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Today’s Contents

Last lecture, we started building our own tools when necessary, at
a range of scales from tiny to large. Those tools were Code
Generators - Code that Writes Code.

A Code Generator defines some Little Language and then
translates that into some other form - eg valid C source code.

Now, in the last C Programming Tools lecture, we’ll find how to
make writing Code Generators even easier.

The first part of writing any Code Generator is to build a lexical
analyser (aka a Lexer) and a Parser for your little language. It’s
instructive to write a couple of lexers and parsers by hand to get
the hang of them, but..

This problem has been solved! Lex generates C code (a Lexer)
from declarative definitions of lexical tokens. Yacc generates C
code (a Parser) from declarative definitions of the grammar, plus
actions to take when grammatical constructs are parsed
successfully. The parser calls the lexer to supply the next token.

But what Little Language shall we use for our main example?
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Parser and Lexer Generator tools: Yacc and Lex THS: a Tiny Haskell Subset: (01.ths-recogniser)

A tiny Haskell subset called THS. We’ll build a Lexer and Parser
using Lex and Yacc. Then build an Abstract Syntax Tree using
Datadec and Yacc tree-building actions.
Ok, what Haskell subset should we choose?

Zero-or-more function definitions, with optional type definitions,
Followed by a compulsory integer expression (often a call to some
of those functions).
Each function takes and returns a single integer value,
Each function implemented either by a single expression, or
A sequence of guarded expressions involving simple boolean
expressions, eg. x==0.

For example:
f :: Int -> Int

f x = x*2

abs x | x>0 = x

| x==0 = 0

| 0>x = 0-x

fact x | x==1 = 1

| x>1 = x * fact(x-1)

f(20) + abs(0-2)*fact(arg1)

In a break with strict Haskell-syntax, we’ll decide that brackets on
function calls like abs(10) are compulsory. Why? Because the lack of
brackets confuses me:-)
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The basic lexical tokens we need are:

A few keywords ‘mod’, ‘Int’, ‘True’.
Various one-or-two character tokens (eg. ‘(’, ‘+’, ‘*’, ‘)’, ‘::’ etc).
Numeric constants (eg ‘2’ or ‘123’).
Identifiers (eg ‘fact’ or ‘x’).

With Lex, specify the tokens as regular expression/action pairs:
[ \t\n]+ /* ignore whitespace */;

mod return MOD;

Int return INTTYPE;

True return TRUEV;

:: return COLONCOLON;

-> return IMPLIES;

== return EQ;

= return IS;

> return GT;

!= return NE;

\+ return PLUS;

- return MINUS;

\* return MUL;

\/ return DIV;

\( return OPEN;

\) return CLOSE;

\| return GUARD;

[0-9]+ return NUMBER;

[a-z][a-z0-9]* return IDENT;

. return TOKERR;
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Note that we are being extremely minimal with our tokens,
including (for example) True but not False, ‘>’ but not ‘<’ etc.
These can trivially be added later.
See lexer.l in 01.ths-recogniser for the full Lex input file,
containing the above plus some prelude. This file can be turned
into C code via: lex -o lexer.c lexer.l.
Our next task is to combine these tokens into THS programs via
our grammar. The Yacc input file parser.y starts with a long
prelude of plain C code:
%{

// some includes

extern int yylex(void);

extern int yylineno;

extern bool verbose;

int yyerrors = 0;

void yyerror(const char *str)

{

fprintf(stderr, "Error on line %d: %s\n", yylineno, str);

yyerrors++;

}

int yywrap( void ) { return 1; }

%}
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Next, parser.y defines all the tokens:
%token COLONCOLON IMPLIES EQ GT NE TRUEV PLUS MINUS MUL DIV MOD OPEN

CLOSE GUARD IS INTTYPE TOKERR NUMBER IDENT

Yacc turns each token into an integer constant which the lexer
uses (because lexer.l’s preamble includes parser.h). This is how
the generated lexer can use those token values in actions.
Next, parser.y tells Yacc which rule to start parsing with:

