C Programming Tools: Part 3

Building your own Tools

Duncan C. White
d.white@imperial.ac.uk

Dept of Computing,
Imperial College London

The handout and tarballs are available on materials.doc.ic.ac.uk and
at:
http://www.doc.ic.ac.uk/ dcw/c-tools-2021/lecture3/

C Programming Tools: Part 3 1/17

Tiny: Building Shortlived tools on the fly Patterns (PP tips 28 and 29 - tarball 01.tiny-tool)

@ The Pragmatic Programmers exhort us to: Learn a Text
Manipulation Language (tip 28) - such as Perl - and Write Code
that Writes Code (tip 29).

@ Let's see an example of those tips together, remembering..

Geeks and repetitive tasks

time A

spent ;“g;l \
v /

writes
script to
automate

gets
annoyed

»

\

\

\
\

does it
manually

makes fun of geek's
complicated method

»
task size

manually

C Programming Tools: Part 3 3/17

Today's Contents Build your own tools

@ So far, most tools we've covered have already existed (not all
though).

@ But | said at the beginning: When necessary: don't be afraid to
build your own tools!

@ And | meant it!
Today, we're going to cover building tools at a range of scales:

o Tiny: Building shortlived tools on the fly.
@ Medium: Generating prototypes automatically: proto.
o Large: Reusable ADT modules: hashes, sets, lists, trees etc.

o Large: Generating ADT modules automatically.

C Programming Tools: Part 3 2/17

Tiny: Building Shortlived tools on the fly Patterns (PP tips 28 and 29 - tarball 01.tiny-tool)

@ Suppose we find ourselves writing hundreds of repetitive “pattern
instances” like this:
int plus(int a, int b) { return (at+b); }

int minus(int a, int b) { return (a-b); }
int times(int a, int b) { return (a*b); }

@ If we need to write 10 of them - do it in your favourite programmer’s
editor using clone-and-alter.

@ What if we need to write 50 of them? Or 100 of them? Or 100 int
functions and another 100 double functions?

@ Are we bored yet? Is clone-and-alter too error-prone? Then why not..

@ Generate such function instances automatically using a shortlived tool,
scaffolding that you build on demand, use a few times, then discard:

@ Clearly, all that varies from instance to instance is (funcname,operator),
eg. (plus,+).

@ Let's assume the input format is an F,Op pair. In C terms, the
corresponding output would be produced by:

printf("int %s(int a, int b) { return (a%sb); }\n", F, Op)

C Programming Tools: Part 3 4/17

mailto:d.white@imperial.ac.uk

Tiny: Building Shortlived tools on the fly Doing it in Perl - tarball 01.tiny-tool

Simple job for a scripting language like Perl.

@ Here's a Perl oneliner | composed in a minute or two:

perl -nle ’($f,$op)=split(/,/); printf "int %s(int a, int b) { return (a%sb); }\n", $f, $op’ < input

The basic structure:

perl -nle ’PERL CODE’ < input
means execute that chunk of Perl code for every line of the input.
The Perl code:

($£,$0p)=split(/,/)

means split the current line on ",” into two strings, storing the part
before the comma into the variable $f, and the part after the comma
into $op.

The Perl code:

printf "int %s(int a, int b) { return (a%sb); }\n", $f, $op

should be understandable to any C programmer (as Perl takes printf
from C).

Don't want to do it in Perl? (weirdo). Then use a different tool!
(Ruby, Python, Awk, Bash).

| wrote it in C in 15 minutes using standard library function strtok() to
split on comma: See 01.tiny-tool /genfuncsl.c.

C Programming Tools: Part 3 5/17

Tiny: Building Shortlived tools on the fly Improving our Tiny tool - tarball 01.tiny-tool

To implement this, we'll need to treat lines where $f eq "TYPE"

specially:

perl -nle ’($f,$op)=split(/,/); if($f eq "TYPE") { $t=$op; next; }
printf "Ys %-15s(%s a, %s b) { return (a%sb); }\n", $t, $t."_".$f, $t, $t, $op’ < input

See 01.tiny-tool/genfuncs3.c for a C implementation.

