ve attempted to free() everything I malloc(), checking with valgrind. The reversing exposes
a shared pointers subtlety: we build a new guardlist with the same heads (guards) as the
original list. We must only free each guard once!

To fix this, we had to add free guardlist without guard() to the prelude, and call it from the
above Yacc action to free the original guardlist.

free guardlist without guard() is a copy of the automatically generated free guardlist()
function, with the free guard(head) call commented out.

Putting it altogether, adding named constants (via the hash module), using datadec and our
macro tool from the previous lecture, we end up with a THS (Tiny Haskell subset) parser and
treebuilder, of which we only write about 460 lines of code.

Give it a try!

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 12 / 15

Parser and Lexer Generator tools: Yacc and Lex THS: Tiny Haskell Subset: (06.ths-treebuilder)

Note that recursive rules in Yacc, such as:
guardrules : guardrules guard

must place the recursive invocation first, hence when we build the AST guardlist it’s in the
reverse order. To fix this, we defined our own reverse guardlist() function in the prelude.

I’ve attempted to free() everything I malloc(), checking with valgrind. The reversing exposes
a shared pointers subtlety: we build a new guardlist with the same heads (guards) as the
original list. We must only free each guard once!

To fix this, we had to add free guardlist without guard() to the prelude, and call it from the
above Yacc action to free the original guardlist.

free guardlist without guard() is a copy of the automatically generated free guardlist()
function, with the free guard(head) call commented out.

Putting it altogether, adding named constants (via the hash module), using datadec and our
macro tool from the previous lecture, we end up with a THS (Tiny Haskell subset) parser and
treebuilder, of which we only write about 460 lines of code.

Give it a try!

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 12 / 15

Parser and Lexer Generator tools: Yacc and Lex THS: Tiny Haskell Subset: (06.ths-treebuilder)

Note that recursive rules in Yacc, such as:
guardrules : guardrules guard

must place the recursive invocation first, hence when we build the AST guardlist it’s in the
reverse order. To fix this, we defined our own reverse guardlist() function in the prelude.

I’ve attempted to free() everything I malloc(), checking with valgrind. The reversing exposes
a shared pointers subtlety: we build a new guardlist with the same heads (guards) as the
original list. We must only free each guard once!

To fix this, we had to add free guardlist without guard() to the prelude, and call it from the
above Yacc action to free the original guardlist.

free guardlist without guard() is a copy of the automatically generated free guardlist()
function, with the free guard(head) call commented out.

Putting it altogether, adding named constants (via the hash module), using datadec and our
macro tool from the previous lecture, we end up with a THS (Tiny Haskell subset) parser and
treebuilder, of which we only write about 460 lines of code.

Give it a try!

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 12 / 15

Parser and Lexer Generator tools: Yacc and Lex THS cont: (07.ths-codegen)

07.ths-codegen extends our treebuilder, adding semantic checking (eg. checking that
we define every function we call) and then code generation - translating THS to C!

How do we do semantic checks? A semantic checker involves walking the AST and
building convenient data structures. We create a hash and a set: the hash maps from
functionname to AST function definition (for every defined function); the set names
all called functions. Then we check that every called function is defined, exactly once.

How do we do code generation? A code generator is just another ASTwalker, one
with suitable print statements!

In fact, using datadec’s print hints mechanism, 80% of the C code generation was
done by making each AST type print itself in valid C form. The remaining 20% was
custom C code, mainly printing boilerplate and then invoking datadec-generated
print TYPE() functions.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 13 / 15

Summary 07.ths-codegen; Everyone needs their toolkit!

We’re now using so many tools to build our code, let’s see what percentage of the
source code we’re writing manually.

In 07.ths-codegen, we have only written about 900 lines of code ourselves.

However, after datadec, macro, Yacc and Lex have run, there are approximately 5400
lines of C code (including headers) overall.

900/5400 is about 16%.

To put that another way: our tools wrote 84% of the code for us.

Ok, let’s sum up what we’ve been trying to say in these lectures:

Follow 100,000 years of human history by tool-using and tool-making.

Are we Homo sapiens - or Homo faber, man the toolmaker?

Build yourself a powerful toolkit.