%start program

%%

The generated parser will try to consume the entire input and
parse it as a program.
Then we list the grammar rules that define the language, in BNF:

program : defns expr

;

defns : /* empty */

| defns ftypedefn

| defns fdefinition

;

ftypedefn : IDENT COLONCOLON INTTYPE IMPLIES INTTYPE

;

fdefinition : IDENT IDENT IS expr

| IDENT IDENT guardrules

;

guardrules : guard

| guardrules guard

;
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The grammar rules continue, defining guarded expressions
(guard), boolean expressions (bexpr) and arithmetic expressions
(rules expr, term and factor):
guard : GUARD bexpr IS expr

;

bexpr : expr EQ expr

| expr NE expr

| expr GT expr

| TRUEV

;

expr : expr PLUS term

| expr MINUS term

| term

;

term : term MUL factor

| term DIV factor

| term MOD factor

| factor

;

factor : NUMBER

| OPEN expr CLOSE

| IDENT OPEN expr CLOSE

| IDENT

;

Picking the top guard rule out as an example, it means that a
guarded expression comprises a GUARD token (‘|’), followed by
a boolean expression, followed by an IS token (‘=’), followed by
an expression.
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Note that recursive rules in Yacc that match lists of items, eg:
defns : defns ftypedefn

defns : defns fdefinition

guardrules : guardrules guard

must be written with the recursive invocation first.

Yacc’s algorithm can’t handle it the other way round - Yacc will
generate a fatal error if you do. We’ll see a complication that
this causes later.

Turn parser.y into a C module (parser.c and parser.h) via: yacc
-vd -o parser.c parser.y.

Putting it all together, adding a main program that initializes the
lexer, invokes the parser, and checks whether parsing is successful
or not, and adding a Makefile, compile and link by typing make.

We end up with a THS recogniser ths1, in which we only write
about 170 lines of code. Give it a try!

Our next THS version, in 02.ths-treebuilder, will build an
Abstract Syntax tree during the parse!
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Parser and Lexer Generator tools: Yacc and Lex THS: a Tiny Haskell Subset: (02.ths-treebuilder)

First, we must alter our lexer.l slightly: when the lexer recognises
a number, it’s not enough to say “it’s a number” - which number
is it? Ditto for an identifier.

To do this, we make two tiny changes to lexer.l:
[0-9]+ yylval.n=atoi(yytext); return NUMBER;

[a-z][a-z0-9]* yylval.s=strdup(yytext); return IDENT;

When a Lex pattern matches a chunk of input, the input is stored by
the lexer in a variable called char yytext[] before the action runs.

So, when the pattern [0-9]+ has matched, the longest possible digit
sequence at the head of the unconsumed input is stored in yytext.

Then our action extracts the integer value from yytext via atoi(yytext)
and stores it in the mysterious yylval.n. Then it returns NUMBER.

What is yylval.n? We’ll answer that on the next slide.

Similarly, when we’ve matched an identifier - the longest possible
alphanumeric sequence that isn’t a keyword such as “mod” - the name
of the identifier is in yytext. We strdup(yytext) to give ourselves a
long-lived copy of the string, and store that in yylval.s - a char *s field
in the mysterious yylval.
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Moving onto parser.y, there are many changes. First, the parser.y
prelude includes rather more #include statements, then defines:
program ast = NULL;

which is where the AST (the program) is stored after a successful
parse. We’ll see where the type program is defined shortly.

Next parser.y contains a %union declaration, which lists all
possible types of data associated with tokens and grammar rules:

%union

{

int n; char *s;

expr e; bexpr b;

guard g; guardlist gl;

fdefn f; flist fl;

}

In the generated C code, the %union is turned into a union type
called YYSTYPE in parser.h, which declares extern YYSTYPE
yylval, and parser.c defines the variable YYSTYPE yylval.

