
C Programming Tools: Part 1
Building and Using your own Toolkit

Duncan C. White
d.white@imperial.ac.uk

Dept of Computing, Imperial College London

Duncan White (Imperial) C Programming Tools: Part 1 1 / 26

Introduction Toolkits and Craftsmanship

As programmers, you will learn many languages over your
career. Right now, you’re learning C - with Will Knottenbelt.
C is an excellent language to learn, long-lived (over 40 years
old), still going strong, and irreplaceable in it’s niches.

When learning a new language like C, there are several
learning stages before you achieve basic competence:

Learn the syntax.
Learn the basic semantics.
Learn the tricky bits eg. pointers and memory management.
Learn the standard library (strcpy(), printf(), qsort(), bsearch()..).
Learn how to write multi-module programs.
Learn the idioms and best practices.
Learn to avoid bad practices: the traps and pitfalls.
Learn how to write portable code.

But these Programming Tools lectures are not going to help
you achieve basic competence in C.

Duncan White (Imperial) C Programming Tools: Part 1 2 / 26

Introduction Toolkits and Craftsmanship

They are going to attempt to answer the following question:
What comes after that - after you achieve basic C competence?

My answer is: Craftsmanship!
Build your own toolkit of:

Useful tools,
Useful libraries,
Craft skills to use them.

To make C programming easier and more productive.

In fact, to make you look like a master craftsman - an expert
C programmer.

When necessary: don’t be afraid to Build your own Tools!

The Core Principle: Ruthless Automation.

Doing something boring and repetitive? especially for the
second or third time?

You are a programmer, automation is your core skill - so
think: Can I save time by automating this boring task?

Duncan White (Imperial) C Programming Tools: Part 1 3 / 26

Introduction Toolkits and Craftsmanship

Or, to put that another way (as seen on the walkway a couple of years
ago):

Duncan White (Imperial) C Programming Tools: Part 1 4 / 26

mailto:d.white@imperial.ac.uk

Introduction Toolkits and Craftsmanship

Or, to put that another way (thanks due to SwissMiss):

Duncan White (Imperial) C Programming Tools: Part 1 5 / 26

Introduction Toolkits and Craftsmanship

Or, adding SysAdmins into the mix:

Duncan White (Imperial) C Programming Tools: Part 1 6 / 26

Introduction Recommended Books

For these Programming Tools lectures, I strongly recommend two
books:

The Pragmatic Programmer (PP), by Hunt & Thomas. The
carpentry metaphor - and a series of excellent Programming Tips
- comes from there.

The Practice of Programming (PoP), by Kernighan & Pike.

Both books are brilliant expositions of expert-level programming craft.
Duncan White (Imperial) C Programming Tools: Part 1 7 / 26

Introduction Contents

Contents
Today, we’ll cover:

Programmer’s Editors: Use a single editor well.

Automating Compilation: Use make.

Multi-Directory Programs and Libraries: How to lay out programs
in multiple directories, a Makefile per directory.

Automating Compilation: alternatives to make.

Notes:

The handout (these slides) and a tarball (of examples and tools)
are available on Materials and
http://www.doc.ic.ac.uk/~dcw/c-tools-2021/lecture1/

As a shorthand tarball 01.intlist refers to the directory called
01.intlist inside the examples tarball. Each directory contains a
README file (and indeed there’s a top-level README). Read
them - and if they tell you to do something, do it right away!

Duncan White (Imperial) C Programming Tools: Part 1 8 / 26

Programmer’s Editors Use a Single Editor Well (PP tip 22)

Programmer’s Editors

Hunt & Thomas write (in Tip 22):

Use a Single Editor Well: The editor should be an extension
of your hand; make sure your editor is configurable, extensible
and programmable.

As a programmer, you will spend years of your life editing
programs.

Coding might be 80% thinking and 20% typing, but your typing
must not interfere with your thought process.

So: Explore several programmer’s editors, then choose one, and
learn to become expert in it.

That includes: learning how to plug external tools in.

Which editor? It’s more than my life’s worth to tell you which
editor to use.

Why? Because programmers are notoriously sectarian when it
comes to..
Duncan White (Imperial) C Programming Tools: Part 1 9 / 26

Programmer’s Editors Use a Single Editor Well (PP tip 22)

The leading Programmer’s editors are (probably) vim and emacs:

IDEs such as Idea and CLion provide an editor, an automated
compilation system and a debugging environment. If you’re going
to use an IDE, learn how to use it well, and how to extend and
program it.