Choose tools you like; become expert in each.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 14 / 15

Summary 07.ths-codegen; Everyone needs their toolkit!

We’re now using so many tools to build our code, let’s see what percentage of the
source code we’re writing manually.

In 07.ths-codegen, we have only written about 900 lines of code ourselves.

However, after datadec, macro, Yacc and Lex have run, there are approximately 5400
lines of C code (including headers) overall.

900/5400 is about 16%.

To put that another way: our tools wrote 84% of the code for us.

Ok, let’s sum up what we’ve been trying to say in these lectures:

Follow 100,000 years of human history by tool-using and tool-making.

Are we Homo sapiens - or Homo faber, man the toolmaker?

Build yourself a powerful toolkit.

Choose tools you like; become expert in each.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 14 / 15

Summary 07.ths-codegen; Everyone needs their toolkit!

We’re now using so many tools to build our code, let’s see what percentage of the
source code we’re writing manually.

In 07.ths-codegen, we have only written about 900 lines of code ourselves.

However, after datadec, macro, Yacc and Lex have run, there are approximately 5400
lines of C code (including headers) overall.

900/5400 is about 16%.

To put that another way: our tools wrote 84% of the code for us.

Ok, let’s sum up what we’ve been trying to say in these lectures:

Follow 100,000 years of human history by tool-using and tool-making.

Are we Homo sapiens - or Homo faber, man the toolmaker?

Build yourself a powerful toolkit.

Choose tools you like; become expert in each.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 14 / 15

Summary 07.ths-codegen; Everyone needs their toolkit!

We’re now using so many tools to build our code, let’s see what percentage of the
source code we’re writing manually.

In 07.ths-codegen, we have only written about 900 lines of code ourselves.

However, after datadec, macro, Yacc and Lex have run, there are approximately 5400
lines of C code (including headers) overall.

900/5400 is about 16%.

To put that another way: our tools wrote 84% of the code for us.

Ok, let’s sum up what we’ve been trying to say in these lectures:

Follow 100,000 years of human history by tool-using and tool-making.

Are we Homo sapiens - or Homo faber, man the toolmaker?

Build yourself a powerful toolkit.

Choose tools you like; become expert in each.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 14 / 15

Summary 07.ths-codegen; Everyone needs their toolkit!

We’re now using so many tools to build our code, let’s see what percentage of the
source code we’re writing manually.

In 07.ths-codegen, we have only written about 900 lines of code ourselves.

However, after datadec, macro, Yacc and Lex have run, there are approximately 5400
lines of C code (including headers) overall.

900/5400 is about 16%.

To put that another way: our tools wrote 84% of the code for us.

Ok, let’s sum up what we’ve been trying to say in these lectures:

Follow 100,000 years of human history by tool-using and tool-making.

Are we Homo sapiens - or Homo faber, man the toolmaker?

Build yourself a powerful toolkit.

Choose tools you like; become expert in each.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 14 / 15

Summary 07.ths-codegen; Everyone needs their toolkit!

We’re now using so many tools to build our code, let’s see what percentage of the
source code we’re writing manually.

In 07.ths-codegen, we have only written about 900 lines of code ourselves.

However, after datadec, macro, Yacc and Lex have run, there are approximately 5400
lines of C code (including headers) overall.

900/5400 is about 16%.

To put that another way: our tools wrote 84% of the code for us.

Ok, let’s sum up what we’ve been trying to say in these lectures:

Follow 100,000 years of human history by tool-using and tool-making.

Are we Homo sapiens - or Homo faber, man the toolmaker?

Build yourself a powerful toolkit.

Choose tools you like; become expert in each.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 14 / 15

Summary 07.ths-codegen; Everyone needs their toolkit!

We’re now using so many tools to build our code, let’s see what percentage of the
source code we’re writing manually.

In 07.ths-codegen, we have only written about 900 lines of code ourselves.

However, after datadec, macro, Yacc and Lex have run, there are approximately 5400
lines of C code (including headers) overall.

900/5400 is about 16%.

To put that another way: our tools wrote 84% of the code for us.

Ok, let’s sum up what we’ve been trying to say in these lectures:

Follow 100,000 years of human history by tool-using and tool-making.

Are we Homo sapiens - or Homo faber, man the toolmaker?