The Lex prelude includes parser.h: this explains how yylval.n is
an int, and yylval.s is a char *.
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Next, parser.y alters the definition of these two tokens:
%token <n> NUMBER

%token <s> IDENT

This tells Yacc that a NUMBER token has an associated int n
value, and that an IDENT token has an associated char *s value.

But the %union contained other fields - of types such as expr,
bexpr, guard, guardlist, fdefn and flist - plus we have already seen
the type program.

These AST types are defined in types.in - a Datadec input file:
arithop = plus or minus or times or divide or mod;

expr = num( int n )

or id( string s )

or call( string s, expr e )

or binop( expr l, arithop op, expr r );

boolop = eq or ne or gt;

bexpr = truev

or binop( expr l, boolop op, expr r );

guard = pair( bexpr cond, expr e );

guardlist = nil or cons( guard hd, guardlist tl );

fdefn = triple( string fname, string param, fbody b );

fbody = one( expr e ) or many( guardlist l );

flist = nil or cons( fdefn hd, flist tl );

program = pair( flist l, expr e );
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Back in parser.y, we associate a specific field in the union with
many, but not all, grammar rules:

%type <e> factor term expr %type <b> bexpr

%type <g> guard %type <gl> guardrules

%type <f> fdefinition %type <fl> defns

You will see that all the grammar rules have been annotated with
the corresponding tree-building actions to take when the rules
match:

program : defns expr { ast = program_pair( $1, $2 ); }

;

defns : /* empty */ { $$ = flist_nil(); }

| defns ftypedefn { $$ = $1; /* ignore type defns */ }

| defns fdefinition { $$ = flist_cons( $2, $1 ); }

;

ftypedefn : IDENT COLONCOLON INTTYPE IMPLIES INTTYPE { free_string( $1 ); }

;

fdefinition : IDENT IDENT IS expr { $$ = fdefn_onerule( $1, $2, $4 ); }

| IDENT IDENT guardrules { ... }

;

guardrules : guard { $$ = guardlist_cons($1, guardlist_nil()); }

| guardrules guard { $$ = guardlist_push( $1, $2 ); }

;

I’ll explain the strange $n and $$ syntax shortly.
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Picking one of our rules + actions out, we see:
guard : GUARD bexpr IS expr { $$ = guard_pair( $2, $4 ); }

If this rule matches, then the action is executed, with:

$1 set to the value (if any) associated with the GUARD token,
$2 set to the value (if any) associated with the bexpr rule,
$3 set to the value (if any) associated with the IS token, and
$4 set to the value (if any) associated with the expr rule.

Here, only the bexpr and the expr have associated values, so we
use $2 and $4 to build a guard: guard_pair( $2, $4 ).

Assigning that new guard to $$ sets the value associated with
the whole guard rule, think of this as the return value.

Having built a new guard, parsing continues trying to parse a
non-empty sequence of guards, and build them into a guard list.
Guard lists get incorporated into function definitions, function
definitions into a function list, the function list and the main
expression into the program - and assigned to the ast variable.
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We said that recursive rules in Yacc, such as:
guardrules : guardrules guard { ACTION }

must be written with the recursive invocation first. If we write
the action as $$ = guardlist_cons($2,$1) we would generate
the list in reverse order.

Instead, the action is $$ = guardlist_push($1,$2). This
function was manually written (you’ll find it in types.in) and
modifies the existing guardlist, finding the last node and adding
the new guard there. That’s fine when we’re building the list up.

We modify the main program to print out the AST (if parsing is
successful), add named constants (via the longhash module), and
modify the Makefile to build everything, using lex, yacc and
datadec to generate lexer.c, the parser module and the types
module, using the tmpl and proto tools from the previous
lecture to generate numerous small modules.

Compile and link by typing make. We end up with a THS parser
and treebuilder ths2, in which we only write about 460 lines of
code. Give it a try!
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Parser and Lexer Generator tools: Yacc and Lex THS cont: (03.ths-semanticchecker)

03.ths-semanticchecker adds semantic checking - in THS, this
means checking that we define every function we call. In other
languages, we’d have to check the number and types of actual
parameters to each called function.