Note that Hunt & Thomas aren’t much in favour of IDEs. They
say ”We need to be comfortable beyond the limits imposed by an
IDE”. Neither am I:-) Neither is Will Knottenbelt.

Duncan White (Imperial) C Programming Tools: Part 1 11 / 26

Programmer’s Editors Use a Single Editor Well (PP tip 22)

Actually, it’s well known that Real Programmers use Butterflies to
edit source code:

Duncan White (Imperial) C Programming Tools: Part 1 12 / 26

Automatic Compilation Make (tarball 01.intlist)

Automatic Compilation
When multi-file C programming, there are many source files, eg:

testlist.c

defns.h

avgwordlen.c

intlist.h

intlist.c

Module intlist comprising two files (interface intlist.h and
implementation intlist.c) - defining a list-of-integers type. A
separate basic definitions header file defns.h,
A unit test program testlist.c, that uses and tests intlist,
A main program avgwordlen.c, that uses intlists to do something
vaguely useful.
Duncan White (Imperial) C Programming Tools: Part 1 13 / 26

Automatic Compilation Make (tarball 01.intlist)

So, what should we compile? what should we link?
What we shouldn’t do: gcc -Wall *.c. Why not? Try it out and
see!
Without Make, the correct way to make gcc compile and link
everything is:

1 Tell gcc to compile every .c file onto a corresponding object (.o)
file, either all together:

gcc -Wall -c *.c

or one at a time: foreach .c file:
gcc -Wall -c THAT.c

2 Then link each main program’s .o file with the .o files of all the
modules it uses (directly or indirectly), creating a named
executable:

gcc avgwordlen.o intlist.o -o avgwordlen

gcc testlist.o intlist.o -o testlist

But this is really painful, far too complex for us to do repeatedly.
We need a tool to handle automatic compilation and linking for
us.
That tool is make. But for it to do the job, we have to tell it the
rules: when should each .c file be recompiled, and when should
each executable be relinked from it’s collection of object files.

Duncan White (Imperial) C Programming Tools: Part 1 14 / 26

Automatic Compilation Make (tarball 01.intlist)

The key information that make will need is related to
dependencies between the source files - determined by the
#include structure. See this via:

grep ’#include’ *.[ch] | grep ’"’

Which gives:

intlist.c:#include "intlist.h"

avgwordlen.c:#include "intlist.h"

avgwordlen.c:#include "defns.h"

testlist.c:#include "intlist.h"

intlist.c includes intlist.h (to check implementation vs interface).

avgwordlen.c includes intlist.h (because it uses intlists) and
defns.h.

testlist.c includes intlist.h

Make needs such file dependencies, encoded as Makefile
dependency rules between target and source files with optional
actions (commands) to generate each target from the
corresponding sources.

Duncan White (Imperial) C Programming Tools: Part 1 15 / 26

Automatic Compilation Make (tarball 01.intlist)

Here’s the Makefile for our example. It starts with some variable
or macro definitions:

CC = gcc

CFLAGS = -Wall

BUILD = testlist avgwordlen

$(CC) sets which C compiler to use, $(CFLAGS) is the C compiler
flags, $(BUILD) the targets to build. Note that environment variables
automatically become macros, eg $(HOME) represents your home
directory.

The remainder of the Makefile lists the target/sources/action rules:

all: $(BUILD)

clean:

/bin/rm -f $(BUILD) *.o core

testlist: testlist.o intlist.o

avgwordlen: avgwordlen.o intlist.o

avgwordlen.o: intlist.h defns.h

testlist.o: intlist.h

intlist.o: intlist.h

Duncan White (Imperial) C Programming Tools: Part 1 16 / 26

Automatic Compilation Make (tarball 01.intlist)

Note that Make needs very few explicit dependencies and even
fewer explicit actions, because it already knows intlist.o depends
on intlist.c, and how to compile .c files.

So, when you write the rule:

intlist.o: intlist.h

(assuming a intlist.c file exists in the current directory)
Make expands it to the more complete compilation rule:

intlist.o: intlist.c intlist.h

$(CC) $(CFLAGS) -c intlist.c

This rule declares that intlist.o is up to date only if it is newer
than intlist.c and intlist.h. If intlist.o doesn’t exist or is older
than either file, then the action is triggered - compiling intlist.c,
producing intlist.o.

make takes optional target names on the command line
(defaulting to the first target), then performs the minimum
number of actions needed to bring the desired targets up to date,
based on the timestamps of the target and source files.

