
Building your own C Toolkit: Part 2

Duncan C. White
d.white@imperial.ac.uk

Dept of Computing,
Imperial College London

31st May 2018

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 1 / 17

mailto:d.white@imperial.ac.uk

Today’s Contents

Last lecture, we introduced the idea of building a C programming toolkit. and
covered programmer’s editors, make and multi-directory programs.

Today, we’re going to carry on, and cover:

What to do when things go wrong.
Debugging: gdb.
Detecting memory leaks: valgrind.
Profiling-led Optimization.
Automatic Ruthless Testing.

As last week, there’s a tarball of examples associated with this lecture. Both lectures’
slides and tarballs are available on CATE and at:
http://www.doc.ic.ac.uk/~dcw/c-tools-2018/

One of the most common things that you will experience with C programming is that
your program dies mysteriously with a Segmentation Fault (aka a segfault).

Why is that?

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 2 / 17

Today’s Contents

Last lecture, we introduced the idea of building a C programming toolkit. and
covered programmer’s editors, make and multi-directory programs.

Today, we’re going to carry on, and cover:

What to do when things go wrong.
Debugging: gdb.

Detecting memory leaks: valgrind.
Profiling-led Optimization.
Automatic Ruthless Testing.

As last week, there’s a tarball of examples associated with this lecture. Both lectures’
slides and tarballs are available on CATE and at:
http://www.doc.ic.ac.uk/~dcw/c-tools-2018/

One of the most common things that you will experience with C programming is that
your program dies mysteriously with a Segmentation Fault (aka a segfault).

Why is that?

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 2 / 17

Today’s Contents

Last lecture, we introduced the idea of building a C programming toolkit. and
covered programmer’s editors, make and multi-directory programs.

Today, we’re going to carry on, and cover:

What to do when things go wrong.
Debugging: gdb.
Detecting memory leaks: valgrind.
Profiling-led Optimization.
Automatic Ruthless Testing.

As last week, there’s a tarball of examples associated with this lecture. Both lectures’
slides and tarballs are available on CATE and at:
http://www.doc.ic.ac.uk/~dcw/c-tools-2018/

One of the most common things that you will experience with C programming is that
your program dies mysteriously with a Segmentation Fault (aka a segfault).

Why is that?

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 2 / 17

Today’s Contents

Last lecture, we introduced the idea of building a C programming toolkit. and
covered programmer’s editors, make and multi-directory programs.

Today, we’re going to carry on, and cover:

What to do when things go wrong.
Debugging: gdb.
Detecting memory leaks: valgrind.
Profiling-led Optimization.
Automatic Ruthless Testing.

As last week, there’s a tarball of examples associated with this lecture. Both lectures’
slides and tarballs are available on CATE and at:
http://www.doc.ic.ac.uk/~dcw/c-tools-2018/

One of the most common things that you will experience with C programming is that
your program dies mysteriously with a Segmentation Fault (aka a segfault).

Why is that?

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 2 / 17

Today’s Contents

Last lecture, we introduced the idea of building a C programming toolkit. and
covered programmer’s editors, make and multi-directory programs.

Today, we’re going to carry on, and cover:

What to do when things go wrong.
Debugging: gdb.
Detecting memory leaks: valgrind.
Profiling-led Optimization.
Automatic Ruthless Testing.

As last week, there’s a tarball of examples associated with this lecture. Both lectures’
slides and tarballs are available on CATE and at:
http://www.doc.ic.ac.uk/~dcw/c-tools-2018/

One of the most common things that you will experience with C programming is that
your program dies mysteriously with a Segmentation Fault (aka a segfault).

Why is that?

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 2 / 17

What to do when things go wrong Segmentation Faults and other problems

C assumes you know what you’re doing:

It’s your responsibility to: check that you don’t overrun the bounds of an array, don’t
dereference a NULL/bad pointer, and don’t write into read-only memory - as in
char *p = "get ready"; *p = ’s’; or strcpy(p,"hello");

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 3 / 17

What to do when things go wrong Segmentation Faults and other problems

C assumes you know what you’re doing:

It’s your responsibility to: check that you don’t overrun the bounds of an array, don’t
dereference a NULL/bad pointer, and don’t write into read-only memory - as in
char *p = "get ready"; *p = ’s’; or strcpy(p,"hello");

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 3 / 17

What to do when things go wrong Segmentation Faults and other problems

C assumes you know what you’re doing:

It’s your responsibility to: check that you don’t overrun the bounds of an array,

don’t
dereference a NULL/bad pointer, and don’t write into read-only memory - as in
char *p = "get ready"; *p = ’s’; or strcpy(p,"hello");

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 3 / 17

What to do when things go wrong Segmentation Faults and other problems

C assumes you know what you’re doing:

It’s your responsibility to: check that you don’t overrun the bounds of an array, don’t
dereference a NULL/bad pointer,

and don’t write into read-only memory - as in
char *p = "get ready"; *p = ’s’; or strcpy(p,"hello");

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 3 / 17

What to do when things go wrong Segmentation Faults and other problems

C assumes you know what you’re doing:

It’s your responsibility to: check that you don’t overrun the bounds of an array, don’t
dereference a NULL/bad pointer, and don’t write into read-only memory - as in
char *p = "get ready"; *p = ’s’; or strcpy(p,"hello");

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 3 / 17

Debugging Know a single debugger well (tarball 01.string-debug)

Our first technique for fixing a broken C program - when it crashes or produces the
wrong answers - is to debug it.

As the Pragmatic Programmers so nearly said: Know a single debugger well.

Let’s use gdb, the GNU debugger, to understand a problem in 01.string-debug - a
program crashing with a segfault.

The README in 01.string-debug explains what to do. In summary:

Recompile all source code with debugging support - add gcc’s -g flag to CFLAGS in
the Makefile and type make clean all.

Start gdb then run the program, interacting with it until it crashes.

Now type where to see the call frame stack - the sequence of function calls leading
to the crash.

Then print out the values and types of variables to see what has gone wrong.

The p VARIABLE command prints out a variable, and the whatis VARIABLE

command reminds you of it’s type.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 4 / 17

Debugging Know a single debugger well (tarball 01.string-debug)

Our first technique for fixing a broken C program - when it crashes or produces the
wrong answers - is to debug it.

As the Pragmatic Programmers so nearly said: Know a single debugger well.

Let’s use gdb, the GNU debugger, to understand a problem in 01.string-debug - a
program crashing with a segfault.

The README in 01.string-debug explains what to do. In summary:

Recompile all source code with debugging support - add gcc’s -g flag to CFLAGS in
the Makefile and type make clean all.

Start gdb then run the program, interacting with it until it crashes.

Now type where to see the call frame stack - the sequence of function calls leading
to the crash.

Then print out the values and types of variables to see what has gone wrong.