Build yourself a powerful toolkit.

Choose tools you like; become expert in each.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 14 / 15

Summary 07.ths-codegen; Everyone needs their toolkit!

We’re now using so many tools to build our code, let’s see what percentage of the
source code we’re writing manually.

In 07.ths-codegen, we have only written about 900 lines of code ourselves.

However, after datadec, macro, Yacc and Lex have run, there are approximately 5400
lines of C code (including headers) overall.

900/5400 is about 16%.

To put that another way: our tools wrote 84% of the code for us.

Ok, let’s sum up what we’ve been trying to say in these lectures:

Follow 100,000 years of human history by tool-using and tool-making.

Are we Homo sapiens - or Homo faber, man the toolmaker?

Build yourself a powerful toolkit.

Choose tools you like; become expert in each.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 14 / 15

Summary 07.ths-codegen; Everyone needs their toolkit!

We’re now using so many tools to build our code, let’s see what percentage of the
source code we’re writing manually.

In 07.ths-codegen, we have only written about 900 lines of code ourselves.

However, after datadec, macro, Yacc and Lex have run, there are approximately 5400
lines of C code (including headers) overall.

900/5400 is about 16%.

To put that another way: our tools wrote 84% of the code for us.

Ok, let’s sum up what we’ve been trying to say in these lectures:

Follow 100,000 years of human history by tool-using and tool-making.

Are we Homo sapiens - or Homo faber, man the toolmaker?

Build yourself a powerful toolkit.

Choose tools you like; become expert in each.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 14 / 15

Summary 07.ths-codegen; Everyone needs their toolkit!

We’re now using so many tools to build our code, let’s see what percentage of the
source code we’re writing manually.

In 07.ths-codegen, we have only written about 900 lines of code ourselves.

However, after datadec, macro, Yacc and Lex have run, there are approximately 5400
lines of C code (including headers) overall.

900/5400 is about 16%.

To put that another way: our tools wrote 84% of the code for us.

Ok, let’s sum up what we’ve been trying to say in these lectures:

Follow 100,000 years of human history by tool-using and tool-making.

Are we Homo sapiens - or Homo faber, man the toolmaker?

Build yourself a powerful toolkit.

Choose tools you like; become expert in each.

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 14 / 15

Summary Everyone needs their toolkit!

When necessary and practical, build tools yourself to solve problems that irritate you.
Don’t be afraid!

Tools may save you much more time than they cost you to make.

Other possible tools I didn’t mention: regular expression libraries; all the things you
can do with function pointers; text processing tools; OO programming in C etc etc.

Most importantly: enjoy your C programming! Build your toolkit - and let me know
if you write any particularly cool tools!

Scripting languages like Perl, Ruby or Python are fantastic timesavers. I used to run
a Perl course until it got cancelled, notes available at:
http://www.doc.ic.ac.uk/~dcw/perl2014/

Finally, I’ve also written an occasional series of Practical Software Development
articles, see: http://www.doc.ic.ac.uk/~dcw/PSD/

That’s all folks!

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 15 / 15

Summary Everyone needs their toolkit!

When necessary and practical, build tools yourself to solve problems that irritate you.
Don’t be afraid!

Tools may save you much more time than they cost you to make.

Other possible tools I didn’t mention: regular expression libraries; all the things you
can do with function pointers; text processing tools; OO programming in C etc etc.

Most importantly: enjoy your C programming! Build your toolkit - and let me know
if you write any particularly cool tools!

Scripting languages like Perl, Ruby or Python are fantastic timesavers. I used to run
a Perl course until it got cancelled, notes available at:
http://www.doc.ic.ac.uk/~dcw/perl2014/

Finally, I’ve also written an occasional series of Practical Software Development
articles, see: http://www.doc.ic.ac.uk/~dcw/PSD/

That’s all folks!

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 15 / 15

Summary Everyone needs their toolkit!

When necessary and practical, build tools yourself to solve problems that irritate you.
Don’t be afraid!

Tools may save you much more time than they cost you to make.

Other possible tools I didn’t mention: regular expression libraries; all the things you
can do with function pointers; text processing tools; OO programming in C etc etc.