Duncan White (Imperial) C Programming Tools: Part 1 17 / 26

Automatic Compilation Make (tarball 01.intlist)

For example, if intlist.h is altered, you run make, that builds the
target all, which recursively applies all the rules checking
timestamps and concludes that...
...everything needs to be recompiled and linked.
If, instead, make is run after intlist.c is modified, it figures out
that it needs to recompile intlist.c, and relink both executables
against the new intlist.o.
If, instead, make is run after nothing is modified, it figures out
that nothing needs to be done. This parsimonious property of
Make is its best feature!
Note: You have to keep the dependencies in your Makefile up
to date, otherwise make may not know to recompile something.
If dependency maintenance irritates you, it’s surprisingly easy to
auto-generate Makefiles for single directory C projects - see
tarball 02.c-mfbuild and 03.perl-mfbuild for two of my
attempts.
Make continues to work well for any size project - as long as it’s
all stored in a single directory.
Duncan White (Imperial) C Programming Tools: Part 1 18 / 26

Multi-directory Projects with Make (tarball 04.intlist-with-lib)

Multi-directory Projects with Make

As a C project gets larger, you may wish to break it into several
sub-directories. Make doesn’t handle this natively, but we can
handle this with a Makefile per directory and some cleverness.

Each sub-directory should contain:

One or more modules (each a paired .c and .h file as usual).
Along with any associated test programs.
Plus a Makefile that compiles all the .c files, builds all the test
programs, and builds a library containing the .o files belonging to
those modules.

Let’s split our existing intlist and avgwordlen directory up.

What to split? The intlist module (and it’s test program) is the
obvious choice. It’s:

Logically separate - it’s highly cohesive.
Reusable - whenever we want a list of integers.
Depends on only the standard library.

Duncan White (Imperial) C Programming Tools: Part 1 19 / 26

Multi-directory Projects with Make (tarball 04.intlist-with-lib)

In tarball directory 04.intlist-with-lib, you’ll see what we have
done to achieve this:

There’s a separate lib sub-directory to explore, which contains
intlist.c, intlist.h, testlist.c (all unmodified) and it’s own Makefile,
which builds two core targets:

The executable testlist.
The library libintlist.a containing intlist.o.

To do this, lib/Makefile has the following new parts:

LIB = libintlist.a

LIBOBJS = intlist.o

BUILD = testlist $(LIB)

...

$(LIB): $(LIBOBJS)

ar rcs $(LIB) $(LIBOBJS)

The new rule says that $(LIB) depends on $(LIBOBJS), i.e.
libintlist.a depends on intlist.o, and that the action
invokes ar - the tool that builds library files.

Duncan White (Imperial) C Programming Tools: Part 1 20 / 26

Multi-directory Projects with Make (tarball 04.intlist-with-lib)

The top-level directory contains avgwordlen.c, defns.h and a
Makefile, containing the following new parts:

CFLAGS = -Wall -Ilib

LDLIBS = -Llib -lintlist

BUILD = libs avgwordlen

In CFLAGS, -Ilib tells the C compiler to search for include files
in the lib directory.

In LDLIBS, -Llib tells the linker to search for libraries in the lib
directory, and -lintlist tells the linker to link the intlist library
in.

In BUILD, I’ve added libs before avgwordlen. Later down the
main Makefile, we see a rule to make libs:

libs:

cd lib; make

This tricks Make, with it’s single directory view of the world, into
first building everything in the lib sub-directory, before building
avgwordlen in the current directory.

Duncan White (Imperial) C Programming Tools: Part 1 21 / 26

Multi-directory Projects with Make Multi-directory Projects (tarball 05.libintlist)

You’ll also notice the clean target now reads:

clean:

/bin/rm -f $(BUILD) *.o core

cd lib; make clean

which makes it clean in both directories.

Next: in tarball 05.libintlist and 06.avgwordlen-only, we go a step
further: we split the intlist module out completely from the
avgwordlen application that uses intlists.

In brief: 05.libintlist contains only the files from the lib directory.

It’s Makefile adds a new install target to install the library into
your ~/c-tools/lib/x86_64 directory, and install intlist.h into
~/c-tools/include.

After running make install in 05.libintlist, your ~/c-tools
library permanently contains the intlist ADT, for you to reuse
whenever you like - as shown in 06.avgwordlen-only.

Left for you to work through!