The p VARIABLE command prints out a variable, and the whatis VARIABLE

command reminds you of it’s type.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 4 / 17

Debugging Know a single debugger well (tarball 01.string-debug)

Our first technique for fixing a broken C program - when it crashes or produces the
wrong answers - is to debug it.

As the Pragmatic Programmers so nearly said: Know a single debugger well.

Let’s use gdb, the GNU debugger, to understand a problem in 01.string-debug - a
program crashing with a segfault.

The README in 01.string-debug explains what to do. In summary:

Recompile all source code with debugging support - add gcc’s -g flag to CFLAGS in
the Makefile and type make clean all.

Start gdb then run the program, interacting with it until it crashes.

Now type where to see the call frame stack - the sequence of function calls leading
to the crash.

Then print out the values and types of variables to see what has gone wrong.

The p VARIABLE command prints out a variable, and the whatis VARIABLE

command reminds you of it’s type.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 4 / 17

Debugging Know a single debugger well (tarball 01.string-debug)

Our first technique for fixing a broken C program - when it crashes or produces the
wrong answers - is to debug it.

As the Pragmatic Programmers so nearly said: Know a single debugger well.

Let’s use gdb, the GNU debugger, to understand a problem in 01.string-debug - a
program crashing with a segfault.

The README in 01.string-debug explains what to do. In summary:

Recompile all source code with debugging support - add gcc’s -g flag to CFLAGS in
the Makefile and type make clean all.

Start gdb then run the program, interacting with it until it crashes.

Now type where to see the call frame stack - the sequence of function calls leading
to the crash.

Then print out the values and types of variables to see what has gone wrong.

The p VARIABLE command prints out a variable, and the whatis VARIABLE

command reminds you of it’s type.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 4 / 17

Debugging Know a single debugger well (tarball 01.string-debug)

Our first technique for fixing a broken C program - when it crashes or produces the
wrong answers - is to debug it.

As the Pragmatic Programmers so nearly said: Know a single debugger well.

Let’s use gdb, the GNU debugger, to understand a problem in 01.string-debug - a
program crashing with a segfault.

The README in 01.string-debug explains what to do. In summary:

Recompile all source code with debugging support - add gcc’s -g flag to CFLAGS in
the Makefile and type make clean all.

Start gdb then run the program, interacting with it until it crashes.

Now type where to see the call frame stack - the sequence of function calls leading
to the crash.

Then print out the values and types of variables to see what has gone wrong.

The p VARIABLE command prints out a variable, and the whatis VARIABLE

command reminds you of it’s type.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 4 / 17

Debugging Know a single debugger well (tarball 01.string-debug)

In particular, you’ll see that the char * variable q has a corrupt pointer in it: p q

shows the error: Cannot access memory at address 0x657265

By printing the addresses of variables p, q and str (by commands like p &str etc)
we can see that q happens to follow str in memory.

We can then use gdb’s memory dumper to show us the chunk of memory starting at
&str, using the x/12c &str command:
0x601060 <str>: 104 ’h’ 101 ’e’ 108 ’l’ 108 ’l’ 111 ’o’ 32 ’ ’ 116 ’t’ 104 ’h’

0x601068 <q>: 101 ’e’ 114 ’r’ 101 ’e’ 0 ’\000’

Do you see the problem now?

str is a char [8] but we have copied "hello there"

into it - more than 8 chars, so the rest of the string (’e’, ’r’, ’e’ and the trailing \0)
has OVERFLOWED into the adjacent variable’s space, which happens to be q.

But q is a char *, so interpreting those overflowing bytes as an address we get
0x00657265, some arbitrary address in memory. Fortunately, that’s not a valid char
*, so dereferencing it gave our segfault.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 5 / 17

Debugging Know a single debugger well (tarball 01.string-debug)

In particular, you’ll see that the char * variable q has a corrupt pointer in it: p q

shows the error: Cannot access memory at address 0x657265

By printing the addresses of variables p, q and str (by commands like p &str etc)
we can see that q happens to follow str in memory.

We can then use gdb’s memory dumper to show us the chunk of memory starting at
&str, using the x/12c &str command:
0x601060 <str>: 104 ’h’ 101 ’e’ 108 ’l’ 108 ’l’ 111 ’o’ 32 ’ ’ 116 ’t’ 104 ’h’

0x601068 <q>: 101 ’e’ 114 ’r’ 101 ’e’ 0 ’\000’

Do you see the problem now? str is a char [8] but we have copied "hello there"

into it - more than 8 chars,

so the rest of the string (’e’, ’r’, ’e’ and the trailing \0)
has OVERFLOWED into the adjacent variable’s space, which happens to be q.

But q is a char *, so interpreting those overflowing bytes as an address we get
0x00657265, some arbitrary address in memory. Fortunately, that’s not a valid char
*, so dereferencing it gave our segfault.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 5 / 17

Debugging Know a single debugger well (tarball 01.string-debug)

In particular, you’ll see that the char * variable q has a corrupt pointer in it: p q

shows the error: Cannot access memory at address 0x657265

By printing the addresses of variables p, q and str (by commands like p &str etc)
we can see that q happens to follow str in memory.

We can then use gdb’s memory dumper to show us the chunk of memory starting at
&str, using the x/12c &str command:
0x601060 <str>: 104 ’h’ 101 ’e’ 108 ’l’ 108 ’l’ 111 ’o’ 32 ’ ’ 116 ’t’ 104 ’h’

0x601068 <q>: 101 ’e’ 114 ’r’ 101 ’e’ 0 ’\000’

Do you see the problem now? str is a char [8] but we have copied "hello there"

into it - more than 8 chars, so the rest of the string (’e’, ’r’, ’e’ and the trailing \0)
has OVERFLOWED into the adjacent variable’s space, which happens to be q.

But q is a char *, so interpreting those overflowing bytes as an address we get
0x00657265, some arbitrary address in memory. Fortunately, that’s not a valid char
*, so dereferencing it gave our segfault.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 5 / 17

Debugging Know a single debugger well (tarball 01.string-debug)

In particular, you’ll see that the char * variable q has a corrupt pointer in it: p q

shows the error: Cannot access memory at address 0x657265

By printing the addresses of variables p, q and str (by commands like p &str etc)
we can see that q happens to follow str in memory.

We can then use gdb’s memory dumper to show us the chunk of memory starting at
&str, using the x/12c &str command:
0x601060 <str>: 104 ’h’ 101 ’e’ 108 ’l’ 108 ’l’ 111 ’o’ 32 ’ ’ 116 ’t’ 104 ’h’

0x601068 <q>: 101 ’e’ 114 ’r’ 101 ’e’ 0 ’\000’

Do you see the problem now? str is a char [8] but we have copied "hello there"

into it - more than 8 chars, so the rest of the string (’e’, ’r’, ’e’ and the trailing \0)
has OVERFLOWED into the adjacent variable’s space, which happens to be q.