How do we do semantic checks? A semantic checker either walks
the AST, or builds and iterates over equivalent data structures.

To reduce tree-walking, we enhanced parser.y to populate a hash
called funchash as we parse functions, and a set called callset as
we parse calls.

The funchash maps from a defined functionname to it’s AST
representation (a fdefn).
The callset is a set of all functions that are called.

We also add a function called check id() to parser.y that expands
named constants into numbers as early as possible, building an
expr num(n) instead of the usual expr id(name).

The semantic checker then iterates through the callset checking
that each called function is present in the funchash.
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Parser and Lexer Generator tools: Yacc and Lex THS cont: (04.ths-interpreter)

04.ths-interpreter extends our semantic checker, adding an
interpreter to run our THS programs.
How do we write the interpreter? Well, you’ve written
interpreters in Haskell before, so the principles should be familiar.
We must construct C functions to:

Evaluate an integer expression in the current environment.
Evaluate a boolean expression in the current environment.
To select which guard in a guardlist is true and then evaluate it’s
corresponding integer expression, all in the current environment.
To handle a function call (possibly recursive).

The only tricky part is that in a function call, we evaluate the
actual parameter expression down to an integer in the current
environment, and then evaluate the function body (either an
expression or a guardlist) with a new environment in which the
function’s parameter variable is set to that integer value.

If we do this right, our interpreter will correctly handle recursion.

Note that we also have to trap runtime errors such as division by
zero and what happens if no guard evaluates to true.
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Our final version of THS, 05.ths-codegen, replaces our interpreter
with a code generator - which translates THS to C!

How do we do code generation? A code generator is just another
AST and funchash walker, one with suitable print statements!

In fact, using datadec’s print hints mechanism, 80% of the C
code generation was done by making each AST type print itself
in valid C form.

The remaining 20% (approx 130 lines) was custom C code,
gluing everything together.

One subtlety was that Haskell (and THS) allows any function to
call any other function. This means that the generated C code
needs a block of prototypes for all THS functions. I choose to
generate these prototypes in alphabetically sorted order - so I
built and sort an array of fdefns before printing out prototypes
using the array.

Another subtlety was that we have to prevent a function falling
off the bottom (when no guard evaluates to true).
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Parser and Lexer Generator tools: Yacc and Lex Recap..

They say a picture’s worth a thousand words, so let’s recap:

Abstract Syntax Tree
datadec

binop

num(123) times num(7)

Code Generator

Parser
yacc

lex

Tokens eg NUMBER(123), MUL, NUMBER(7)

Output: valid C code

Semantic Errors or ok

Input: Little Language, eg 123*7

Lexer

Semantic Checker

Errors or AST,funchash&callset

Our Lexer (constructed for us by
Lex) turns our input (eg “123*7”,
possibly with whitespace) into a
stream of tokens.

Our Parser (constructed for us by
Yacc) checks whether the token
stream matches the grammar, builds
an AST and builds funchash and
callset (not shown).

Our Semantic checker uses the AST,
funchash and callset to check that
there are no consistency problems.

Our Code generator walks the AST
and funchash, emitting C code.
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We’re now using so many tools to build our code, let’s see what
percentage of the source code we’re writing manually.

In 05.ths-codegen, we have only written about 850 lines of code
ourselves.

After datadec, tmpl, proto, yacc, lex have run, there are
approximately 5100 lines of C code (including headers) overall.

850/5100 is about 16%.

To put that another way: our tools wrote 84% of the code for us.

That’s pretty impressive - very few combinations of tools
automate anywhere near that much of our code!

So, Yacc and Lex and Datadec are a scalable way of building
translators for little languages, vital tools for your toolbox.