Most importantly: enjoy your C programming! Build your toolkit - and let me know
if you write any particularly cool tools!

Scripting languages like Perl, Ruby or Python are fantastic timesavers. I used to run
a Perl course until it got cancelled, notes available at:
http://www.doc.ic.ac.uk/~dcw/perl2014/

Finally, I’ve also written an occasional series of Practical Software Development
articles, see: http://www.doc.ic.ac.uk/~dcw/PSD/

That’s all folks!

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 15 / 15

Summary Everyone needs their toolkit!

When necessary and practical, build tools yourself to solve problems that irritate you.
Don’t be afraid!

Tools may save you much more time than they cost you to make.

Other possible tools I didn’t mention: regular expression libraries; all the things you
can do with function pointers; text processing tools; OO programming in C etc etc.

Most importantly: enjoy your C programming! Build your toolkit - and let me know
if you write any particularly cool tools!

Scripting languages like Perl, Ruby or Python are fantastic timesavers. I used to run
a Perl course until it got cancelled, notes available at:
http://www.doc.ic.ac.uk/~dcw/perl2014/

Finally, I’ve also written an occasional series of Practical Software Development
articles, see: http://www.doc.ic.ac.uk/~dcw/PSD/

That’s all folks!

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 15 / 15

Summary Everyone needs their toolkit!

When necessary and practical, build tools yourself to solve problems that irritate you.
Don’t be afraid!

Tools may save you much more time than they cost you to make.

Other possible tools I didn’t mention: regular expression libraries; all the things you
can do with function pointers; text processing tools; OO programming in C etc etc.

Most importantly: enjoy your C programming! Build your toolkit - and let me know
if you write any particularly cool tools!

Scripting languages like Perl, Ruby or Python are fantastic timesavers. I used to run
a Perl course until it got cancelled, notes available at:
http://www.doc.ic.ac.uk/~dcw/perl2014/

Finally, I’ve also written an occasional series of Practical Software Development
articles, see: http://www.doc.ic.ac.uk/~dcw/PSD/

That’s all folks!

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 15 / 15

Summary Everyone needs their toolkit!

When necessary and practical, build tools yourself to solve problems that irritate you.
Don’t be afraid!

Tools may save you much more time than they cost you to make.

Other possible tools I didn’t mention: regular expression libraries; all the things you
can do with function pointers; text processing tools; OO programming in C etc etc.

Most importantly: enjoy your C programming! Build your toolkit - and let me know
if you write any particularly cool tools!

Scripting languages like Perl, Ruby or Python are fantastic timesavers. I used to run
a Perl course until it got cancelled, notes available at:
http://www.doc.ic.ac.uk/~dcw/perl2014/

Finally, I’ve also written an occasional series of Practical Software Development
articles, see: http://www.doc.ic.ac.uk/~dcw/PSD/

That’s all folks!

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 15 / 15

Summary Everyone needs their toolkit!

When necessary and practical, build tools yourself to solve problems that irritate you.
Don’t be afraid!

Tools may save you much more time than they cost you to make.

Other possible tools I didn’t mention: regular expression libraries; all the things you
can do with function pointers; text processing tools; OO programming in C etc etc.

Most importantly: enjoy your C programming! Build your toolkit - and let me know
if you write any particularly cool tools!

Scripting languages like Perl, Ruby or Python are fantastic timesavers. I used to run
a Perl course until it got cancelled, notes available at:
http://www.doc.ic.ac.uk/~dcw/perl2014/

Finally, I’ve also written an occasional series of Practical Software Development
articles, see: http://www.doc.ic.ac.uk/~dcw/PSD/

That’s all folks!

Duncan White & Evangelos Ververas (Imperial) C Programming Tools: Part 4 15th June 2017 15 / 15

	Today's Contents
	Parser and Lexer Generator tools: Yacc and Lex
	Expression Parsing (01.expr1)
	Expression calculator (02.expr2)
	Expression calculator with named constants (03.expr3)
	Expression treebuilder (05.expr5)
	THS: Tiny Haskell Subset: (06.ths-treebuilder)
	THS cont: (07.ths-codegen)

	Summary
	07.ths-codegen; Everyone needs their toolkit!
	Everyone needs their toolkit!