But q is a char *, so interpreting those overflowing bytes as an address we get
0x00657265, some arbitrary address in memory. Fortunately, that’s not a valid char
*, so dereferencing it gave our segfault.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 5 / 17

Debugging Know a single debugger well (tarball 01.string-debug)

As to finding out how the overflow occurred (if it’s not obvious), you can use gdb to
set breakpoints, or watch a variable to stop the debugging session each time it
changes.

Using the watch q command, and then running the program, we find that q was
modified accidentally inside append(), specifically where we strcat() without
checking that the concatenated string fits.

The README file suggests an obvious two-part fix for the problem:

First, we write additional code inside append() to detect overflow, and use assert()

to blow up the program when overflow does occur.
Second, we prevent the overflow condition from occurring this time - by making
char str[8] bigger!

Google for gdb tutorial for more info.

Most important, leave gdb by quit.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 6 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Memory leaks are the most serious C problem:

Often claimed that 99% of serious C bugs are memory-allocation related.

C uses pointers and malloc() so much, with so little checking, that debugging
memory related problems can be challenging even with gdb.

Failing to free() what you malloc() is very bad for long running programs, that
continuously modify their data structures.

Such programs can ‘leak’ memory until they try to use more memory than the
computer has physical RAM!

free()ing a block twice is equally dangerous.

Dereferencing an uninitialized/reclaimed pointer gives Undefined Behaviour (really
hard to debug!).

Even when you get Seg faults - gdb where (frame stack) may show it crashes in
system libraries - but it doesn’t really!

To diagnose such problems, we use tools like valgrind:

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 7 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Memory leaks are the most serious C problem:

Often claimed that 99% of serious C bugs are memory-allocation related.

C uses pointers and malloc() so much, with so little checking, that debugging
memory related problems can be challenging even with gdb.

Failing to free() what you malloc() is very bad for long running programs, that
continuously modify their data structures.

Such programs can ‘leak’ memory until they try to use more memory than the
computer has physical RAM!

free()ing a block twice is equally dangerous.

Dereferencing an uninitialized/reclaimed pointer gives Undefined Behaviour (really
hard to debug!).

Even when you get Seg faults - gdb where (frame stack) may show it crashes in
system libraries - but it doesn’t really!

To diagnose such problems, we use tools like valgrind:

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 7 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Memory leaks are the most serious C problem:

Often claimed that 99% of serious C bugs are memory-allocation related.

C uses pointers and malloc() so much, with so little checking, that debugging
memory related problems can be challenging even with gdb.

Failing to free() what you malloc() is very bad for long running programs, that
continuously modify their data structures.

Such programs can ‘leak’ memory until they try to use more memory than the
computer has physical RAM!

free()ing a block twice is equally dangerous.

Dereferencing an uninitialized/reclaimed pointer gives Undefined Behaviour (really
hard to debug!).

Even when you get Seg faults - gdb where (frame stack) may show it crashes in
system libraries - but it doesn’t really!

To diagnose such problems, we use tools like valgrind:

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 7 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Memory leaks are the most serious C problem:

Often claimed that 99% of serious C bugs are memory-allocation related.

C uses pointers and malloc() so much, with so little checking, that debugging
memory related problems can be challenging even with gdb.

Failing to free() what you malloc() is very bad for long running programs, that
continuously modify their data structures.

Such programs can ‘leak’ memory until they try to use more memory than the
computer has physical RAM!

free()ing a block twice is equally dangerous.

Dereferencing an uninitialized/reclaimed pointer gives Undefined Behaviour (really
hard to debug!).

Even when you get Seg faults - gdb where (frame stack) may show it crashes in
system libraries - but it doesn’t really!

To diagnose such problems, we use tools like valgrind:

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 7 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Memory leaks are the most serious C problem:

Often claimed that 99% of serious C bugs are memory-allocation related.

C uses pointers and malloc() so much, with so little checking, that debugging
memory related problems can be challenging even with gdb.

Failing to free() what you malloc() is very bad for long running programs, that
continuously modify their data structures.

Such programs can ‘leak’ memory until they try to use more memory than the
computer has physical RAM!

free()ing a block twice is equally dangerous.

Dereferencing an uninitialized/reclaimed pointer gives Undefined Behaviour (really
hard to debug!).

Even when you get Seg faults - gdb where (frame stack) may show it crashes in
system libraries - but it doesn’t really!

To diagnose such problems, we use tools like valgrind:

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 7 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Memory leaks are the most serious C problem:

Often claimed that 99% of serious C bugs are memory-allocation related.

C uses pointers and malloc() so much, with so little checking, that debugging
memory related problems can be challenging even with gdb.

Failing to free() what you malloc() is very bad for long running programs, that
continuously modify their data structures.

Such programs can ‘leak’ memory until they try to use more memory than the
computer has physical RAM!

free()ing a block twice is equally dangerous.

Dereferencing an uninitialized/reclaimed pointer gives Undefined Behaviour (really
hard to debug!).

Even when you get Seg faults - gdb where (frame stack) may show it crashes in
system libraries - but it doesn’t really!

To diagnose such problems, we use tools like valgrind:

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 7 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Suppose we have a pre-written, pre-tested hash table module, plus a unit test
program testhash.

It passes all tests (creating a single hash table, populating it with keys and values,
finding keys, iterating over the hash, then freeing the hash table).

We’ve even used it in several successful projects - so we’re confident that it works!

But we have never checked for memory leaks with valgrind!

When we prepare to embed our hash table in a larger system, we’ll need to create,
populate and destroy whole hash tables thousands of times.

Voice of bitter experience: Test that scenario before doing it:-)

I wrote a tiny new test program iterate N M that (silently) performs all previous
tests N times, sleeping M seconds afterwards.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 8 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Suppose we have a pre-written, pre-tested hash table module, plus a unit test
program testhash.

It passes all tests (creating a single hash table, populating it with keys and values,
finding keys, iterating over the hash, then freeing the hash table).

We’ve even used it in several successful projects - so we’re confident that it works!

But we have never checked for memory leaks with valgrind!

When we prepare to embed our hash table in a larger system, we’ll need to create,
populate and destroy whole hash tables thousands of times.

Voice of bitter experience: Test that scenario before doing it:-)

I wrote a tiny new test program iterate N M that (silently) performs all previous
tests N times, sleeping M seconds afterwards.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 8 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Suppose we have a pre-written, pre-tested hash table module, plus a unit test
program testhash.

It passes all tests (creating a single hash table, populating it with keys and values,
finding keys, iterating over the hash, then freeing the hash table).

We’ve even used it in several successful projects - so we’re confident that it works!

But we have never checked for memory leaks with valgrind!

When we prepare to embed our hash table in a larger system, we’ll need to create,
populate and destroy whole hash tables thousands of times.

