
C Programming Tools: Part 1
Building and Using your own Toolkit

Duncan C. White
d.white@imperial.ac.uk

Dept of Computing,
Imperial College London

29th May 2018

Duncan White (Imperial) C Programming Tools: Part 1 29th May 2018 1 / 21

Introduction Toolkits and Craftsmanship

As programmers, you will learn many languages over your
career. Right now, you’re learning C.

Hopefully you’ll learn something from each language. But
some languages flower briefly and then die, others endure. C
is likely to endure. It’s endured for over 40 years already!

When learning a new language like C, there are several steps
to achieve basic competence:

Learn syntax.
Learn semantics.
Learn the tricky bits eg. pointers.
Learn the standard library.
Learn how to write multi-module programs.
Learn the idioms and best practices.
Learn to avoid the traps and pitfalls.
Learn how to write portable code.

Duncan White (Imperial) C Programming Tools: Part 1 29th May 2018 2 / 21

Introduction Toolkits and Craftsmanship

These 4 lectures, today and the next three Thursdays, answer:
What comes after basic C competence?

Craftsmanship!
Build your own toolkit of:

Useful tools,
Useful libraries,
Craft skills.

To make C programming easier and more productive.

When necessary: build your own tools!

Core Principle: Ruthless Automation.

Doing something boring and repetitive? Can I save time by
automating this?

Duncan White (Imperial) C Programming Tools: Part 1 29th May 2018 3 / 21

Introduction Toolkits and Craftsmanship

Or, to put that another way:
(As seen on the walkway last year).

Duncan White (Imperial) C Programming Tools: Part 1 29th May 2018 4 / 21

mailto:d.white@imperial.ac.uk


Introduction Toolkits and Craftsmanship

Or, to put that another way (thanks due to SwissMiss):

Duncan White (Imperial) C Programming Tools: Part 1 29th May 2018 5 / 21

Introduction Toolkits and Craftsmanship

Or, adding SysAdmins into the mix:

Duncan White (Imperial) C Programming Tools: Part 1 29th May 2018 6 / 21

Introduction Contents

Today, we’ll cover:

Programmer’s Editors: Use a single editor well.

Automating Compilation: Use make.

Multi-Directory Programs and Libraries: How to lay out programs
in multiple directories, a Makefile per directory.

Automating Compilation: An alternative tool called CMake.

Notes:

I strongly recommend The Pragmatic Programmer (PP) book, by
Hunt & Thomas. The woodworking metaphor - and a series of
excellent Programming Tips - comes from there.

I also recommend The Practice of Programming (PoP) book, by
Kernighan & Pike. Both books are brilliant expositions of
expert-level programming craft.

There’s a tarball of examples associated with each lecture, as a
shorthand tarball 01.intlist refers to the directory called 01.intlist
inside the tarball. Each directory contains a README file.

Duncan White (Imperial) C Programming Tools: Part 1 29th May 2018 7 / 21

Programmer’s Editors Use a Single Editor Well (PP tip 22)

Hunt & Thomas write (in Tip 22):

Use a Single Editor Well: The editor should be an
extension of your hand; make sure your editor is
configurable, extensible and programmable.

As a programmer, you will spend years of your life editing
programs.

Coding might be 80% thinking and 20% typing, but your typing
must not interfere with your thought process.

So: Explore a few editors, choose one, and spend time becoming
expert in it.

That includes: learning how to plug external tools in.

It’s more than my life’s worth to tell you which editor to use.

Why? Because programmers are notoriously sectarian when it
comes to..

Duncan White (Imperial) C Programming Tools: Part 1 29th May 2018 8 / 21



Programmer’s Editors Use a Single Editor Well (PP tip 22)

The leading Programmer’s editors are (probably) vim and emacs:

IDEs such as Eclipse and CLion provide an editor, an automated
compilation system and a debugging environment. If you’re going
to use an IDE, learn how to use it well, and how to extend and
program it.

Note that Hunt & Thomas aren’t much in favour of IDEs.
Neither am I:-)

Duncan White (Imperial) C Programming Tools: Part 1 29th May 2018 10 / 21

Programmer’s Editors Use a Single Editor Well (PP tip 22)

Actually, it’s well known that Real Programmers use Butterflies to
edit source code:

Duncan White (Imperial) C Programming Tools: Part 1 29th May 2018 11 / 21

Automatic Compilation Make (tarball 01.intlist)

When multi-file C programming, there are many source files, eg:

testlist.c

defns.h

avgwordlen.c

intlist.h

intlist.c

Module intlist comprising two files (interface intlist.h and
implementation intlist.c) - defining a list-of-integers type.