Duncan White (Imperial) C Programming Tools: Part 1 22 / 26

Multi-directory Projects with Make CMake (tarball 07.intlist-with-cmake)

I recommend learning Make thoroughly, I’ve used it for many
years with great success.
But there are alternatives - or frontends - to Make: For example
CMake and Gnu autoconf - both generate Makefiles
automatically from simpler inputs, and are supposed to scale well.
In tarball 07.intlist-with-cmake you will find a copy of our familiar
intlist-with-lib example, in which the only differences are that the
Makefiles have been replaced with CMakeLists.txt files, and the
README has been modified to explain it.
Go through that, and you’ll get a taste of how CMake lists files
are constructed.
However: CMake is over complex for my tastes. It generates
Makefiles that are thousands of lines long, completely
unnecessarily. Also, any tool that needs to be run in it’s own
build subdirectory in order to leave the source code directory
uncluttered is badly designed IMO.
What about Gnu autoconf? It’s widely used for portable software
distribution, so is very powerful. I have to admit it’s still on my
to-do list to learn - but don’t let that stop you trying it out.Duncan White (Imperial) C Programming Tools: Part 1 23 / 26

Automating Compilation again A New C-builder (tarball 08.cbuild)

CBuild: A New C-Builder

Last year, while reviewing the Perl mfbuild program, an idle
thought struck me:

How hard would it be to take the front end (dependency analysis)
part of mfbuild, and instead of generating a Makefile and leaving
the compilation and linking to Make, to do that myself. How
hard is it to write a simple make-style dependency algorithm?

So, I thought I’d have a go at it (clearly, time was hanging heavy
on me in the first Lockdown:-)). It turns out to be delightfully
simple to do this.

In tarball 08.cbuild you will find the result. May I present cb - the
new C builder. First, go into that directory, look around, and
then make install - you now have a new cb command, and a man
page man cb which explains how to use it.

Duncan White (Imperial) C Programming Tools: Part 1 24 / 26

Automating Compilation again A New C-builder (tarball 08.cbuild)

There are 5 small C projects (in the test1..5 directories) which
show off various features of cb - including it’s subdirectory
support. In particular, you will note that there is no Makefile in
any of those directories.

However, in each directory there is a much simpler .build file.
Let’s go inside test1, look around. The .build file reads:

BUILD = avgwordlen testlist

Containing no rules, it looks very like one of the macro declarations
from the top of a typical Makefile.. Later on, we’ll see that less familiar
declarations may be added to assist with multiple-directory work,
installation and even testing.

Now type cb. Lo and behold, the source code is compiled, exactly as
make would have done. Type cb again, and just like make, no
compilations are needed - cb is parsimonious too.

Type cb clean and you’ll see that it figures out what should be
cleaned, all by itself.

Duncan White (Imperial) C Programming Tools: Part 1 25 / 26

Automating Compilation again A New C-builder (tarball 08.cbuild)

In test2 you’ll see how cb supports building a library, and
installing things. It’s .build file has 3 parts:

Library LIB will be built from LIBOBJS

LIB = libintlist.a

LIBOBJS = intlist.o

what to build

BUILD = testlist $(LIB)

installations to perform (each mode, source, destination)

INST1 = 644 $(LIB) $(LIBDIR)

INST2 = 644 intlist.h $(INCDIR)

Type cb and the test program and the library are compiled and linked.
Type cb install and the library is installed into $(LIBDIR). But
where is LIBDIR set? Look in ../.build and you’ll see. Settings are
inherited from the .build in the parent directory to save repitition.
In the remaining test directories - left for you to investigate - you’ll see
examples of how cb supports libraries in separate subdirectories, and
how it handles testing (via cb test).
cb took me a couple of days to write - but of course it was based on
the earlier Perl mfbuild so perhaps half the code was already written.
It’s still experimental, and it may not be feature complete. But I’ve
already started using it as a potential mfbuild+make replacement.
Give it a try - see what you think of it! Please give me any feedback.

Duncan White (Imperial) C Programming Tools: Part 1 26 / 26

	Introduction
	Toolkits and Craftsmanship
	Recommended Books
	Contents

	Programmer's Editors
	Use a Single Editor Well (PP tip 22)

	Automatic Compilation
	Make (tarball 01.intlist)

	Multi-directory Projects with Make
	(tarball 04.intlist-with-lib)
	Multi-directory Projects (tarball 05.libintlist)
	CMake (tarball 07.intlist-with-cmake)

	Automating Compilation again
	A New C-builder (tarball 08.cbuild)