Voice of bitter experience: Test that scenario before doing it:-)

I wrote a tiny new test program iterate N M that (silently) performs all previous
tests N times, sleeping M seconds afterwards.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 8 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Suppose we have a pre-written, pre-tested hash table module, plus a unit test
program testhash.

It passes all tests (creating a single hash table, populating it with keys and values,
finding keys, iterating over the hash, then freeing the hash table).

We’ve even used it in several successful projects - so we’re confident that it works!

But we have never checked for memory leaks with valgrind!

When we prepare to embed our hash table in a larger system, we’ll need to create,
populate and destroy whole hash tables thousands of times.

Voice of bitter experience: Test that scenario before doing it:-)

I wrote a tiny new test program iterate N M that (silently) performs all previous
tests N times, sleeping M seconds afterwards.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 8 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Behaviour of iterate (with M=0) should be linear with N. Test it with
time ./iterate N 0 for several values of N.

However, we find dramatic non-linear behaviour around 32-33k iterations on lab
machines: Twice as slow as it should be, CPU %age falls, starts doing I/O.

What on earth is happening?

Try monitoring with top, sorting by %age of memory used (either within top via the
’f’ command, or via a shell alias: alias memtop ’top -o %MEM’).

Run iterate with a time delay: time ./iterate 33000 10 and watch top! iterate’s
memory use grows and grows, eventually hits 85% of physical memory. At this point
the system starts swapping (%wait goes busy), load average goes high, and the
machine goes very slow!

Hypothesis: the hash table module is leaking some memory! This is a job for
valgrind!

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 9 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Behaviour of iterate (with M=0) should be linear with N. Test it with
time ./iterate N 0 for several values of N.

However, we find dramatic non-linear behaviour around 32-33k iterations on lab
machines: Twice as slow as it should be, CPU %age falls, starts doing I/O.

What on earth is happening?

Try monitoring with top, sorting by %age of memory used (either within top via the
’f’ command, or via a shell alias: alias memtop ’top -o %MEM’).

Run iterate with a time delay: time ./iterate 33000 10 and watch top! iterate’s
memory use grows and grows, eventually hits 85% of physical memory. At this point
the system starts swapping (%wait goes busy), load average goes high, and the
machine goes very slow!

Hypothesis: the hash table module is leaking some memory! This is a job for
valgrind!

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 9 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Behaviour of iterate (with M=0) should be linear with N. Test it with
time ./iterate N 0 for several values of N.

However, we find dramatic non-linear behaviour around 32-33k iterations on lab
machines: Twice as slow as it should be, CPU %age falls, starts doing I/O.

What on earth is happening?

Try monitoring with top, sorting by %age of memory used (either within top via the
’f’ command, or via a shell alias: alias memtop ’top -o %MEM’).

Run iterate with a time delay: time ./iterate 33000 10 and watch top! iterate’s
memory use grows and grows, eventually hits 85% of physical memory. At this point
the system starts swapping (%wait goes busy), load average goes high, and the
machine goes very slow!

Hypothesis: the hash table module is leaking some memory! This is a job for
valgrind!

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 9 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Behaviour of iterate (with M=0) should be linear with N. Test it with
time ./iterate N 0 for several values of N.

However, we find dramatic non-linear behaviour around 32-33k iterations on lab
machines: Twice as slow as it should be, CPU %age falls, starts doing I/O.

What on earth is happening?

Try monitoring with top, sorting by %age of memory used (either within top via the
’f’ command, or via a shell alias: alias memtop ’top -o %MEM’).

Run iterate with a time delay: time ./iterate 33000 10 and watch top! iterate’s
memory use grows and grows, eventually hits 85% of physical memory. At this point
the system starts swapping (%wait goes busy), load average goes high, and the
machine goes very slow!

Hypothesis: the hash table module is leaking some memory!

This is a job for
valgrind!

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 9 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Behaviour of iterate (with M=0) should be linear with N. Test it with
time ./iterate N 0 for several values of N.

However, we find dramatic non-linear behaviour around 32-33k iterations on lab
machines: Twice as slow as it should be, CPU %age falls, starts doing I/O.

What on earth is happening?

Try monitoring with top, sorting by %age of memory used (either within top via the
’f’ command, or via a shell alias: alias memtop ’top -o %MEM’).

Run iterate with a time delay: time ./iterate 33000 10 and watch top! iterate’s
memory use grows and grows, eventually hits 85% of physical memory. At this point
the system starts swapping (%wait goes busy), load average goes high, and the
machine goes very slow!

Hypothesis: the hash table module is leaking some memory! This is a job for
valgrind!

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 9 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Run valgrind ./testhash [a simpler test program]

The result is:

LEAK SUMMARY:

definitely lost: 520,528 bytes in 2 blocks

...

Rerun with --leak-check=full to see details..

Run valgrind --leak-check=full ./testhash and you see:

260,264 bytes in 1 blocks are definitely lost..

at 0x4C2DB8F: malloc..

by 0x400DE9: hashCreate (hash.c:73)

by 0x400B2B: main (testhash.c:91)

260,264 bytes in 1 blocks are definitely lost..

at 0x4C2DB8F: malloc..

by 0x400EDD: hashCopy (hash.c:112)

by 0x400CE4: main (testhash.c:123)

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 10 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Run valgrind ./testhash [a simpler test program]

The result is:

LEAK SUMMARY:

definitely lost: 520,528 bytes in 2 blocks

...

Rerun with --leak-check=full to see details..

Run valgrind --leak-check=full ./testhash and you see:

260,264 bytes in 1 blocks are definitely lost..

at 0x4C2DB8F: malloc..

by 0x400DE9: hashCreate (hash.c:73)

by 0x400B2B: main (testhash.c:91)

260,264 bytes in 1 blocks are definitely lost..

at 0x4C2DB8F: malloc..

by 0x400EDD: hashCopy (hash.c:112)

by 0x400CE4: main (testhash.c:123)

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 10 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Look at line 73 of hash.c in hashCreate(), it reads:

h->data = (tree *) malloc(NHASH*sizeof(tree));

and line 112 is nearly identical in hashCopy().

Where might we expect to free this “hash data”? Look in the corresponding
hashFree(hash h) function.

Aha! h->data is NOT FREED. A simple mistake!

Add the missing free(h->data), recompile (make).

Rerun valgrind ./testhash and it reports no leaking blocks.

Run ./iterate 33000 10 again - no non linear behaviour, no weird slowdown.

Summary: use valgrind regularly while developing your code. Save yourself loads of
grief, double your confidence.

Exercise: does the list example (in Lecture 1’s 01.intlist - or any of the later versions)
run cleanly with valgrind?

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 11 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Look at line 73 of hash.c in hashCreate(), it reads:

h->data = (tree *) malloc(NHASH*sizeof(tree));

and line 112 is nearly identical in hashCopy().

Where might we expect to free this “hash data”? Look in the corresponding
hashFree(hash h) function.