Separate basic definitions header file defns.h.

Test program testlist.c, and a main program avgwordlen.c, that
use intlists.

So, what should we compile? what should we link?
Duncan White (Imperial) C Programming Tools: Part 1 29th May 2018 12 / 21



Automatic Compilation Make (tarball 01.intlist)

What we shouldn’t do: gcc -Wall *.c.

Dependencies between the files are vital, determined by the
#include structure. See this via:

grep ’#include’ *.[ch] | grep ’"’

Which gives:

intlist.c:#include "intlist.h"

avgwordlen.c:#include "intlist.h"

avgwordlen.c:#include "defns.h"

testlist.c:#include "intlist.h"

intlist.c includes intlist.h (to check implementation vs interface).

avgwordlen.c includes intlist.h (because it uses intlists) and
defns.h, etc

Make uses such file dependencies, encoded in a Makefile, to
automatically compile your programs.

The Makefile contains dependency rules between target and
source files with optional actions (commands) to generate each
target from the corresponding sources.

Duncan White (Imperial) C Programming Tools: Part 1 29th May 2018 13 / 21

Automatic Compilation Make (tarball 01.intlist)

Here’s the Makefile:

CC = gcc

CFLAGS = -Wall

BUILD = testlist avgwordlen

all: $(BUILD)

clean:

/bin/rm -f $(BUILD) *.o core

testlist: testlist.o intlist.o

avgwordlen: avgwordlen.o intlist.o

avgwordlen.o: intlist.h defns.h

testlist.o: intlist.h

intlist.o: intlist.h

Makefiles also contain macros, eg $(CC) which C compiler to use,
$(CFLAGS) what C compiler flags etc. Environment variables become
macros too, eg $(HOME).

Note that Make needs very few explicit dependencies and even fewer
explicit actions, because it already knows that intlist.o depends on
intlist.c, and how to compile .c files.
Duncan White (Imperial) C Programming Tools: Part 1 29th May 2018 14 / 21

Automatic Compilation Make (tarball 01.intlist)

Effectively, Make sees the more complete compilation rule:

intlist.o: intlist.c intlist.h

$(CC) $(CFLAGS) -c intlist.c

This rule declares that intlist.o is up to date only if it is newer
than intlist.c and intlist.h. If it doesn’t exist or is older than
either file, then the action is triggered - compiling intlist.c.

make takes optional target names on the command line
(defaulting to the first target), then performs the minimum
number of actions needed to bring the desired targets up to date,
based on the timestamps of the target and source files.

For example, if intlist.h is altered, you run make, that builds the
target all, which recursively applies all the rules checking
timestamps and concludes that...

...intlist.c, testlist.c and avgwordlen.c need recompiling, and then
the new testlist.o and avgwordlen.o need relinking against the
new intlist.o, giving the 2 executables testlist and avgwordlen.

Duncan White (Imperial) C Programming Tools: Part 1 29th May 2018 15 / 21

Automatic Compilation Make (tarball 01.intlist)

If, instead, make is run after intlist.c is modified, it figures out
that it needs to recompile intlist.c, and relink both executables
against the new intlist.o.

If, instead, make is run after nothing is modified, it figures out
that nothing needs to be done. This parsimonious property of
Make is its best feature!

It’s easy to auto-generate Makefiles for single directory C projects
containing a single main program and any number of modules -
see tarball 02.c-mfbuild and 03.perl-mfbuild for two attempts.

Summary: Always use make, or some similar tool. Keep your
Makefile dependencies up to date, optionally auto-generating
your Makefiles.

Google make tutorial for more info.

Duncan White (Imperial) C Programming Tools: Part 1 29th May 2018 16 / 21



Automatic Compilation Multi-directory Projects (tarball 04.intlist-with-lib)

As a C project gets larger, you may wish to break it into several
sub-directories.
Core concept: each sub-directory contains:

One or more modules (each a paired .c and .h file as usual).
Ideally these modules should only depend on each other, and the
C standard library.
Along with any associated test programs.
Plus a Makefile that compiles all the .c files, builds all the test
programs, and builds a library containing the .o files belonging to
those modules.