In order to make sense of how they all fit together, with the
%union and the %type <f> and %token <f> syntax and all the
$n notation, please work slowly through the tarball examples.
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Another parsing approach 06.c+pattern-matching

Recently, I’ve been playing with a different approach: Suppose
instead of defining a complete little language, we want to add a
single well-defined feature to a large language like C.
For example: Datadec has no special support for writing
client-side code that uses datadec-generated types. You may
remember our tree type, and our nleaves() counter, from the
previous lecture. From time to time I’ve thought that some sort
of pattern match would be lovely. I’d love to be able to write, in
an enhanced C-like language:
int nleaves( tree t )

{

whenshape t is leaf(name)

{

return 1;

}

whenshape t is node( l, r )

{

return nleaves(l) + nleaves(r);

}

}

Having defined the syntax of the new feature, we define it’s
semantics via a precise description of how to translate it back to
standard C.
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The first whenshape example turns into the plain C code:
if( tree_kind( t ) == tree_is_leaf )

{

string name; get_tree_leaf( t, &name );

return 1;

}

Similarly, the second whenshape example turns into:
if( tree_kind( t ) == tree_is_node )

{

tree l; tree r; get_tree_node( t, &l, &r );

return nleaves(l) + nleaves(r);

}

But how do we implement this? In Yacc and Lex, we’d have to
implement all of normal C as well as our new feature.

We could get a complete open-source C compiler and graft our
new feature into it.

But that sounds like hard work! We’d have to work out what
assembly code (or intermediate code such as Register Transfer
Code) to emit for our new features.
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Another way would be to build (or find) a C to C translator
which can be extended. Perhaps someone has already built one
that we could extend?

If not, you could build one by finding a complete Yacc grammar
spec, Lex lexer spec and AST module for C and extend them -
adding our new tokens to the lexer spec, new rules to the
grammar spec to recognise our new forms of syntax, and new
actions to build AST fragments representing the plain C
equivalents for each new construct.

This also sounds like a lot of work!

Isn’t there a less... scary way to do this? Yes there is!

Graft our new feature into C by writing a simple line-by-line
pre-processor that copies most lines through unchanged
(assuming, or hoping, that they contain valid C), but locates
specially marked extension directives, turning each into a
corresponding chunk of plain C.

Thus, C with directives comes in, standard C goes out.
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In 06.c+pattern-matching you’ll find my experimental Perl script
cpm, which translates C with pattern matching to plain C,
working in concert with datadec.
In the tree-eg subdirectory, you’ll find nleaves.cpm that
implements a close approximation to what we wanted to write:
int nleaves( tree t )

{

%when tree t is leaf(name)

{

return 1;

}

%when tree t is node( l, r )

{

return nleaves(l) + nleaves(r);

}

}

There are several other pattern matching directives as well.
See interprete.cpm (found in the interprete-eg subdir) for a
bigger example - the THS interpreter rewritten using the lovely
new syntax.
BTW, cpm reads information about types, shapes, and their
parameters from datadec in a particularly sneaky fashion, which
I’m very proud of.
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Summary Everyone needs their toolkit!

Ok, that’s quite enough parsing. Let’s sum up what I’ve been trying
to say in these lectures:

Follow 100,000 years of human history by tool-using and
tool-making. Build yourself a powerful toolkit. Choose tools you
like; become expert in each.
When necessary, build tools yourself to solve problems that
irritate you. Be strong! Tools often save you much more time
than they cost you to make.
Text manipulation languages are fantastic timesavers. Perl is
especially good - known as The Swiss Army Chainsaw by
SysAdmins. I used to run a Perl course, see
http://www.doc.ic.ac.uk/~dcw/perl2014/

I also write an occasional series of Practical (Pragmatic?)
Software Development articles:
http://www.doc.ic.ac.uk/~dcw/PSD/

Read The Pragmatic Programmer. Then read it again!
Most importantly: enjoy your C programming! Build your toolkit
- and let me know if you build any particularly cool tools!
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