Aha! h->data is NOT FREED. A simple mistake!

Add the missing free(h->data), recompile (make).

Rerun valgrind ./testhash and it reports no leaking blocks.

Run ./iterate 33000 10 again - no non linear behaviour, no weird slowdown.

Summary: use valgrind regularly while developing your code. Save yourself loads of
grief, double your confidence.

Exercise: does the list example (in Lecture 1’s 01.intlist - or any of the later versions)
run cleanly with valgrind?

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 11 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Look at line 73 of hash.c in hashCreate(), it reads:

h->data = (tree *) malloc(NHASH*sizeof(tree));

and line 112 is nearly identical in hashCopy().

Where might we expect to free this “hash data”? Look in the corresponding
hashFree(hash h) function.

Aha! h->data is NOT FREED. A simple mistake!

Add the missing free(h->data), recompile (make).

Rerun valgrind ./testhash and it reports no leaking blocks.

Run ./iterate 33000 10 again - no non linear behaviour, no weird slowdown.

Summary: use valgrind regularly while developing your code. Save yourself loads of
grief, double your confidence.

Exercise: does the list example (in Lecture 1’s 01.intlist - or any of the later versions)
run cleanly with valgrind?

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 11 / 17

Fixing memory leaks with valgrind (tarball 02.badhash)

Look at line 73 of hash.c in hashCreate(), it reads:

h->data = (tree *) malloc(NHASH*sizeof(tree));

and line 112 is nearly identical in hashCopy().

Where might we expect to free this “hash data”? Look in the corresponding
hashFree(hash h) function.

Aha! h->data is NOT FREED. A simple mistake!

Add the missing free(h->data), recompile (make).

Rerun valgrind ./testhash and it reports no leaking blocks.

Run ./iterate 33000 10 again - no non linear behaviour, no weird slowdown.

Summary: use valgrind regularly while developing your code. Save yourself loads of
grief, double your confidence.

Exercise: does the list example (in Lecture 1’s 01.intlist - or any of the later versions)
run cleanly with valgrind?

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 11 / 17

Profiling-led Optimization tarball 03.hash-profile

gcc and most other C compilers can be asked to optimize the code they generate,
gcc’s options for this are -O, -O2, -O3. Worth trying, rarely makes a significant
difference.

What makes far more difference is finding the hot spots using a profiler and
selectively optimizing them. Can produce dramatic speedups, and profiling often
produces surprises.

Let’s profile the bugfixed hash module’s iterate test program (in the
03.hash-profile directory):

Add -pg to CFLAGS and LDLIBS in Makefile.
Run make clean all (compile and link with -pg, which generates instrumented code
which tracks function entry and exit times).
Run ./iterate 10000, which runs a bit slower than normal (because profiling slows it
down a bit), producing a binary profiling file called gmon.out.
The tool gprof then analyzes the executable and the data file, producing a report
showing the top 10 functions (across all their calls) sorted by percentage of total
runtime. Run: gprof ./iterate gmon.out > profile.orig

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 12 / 17

Profiling-led Optimization tarball 03.hash-profile

gcc and most other C compilers can be asked to optimize the code they generate,
gcc’s options for this are -O, -O2, -O3. Worth trying, rarely makes a significant
difference.

What makes far more difference is finding the hot spots using a profiler and
selectively optimizing them. Can produce dramatic speedups, and profiling often
produces surprises.

Let’s profile the bugfixed hash module’s iterate test program (in the
03.hash-profile directory):

Add -pg to CFLAGS and LDLIBS in Makefile.
Run make clean all (compile and link with -pg, which generates instrumented code
which tracks function entry and exit times).
Run ./iterate 10000, which runs a bit slower than normal (because profiling slows it
down a bit), producing a binary profiling file called gmon.out.
The tool gprof then analyzes the executable and the data file, producing a report
showing the top 10 functions (across all their calls) sorted by percentage of total
runtime. Run: gprof ./iterate gmon.out > profile.orig

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 12 / 17

Profiling-led Optimization tarball 03.hash-profile

gcc and most other C compilers can be asked to optimize the code they generate,
gcc’s options for this are -O, -O2, -O3. Worth trying, rarely makes a significant
difference.

What makes far more difference is finding the hot spots using a profiler and
selectively optimizing them. Can produce dramatic speedups, and profiling often
produces surprises.

Let’s profile the bugfixed hash module’s iterate test program (in the
03.hash-profile directory):

Add -pg to CFLAGS and LDLIBS in Makefile.

Run make clean all (compile and link with -pg, which generates instrumented code
which tracks function entry and exit times).
Run ./iterate 10000, which runs a bit slower than normal (because profiling slows it
down a bit), producing a binary profiling file called gmon.out.
The tool gprof then analyzes the executable and the data file, producing a report
showing the top 10 functions (across all their calls) sorted by percentage of total
runtime. Run: gprof ./iterate gmon.out > profile.orig

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 12 / 17

Profiling-led Optimization tarball 03.hash-profile

gcc and most other C compilers can be asked to optimize the code they generate,
gcc’s options for this are -O, -O2, -O3. Worth trying, rarely makes a significant
difference.

What makes far more difference is finding the hot spots using a profiler and
selectively optimizing them. Can produce dramatic speedups, and profiling often
produces surprises.

Let’s profile the bugfixed hash module’s iterate test program (in the
03.hash-profile directory):

Add -pg to CFLAGS and LDLIBS in Makefile.
Run make clean all (compile and link with -pg, which generates instrumented code
which tracks function entry and exit times).

Run ./iterate 10000, which runs a bit slower than normal (because profiling slows it
down a bit), producing a binary profiling file called gmon.out.
The tool gprof then analyzes the executable and the data file, producing a report
showing the top 10 functions (across all their calls) sorted by percentage of total
runtime. Run: gprof ./iterate gmon.out > profile.orig

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 12 / 17

Profiling-led Optimization tarball 03.hash-profile

gcc and most other C compilers can be asked to optimize the code they generate,
gcc’s options for this are -O, -O2, -O3. Worth trying, rarely makes a significant
difference.

What makes far more difference is finding the hot spots using a profiler and
selectively optimizing them. Can produce dramatic speedups, and profiling often
produces surprises.

Let’s profile the bugfixed hash module’s iterate test program (in the
03.hash-profile directory):

Add -pg to CFLAGS and LDLIBS in Makefile.
Run make clean all (compile and link with -pg, which generates instrumented code
which tracks function entry and exit times).
Run ./iterate 10000, which runs a bit slower than normal (because profiling slows it
down a bit), producing a binary profiling file called gmon.out.

The tool gprof then analyzes the executable and the data file, producing a report
showing the top 10 functions (across all their calls) sorted by percentage of total
runtime. Run: gprof ./iterate gmon.out > profile.orig

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 12 / 17

Profiling-led Optimization tarball 03.hash-profile

gcc and most other C compilers can be asked to optimize the code they generate,
gcc’s options for this are -O, -O2, -O3. Worth trying, rarely makes a significant
difference.