Let’s split our existing intlist and avgwordlen directory up.
What to split? The intlist module is:

Logically separate.
Reusable - whenever we want a list of integers.
Depends on only the standard library.

That is, it’s highly cohesive.

So: it’s perfect for splitting out into a library sub-directory.

In tarball directory 04.intlist-with-lib, you’ll see what we have
done to achieve this.
Duncan White (Imperial) C Programming Tools: Part 1 29th May 2018 17 / 21

Automatic Compilation Multi-directory Projects (tarball 04.intlist-with-lib)

There’s a separate lib sub-directory, let’s explore it first:

lib contains intlist.c, intlist.h, testlist.c and it’s own Makefile,
lib/Makefile, which builds two core targets:

The executable testlist.
The library libintlist.a containing intlist.o.

To do this, lib/Makefile has the following new parts:

LIB = libintlist.a

LIBOBJS = intlist.o

BUILD = testlist $(LIB)

...

$(LIB): $(LIBOBJS)

ar rc $(LIB) $(LIBOBJS)

ranlib $(LIB)

The new rule says that $(LIB) depends on $(LIBOBJS), i.e.
libintlist.a depends on intlist.o, and that the action
invokes ar and ranlib - tools that build library files.

Duncan White (Imperial) C Programming Tools: Part 1 29th May 2018 18 / 21

Automatic Compilation Multi-directory Projects (tarball 04.intlist-with-lib)

The top-level directory contains avgwordlen.c and defns.h, and a
Makefile, containing the following new parts:

CFLAGS = -Wall -Ilib

LDLIBS = -Llib -lintlist

BUILD = libs avgwordlen

In CFLAGS, -Ilib tells the C compiler to search for include files
in the lib directory.

In LDLIBS, -Llib tells the linker to search for libraries in the lib
directory, and -lintlist links the intlist library in.

In BUILD, I’ve added libs before avgwordlen. Later down the
main Makefile, we see a rule to make libs:

libs:

cd lib; make

This new always run rule tricks Make, with it’s single directory
view of the world, into first building in the lib sub-directory,
before building in the current directory.

Duncan White (Imperial) C Programming Tools: Part 1 29th May 2018 19 / 21

Automatic Compilation Multi-directory Projects (tarball 05.libintlist)

You’ll also notice the new target:

spotless: clean

cd lib; make clean

I chose a separate spotless target, because in my head,
make spotless cleans more thoroughly than make clean.

In tarball 05.libintlist and 06.avgwordlen-only, you’ll see how to
split the intlist module out completely from the avgwordlen
application that uses intlists.

In brief: 05.libintlist contains only the files from the lib directory.

It’s Makefile adds a new install target to install the library into
your ~/c-tools/lib/x86_64 directory, and install intlist.h into
~/c-tools/include.

After running make install in 05.libintlist, your ~/c-tools
library permanently contains the intlist ADT, for you to reuse
whenever you like - as shown in 06.avgwordlen-only.

Left for you to work through!

Duncan White (Imperial) C Programming Tools: Part 1 29th May 2018 20 / 21



Automatic Compilation CMake (tarball 07.intlist-with-cmake)

I recommend learning Make thoroughly, and personally I find it’s
all I need.

But if you find that keeping Makefiles up to date begins to bore
you (especially at large scale), there are alternatives - or
frontends - to Make:

For example CMake and the Gnu autoconf system, both of these
generate Makefiles automatically from simpler inputs, and are
supposed to scale well. Let’s briefly look at CMake:

In tarball 07.intlist-with-cmake you will find a copy of our familiar
intlist-with-lib example, in which the only differences are that the
Makefiles have been replaced with CMakeLists.txt files, and the
README has been modified to explain it.

Go through that, and you’ll get a taste of how CMake lists files
are constructed. But CMake is over complex for my tastes. Also,
any tool that needs to be run in it’s own build subdirectory in
order to leave the source code directory uncluttered is too messy
for me!

Duncan White (Imperial) C Programming Tools: Part 1 29th May 2018 21 / 21


	Introduction
	Toolkits and Craftsmanship
	Contents

	Programmer's Editors
	Use a Single Editor Well (PP tip 22)

	Automatic Compilation
	Make (tarball 01.intlist)
	Multi-directory Projects (tarball 04.intlist-with-lib)
	Multi-directory Projects (tarball 05.libintlist)
	CMake (tarball 07.intlist-with-cmake)