What makes far more difference is finding the hot spots using a profiler and
selectively optimizing them. Can produce dramatic speedups, and profiling often
produces surprises.

Let’s profile the bugfixed hash module’s iterate test program (in the
03.hash-profile directory):

Add -pg to CFLAGS and LDLIBS in Makefile.
Run make clean all (compile and link with -pg, which generates instrumented code
which tracks function entry and exit times).
Run ./iterate 10000, which runs a bit slower than normal (because profiling slows it
down a bit), producing a binary profiling file called gmon.out.
The tool gprof then analyzes the executable and the data file, producing a report
showing the top 10 functions (across all their calls) sorted by percentage of total
runtime. Run: gprof ./iterate gmon.out > profile.orig

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 12 / 17

Profiling-led Optimization tarball 03.hash-profile

head profile.orig shows results like:

% cumulative self self total

time seconds seconds calls us/call us/call name

36.75 1.39 1.39 650660000 0.00 0.00 free_tree

22.47 2.24 0.85 10000 85.18 85.18 hashCreate

18.77 2.96 0.71 20000 35.57 105.22 hashFree

12.43 3.43 0.47 10000 47.10 79.67 hashCopy

8.59 3.75 0.33 325330000 0.00 0.00 copy_tree

650 million calls to free tree() and 325 million calls to copy tree() are suspicious. First,
65066 is twice 32533! Aha! the hash table’s dynamic array of binary trees has 32533 entries.

hashFree() and hashCopy() have the same structure, iterating over the array of trees making
one call to free tree()/copy tree() per tree. The vast majority of these trees are empty.

We can double the speed of iterate by adding if(the tree != NULL) conditions on tree calls
in hashFree(), hashCopy() and others. Then profile again, a new hotspot may appear.

We might also consider shrinking the size of the array to some smaller prime number. More
radically, consider dynamically resizing the array (and rehashing all the keys) when the hash
gets too full.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 13 / 17

Profiling-led Optimization tarball 03.hash-profile

head profile.orig shows results like:

% cumulative self self total

time seconds seconds calls us/call us/call name

36.75 1.39 1.39 650660000 0.00 0.00 free_tree

22.47 2.24 0.85 10000 85.18 85.18 hashCreate

18.77 2.96 0.71 20000 35.57 105.22 hashFree

12.43 3.43 0.47 10000 47.10 79.67 hashCopy

8.59 3.75 0.33 325330000 0.00 0.00 copy_tree

650 million calls to free tree() and 325 million calls to copy tree() are suspicious.

First,
65066 is twice 32533! Aha! the hash table’s dynamic array of binary trees has 32533 entries.

hashFree() and hashCopy() have the same structure, iterating over the array of trees making
one call to free tree()/copy tree() per tree. The vast majority of these trees are empty.

We can double the speed of iterate by adding if(the tree != NULL) conditions on tree calls
in hashFree(), hashCopy() and others. Then profile again, a new hotspot may appear.

We might also consider shrinking the size of the array to some smaller prime number. More
radically, consider dynamically resizing the array (and rehashing all the keys) when the hash
gets too full.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 13 / 17

Profiling-led Optimization tarball 03.hash-profile

head profile.orig shows results like:

% cumulative self self total

time seconds seconds calls us/call us/call name

36.75 1.39 1.39 650660000 0.00 0.00 free_tree

22.47 2.24 0.85 10000 85.18 85.18 hashCreate

18.77 2.96 0.71 20000 35.57 105.22 hashFree

12.43 3.43 0.47 10000 47.10 79.67 hashCopy

8.59 3.75 0.33 325330000 0.00 0.00 copy_tree

650 million calls to free tree() and 325 million calls to copy tree() are suspicious. First,
65066 is twice 32533! Aha! the hash table’s dynamic array of binary trees has 32533 entries.

hashFree() and hashCopy() have the same structure, iterating over the array of trees making
one call to free tree()/copy tree() per tree. The vast majority of these trees are empty.

We can double the speed of iterate by adding if(the tree != NULL) conditions on tree calls
in hashFree(), hashCopy() and others. Then profile again, a new hotspot may appear.

We might also consider shrinking the size of the array to some smaller prime number. More
radically, consider dynamically resizing the array (and rehashing all the keys) when the hash
gets too full.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 13 / 17

Profiling-led Optimization tarball 03.hash-profile

head profile.orig shows results like:

% cumulative self self total

time seconds seconds calls us/call us/call name

36.75 1.39 1.39 650660000 0.00 0.00 free_tree

22.47 2.24 0.85 10000 85.18 85.18 hashCreate

18.77 2.96 0.71 20000 35.57 105.22 hashFree

12.43 3.43 0.47 10000 47.10 79.67 hashCopy

8.59 3.75 0.33 325330000 0.00 0.00 copy_tree

650 million calls to free tree() and 325 million calls to copy tree() are suspicious. First,
65066 is twice 32533! Aha! the hash table’s dynamic array of binary trees has 32533 entries.

hashFree() and hashCopy() have the same structure, iterating over the array of trees making
one call to free tree()/copy tree() per tree. The vast majority of these trees are empty.

We can double the speed of iterate by adding if(the tree != NULL) conditions on tree calls
in hashFree(), hashCopy() and others. Then profile again, a new hotspot may appear.

We might also consider shrinking the size of the array to some smaller prime number. More
radically, consider dynamically resizing the array (and rehashing all the keys) when the hash
gets too full.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 13 / 17

Profiling-led Optimization tarball 03.hash-profile

head profile.orig shows results like:

% cumulative self self total

time seconds seconds calls us/call us/call name

36.75 1.39 1.39 650660000 0.00 0.00 free_tree

22.47 2.24 0.85 10000 85.18 85.18 hashCreate

18.77 2.96 0.71 20000 35.57 105.22 hashFree

12.43 3.43 0.47 10000 47.10 79.67 hashCopy

8.59 3.75 0.33 325330000 0.00 0.00 copy_tree

650 million calls to free tree() and 325 million calls to copy tree() are suspicious. First,
65066 is twice 32533! Aha! the hash table’s dynamic array of binary trees has 32533 entries.

hashFree() and hashCopy() have the same structure, iterating over the array of trees making
one call to free tree()/copy tree() per tree. The vast majority of these trees are empty.

We can double the speed of iterate by adding if(the tree != NULL) conditions on tree calls
in hashFree(), hashCopy() and others.

Then profile again, a new hotspot may appear.

We might also consider shrinking the size of the array to some smaller prime number. More
radically, consider dynamically resizing the array (and rehashing all the keys) when the hash
gets too full.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 13 / 17

Profiling-led Optimization tarball 03.hash-profile

head profile.orig shows results like:

% cumulative self self total

time seconds seconds calls us/call us/call name

36.75 1.39 1.39 650660000 0.00 0.00 free_tree

22.47 2.24 0.85 10000 85.18 85.18 hashCreate

18.77 2.96 0.71 20000 35.57 105.22 hashFree

12.43 3.43 0.47 10000 47.10 79.67 hashCopy

8.59 3.75 0.33 325330000 0.00 0.00 copy_tree

650 million calls to free tree() and 325 million calls to copy tree() are suspicious. First,
65066 is twice 32533! Aha! the hash table’s dynamic array of binary trees has 32533 entries.

hashFree() and hashCopy() have the same structure, iterating over the array of trees making
one call to free tree()/copy tree() per tree. The vast majority of these trees are empty.

We can double the speed of iterate by adding if(the tree != NULL) conditions on tree calls
in hashFree(), hashCopy() and others. Then profile again, a new hotspot may appear.

We might also consider shrinking the size of the array to some smaller prime number. More
radically, consider dynamically resizing the array (and rehashing all the keys) when the hash
gets too full.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 13 / 17

Profiling-led Optimization tarball 03.hash-profile

head profile.orig shows results like:

% cumulative self self total

time seconds seconds calls us/call us/call name

36.75 1.39 1.39 650660000 0.00 0.00 free_tree

22.47 2.24 0.85 10000 85.18 85.18 hashCreate

18.77 2.96 0.71 20000 35.57 105.22 hashFree

12.43 3.43 0.47 10000 47.10 79.67 hashCopy

8.59 3.75 0.33 325330000 0.00 0.00 copy_tree

650 million calls to free tree() and 325 million calls to copy tree() are suspicious. First,
65066 is twice 32533! Aha! the hash table’s dynamic array of binary trees has 32533 entries.

hashFree() and hashCopy() have the same structure, iterating over the array of trees making
one call to free tree()/copy tree() per tree. The vast majority of these trees are empty.

We can double the speed of iterate by adding if(the tree != NULL) conditions on tree calls
in hashFree(), hashCopy() and others. Then profile again, a new hotspot may appear.

We might also consider shrinking the size of the array to some smaller prime number.

More
radically, consider dynamically resizing the array (and rehashing all the keys) when the hash
gets too full.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 13 / 17

Profiling-led Optimization tarball 03.hash-profile

head profile.orig shows results like:

% cumulative self self total

time seconds seconds calls us/call us/call name

36.75 1.39 1.39 650660000 0.00 0.00 free_tree

22.47 2.24 0.85 10000 85.18 85.18 hashCreate

18.77 2.96 0.71 20000 35.57 105.22 hashFree

12.43 3.43 0.47 10000 47.10 79.67 hashCopy

8.59 3.75 0.33 325330000 0.00 0.00 copy_tree

650 million calls to free tree() and 325 million calls to copy tree() are suspicious. First,
65066 is twice 32533! Aha! the hash table’s dynamic array of binary trees has 32533 entries.

hashFree() and hashCopy() have the same structure, iterating over the array of trees making
one call to free tree()/copy tree() per tree. The vast majority of these trees are empty.

We can double the speed of iterate by adding if(the tree != NULL) conditions on tree calls
in hashFree(), hashCopy() and others. Then profile again, a new hotspot may appear.

We might also consider shrinking the size of the array to some smaller prime number. More
radically, consider dynamically resizing the array (and rehashing all the keys) when the hash
gets too full.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 13 / 17

Testing Test Early, Test Often, Test Automatically (PP Tip 62)

Pragmatic Programmers Tip 62:

Test Early, Test Often, Test Automatically:
Tests that run with every build are much more effective than test plans that
sit on a shelf.

Test ruthlessly and automatically by building unit test programs (one per module)
plus integration tests which test a set of modules together, and overall program tests.

Add make test target to run the tests. Run them frequently.

Can run make test whenever you commit a new version into git!

Most important: Test programs should check for correct results themselves
(essentially, hardcoding the correct answers in them).

If your “test program” simply prints lots of messages out and relies on a human
being to read the output, it’s not a proper test program.

Helpful if all tests report in a common style. C doesn’t come with a testing
infrastructure like Java’s jUnit, but it’s pretty easy to whip something simple up.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 14 / 17

Testing Test Early, Test Often, Test Automatically (PP Tip 62)

Pragmatic Programmers Tip 62:

Test Early, Test Often, Test Automatically:
Tests that run with every build are much more effective than test plans that
sit on a shelf.

Test ruthlessly and automatically by building unit test programs (one per module)
plus integration tests which test a set of modules together, and overall program tests.

Add make test target to run the tests. Run them frequently.

Can run make test whenever you commit a new version into git!

Most important: Test programs should check for correct results themselves
(essentially, hardcoding the correct answers in them).

If your “test program” simply prints lots of messages out and relies on a human
being to read the output, it’s not a proper test program.

Helpful if all tests report in a common style. C doesn’t come with a testing
infrastructure like Java’s jUnit, but it’s pretty easy to whip something simple up.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 14 / 17

Testing Test Early, Test Often, Test Automatically (PP Tip 62)

Pragmatic Programmers Tip 62:

Test Early, Test Often, Test Automatically:
Tests that run with every build are much more effective than test plans that
sit on a shelf.

Test ruthlessly and automatically by building unit test programs (one per module)
plus integration tests which test a set of modules together, and overall program tests.

Add make test target to run the tests. Run them frequently.

Can run make test whenever you commit a new version into git!

Most important: Test programs should check for correct results themselves
(essentially, hardcoding the correct answers in them).

If your “test program” simply prints lots of messages out and relies on a human
being to read the output, it’s not a proper test program.

Helpful if all tests report in a common style. C doesn’t come with a testing
infrastructure like Java’s jUnit, but it’s pretty easy to whip something simple up.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 14 / 17

Testing Test Early, Test Often, Test Automatically (PP Tip 62)

Pragmatic Programmers Tip 62:

Test Early, Test Often, Test Automatically:
Tests that run with every build are much more effective than test plans that
sit on a shelf.

Test ruthlessly and automatically by building unit test programs (one per module)
plus integration tests which test a set of modules together, and overall program tests.

Add make test target to run the tests. Run them frequently.

Can run make test whenever you commit a new version into git!

Most important: Test programs should check for correct results themselves
(essentially, hardcoding the correct answers in them).

If your “test program” simply prints lots of messages out and relies on a human
being to read the output, it’s not a proper test program.

Helpful if all tests report in a common style. C doesn’t come with a testing
infrastructure like Java’s jUnit, but it’s pretty easy to whip something simple up.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 14 / 17

Testing Test Early, Test Often, Test Automatically (PP Tip 62)

Pragmatic Programmers Tip 62:

Test Early, Test Often, Test Automatically:
Tests that run with every build are much more effective than test plans that
sit on a shelf.

Test ruthlessly and automatically by building unit test programs (one per module)
plus integration tests which test a set of modules together, and overall program tests.

Add make test target to run the tests. Run them frequently.

Can run make test whenever you commit a new version into git!

Most important: Test programs should check for correct results themselves
(essentially, hardcoding the correct answers in them).

If your “test program” simply prints lots of messages out and relies on a human
being to read the output, it’s not a proper test program.

Helpful if all tests report in a common style. C doesn’t come with a testing
infrastructure like Java’s jUnit, but it’s pretty easy to whip something simple up.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 14 / 17

Testing Test Early, Test Often, Test Automatically (PP Tip 62)

For example:

void testbool(bool ok, char *testname)

{

printf("T %s: %s\n", testname, ok?"OK":"FAIL");

}

testbool() can be used via:

intlist l = intlist_nil();

testbool(intlist_kind(l) == intlist_is_nil,

"kind(nil) is nil");

l = intlist_cons(100, l);

testbool(intlist_kind(l) == intlist_is_cons,

"kind([100]) is cons");

This produces output of the form:

T kind(nil) is nil: OK

T kind([100]) is cons: OK

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 15 / 17

Testing Test Early, Test Often, Test Automatically (PP Tip 62)

make test could run all test programs in sequence:

test: testprogram1 testprogram2 ...

./testprogram1

./testprogram2

Or, given the above fixed test output format, we could post-process the output in the
make test rule:

./testprogram1 | grep ^T

./testprogram2 | grep ^T

Or we could invoke a simple test framework script with testprograms as arguments,
which runs the programs and post-processes the results. eg:

test: testprogram1 testprogram2 ...

summarisetests ./testprogram1 ./testprogram2

You’ll find such a summarisetests Perl script, and testbool() in it’s own testutils
module in the 04.testutils directory. Go in there and type make install, then
enter 05.intlist-with-testing to see intlist with testing.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 16 / 17

Testing Test Driven Development

Test Driven Development (TDD) writes the test programs before implementing the
feature to test.

This helps you focus on one
task at a time.

Encourages incremental
development.

Reduces debugger use.

(When you find - and fix - a
new bug, write a test for it!)

Don’t forget to add some
overall tests too.

Add a test

Compile and run

pass

Write code to pass
the test

fail

Compile and re-run

fail

pass

I recommend giving TDD a try, but I’m still concerned as to where the overall design
comes in. Rob Chatley will cover TDD in Software Engineering Design next year.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 17 / 17

Testing Test Driven Development

Test Driven Development (TDD) writes the test programs before implementing the
feature to test.

This helps you focus on one
task at a time.

Encourages incremental
development.

Reduces debugger use.

(When you find - and fix - a
new bug, write a test for it!)

Don’t forget to add some
overall tests too.

Add a test

Compile and run

pass

Write code to pass
the test

fail

Compile and re-run

fail

pass

I recommend giving TDD a try, but I’m still concerned as to where the overall design
comes in. Rob Chatley will cover TDD in Software Engineering Design next year.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 17 / 17

Testing Test Driven Development

Test Driven Development (TDD) writes the test programs before implementing the
feature to test.

This helps you focus on one
task at a time.

Encourages incremental
development.

Reduces debugger use.

(When you find - and fix - a
new bug, write a test for it!)

Don’t forget to add some
overall tests too.

Add a test

Compile and run

pass

Write code to pass
the test

fail

Compile and re-run

fail

pass

I recommend giving TDD a try, but I’m still concerned as to where the overall design
comes in. Rob Chatley will cover TDD in Software Engineering Design next year.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 17 / 17

Testing Test Driven Development

Test Driven Development (TDD) writes the test programs before implementing the
feature to test.

This helps you focus on one
task at a time.

Encourages incremental
development.

Reduces debugger use.

(When you find - and fix - a
new bug, write a test for it!)

Don’t forget to add some
overall tests too.

Add a test

Compile and run

pass

Write code to pass
the test

fail

Compile and re-run

fail

pass

I recommend giving TDD a try, but I’m still concerned as to where the overall design
comes in. Rob Chatley will cover TDD in Software Engineering Design next year.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 17 / 17

Testing Test Driven Development

Test Driven Development (TDD) writes the test programs before implementing the
feature to test.

This helps you focus on one
task at a time.

Encourages incremental
development.

Reduces debugger use.

(When you find - and fix - a
new bug, write a test for it!)

Don’t forget to add some
overall tests too.

Add a test

Compile and run

pass

Write code to pass
the test

fail

Compile and re-run

fail

pass

I recommend giving TDD a try, but I’m still concerned as to where the overall design
comes in. Rob Chatley will cover TDD in Software Engineering Design next year.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 17 / 17

Testing Test Driven Development

Test Driven Development (TDD) writes the test programs before implementing the
feature to test.

This helps you focus on one
task at a time.

Encourages incremental
development.

Reduces debugger use.

(When you find - and fix - a
new bug, write a test for it!)

Don’t forget to add some
overall tests too.

Add a test

Compile and run

pass

Write code to pass
the test

fail

Compile and re-run

fail

pass

I recommend giving TDD a try, but I’m still concerned as to where the overall design
comes in. Rob Chatley will cover TDD in Software Engineering Design next year.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 17 / 17

Testing Test Driven Development

Test Driven Development (TDD) writes the test programs before implementing the
feature to test.

This helps you focus on one
task at a time.

Encourages incremental
development.

Reduces debugger use.

(When you find - and fix - a
new bug, write a test for it!)

Don’t forget to add some
overall tests too.

Add a test

Compile and run

pass

Write code to pass
the test

fail

Compile and re-run

fail

pass

I recommend giving TDD a try, but I’m still concerned as to where the overall design
comes in. Rob Chatley will cover TDD in Software Engineering Design next year.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 17 / 17

Testing Test Driven Development

Test Driven Development (TDD) writes the test programs before implementing the
feature to test.

This helps you focus on one
task at a time.

Encourages incremental
development.

Reduces debugger use.

(When you find - and fix - a
new bug, write a test for it!)

Don’t forget to add some
overall tests too.

Add a test

Compile and run

pass

Write code to pass
the test

fail

Compile and re-run

fail

pass

I recommend giving TDD a try, but I’m still concerned as to where the overall design
comes in. Rob Chatley will cover TDD in Software Engineering Design next year.

Duncan White (Imperial) Building your own C Toolkit: Part 2 31st May 2018 17 / 17

	Today's Contents
	What to do when things go wrong
	Segmentation Faults and other problems

	Debugging
	Know a single debugger well (tarball 01.string-debug)

	Fixing memory leaks with valgrind
	(tarball 02.badhash)

	Profiling-led Optimization
	tarball 03.hash-profile

	Testing
	Test Early, Test Often, Test Automatically (PP Tip 62)

	Testing
	Test Driven Development