Final thought, instead of hardcoding the output format in the printf, we
could replace TYPEs with TEMPLATEs in the input, for example:

TEMPLATE, int int_<0>(int a, int b) { return (a<i1>b); }

plus,+

minus,-

TEMPLATE,double double_<0>(double a, double b) { return (a<i>b); }
plus,+

minus, -

Here, the marker <0> means "replace this marker with the current
value of the first field". Our Perl one-liner becomes more powerful but

shorter:

perl -nle ’@f=split(/,/,$_,2); if($£[0] eq "TEMPLATE") { $t=$f[1]; next; }
$_=$t; s/<(\d+)>/$£f[$1]/g; print’ < input

This is now a simple template processor. See 01.tiny-tool/README
for further extensions, allowing any number of marker fields, and how
to turn our one-liner into a proper command with a man page (install it
via make install).

C Programming Tools: Part 3 7/17

Tiny: Building Shortlived tools on the fly Improving our Tiny tool - tarball 01.tiny-tool

@ Note that our tool doesn't have to be perfect; just good enough
to save us time.

@ Once you have a tiny tool, don't be afraid to modify it:

o Left-justify the function names in a field of some suitable width:

perl -nle ’($f,$op)=split(/,/); printf "int %-15s(int a, int b) { return (a%sb); }\n", $f, $op’ < input

@ Or, prefix the typename onto function names, eg. int_plus:

perl -nle ’($f,$op)=split(/,/); printf "int %-15s(int a, int b) { return (a%sb); }\n", "int_".$f, $op’ < i

@ Why not let the user change the type at any point in the input:

TYPE, int
plus,+
minus,-
TYPE,double

plus,+
minus,-
generates:
int int_plus (int a, int b) { return (a+b); }
int int_minus (int a, int b) { return (a-b); }

double double_plus (double a, double b) { return (a+b); }
double double_minus (double a, double b) { return (a-b); }

C Programming Tools: Part 3 6/17

Medium: Generating Prototypes Automatically proto: (tarball 02.proto)

@ Let's move on to an example medium scale tool | built.

@ While developing C code, you may find certain things irritate you.

@ The Pragmatic Programmers describe such things as broken
windows, and tell us - in tip 4 - Don't live with broken windows.
Find a way to fix the problem!

@ One particular thing irritated me some years ago: keeping the
prototype declarations in .h files in sync with the function
definitions in the paired .c files that form modules.

@ Whenever you add a public function to intlist.c you need to
remember to add the corresponding prototype to intlist.h.

@ Even adding or removing parameters to existing functions means
you need to make a corresponding change in the prototype too.
What a pain!

@ The problem here is that there’s a lot of repetition between the
.c file and the .h file. This violates the single most important
Pragmatic Programmers tip:

DRY - Don't Repeat Yourself (tip 11).

C Programming Tools: Part 3 8/17

Medium: Generating Prototypes Automatically proto: (tarball 02.proto)

So let’s generate the prototypes from the function definitions.
Does a tool exist to do this? Couldn't find one at the time. So:
write a tool to solve this problem, then integrate it into our
editor for convenience!

So | wrote proto to do this: It reads a C file looking for function
definitions, and produces a prototype for each function.

But this sounds pretty hard. Don't we need a complete C parser?
| found an easier way. | imposed LIMITATIONS on my layout
approach to make the tool easier to construct: | decided that the
whole function heading must be placed on one line, and also that
the function heading could only use simple type declarations eg.
typename [*x..] paramname (use typedef for complex
declarations). New this year: const is supported as a simple
prefix on parameter declarations.

Then | wrote a vi macro bound to an unused key that piped the
next paragraph into proto % (current filename). Let's see proto
in action!

See http://www.doc.ic.ac.uk/“dcw/PSD/article4/ for an

Duncan White (imperis) c Programming Tools: Part3 9/17

Large: Reusable ADT modules Some ADTs: tarball 03.adts/example 04.hash-set-eg

To get you started, tarball 03.adts includes a group of half a
dozen ADTs (plus unit test programs) that I've written over the
years, plus a Makefile to package them as the libADTs.a library.
You will recognise a couple: our running example intlist.[ch] and
our old friend hash.[ch], after Lecture 2's memory-leak fixes and
profiling-led optimizations.

Investigate them all at your own leisure - but make install them
now so they're installed in your TOOLDIR (~/c-tools)
directory.

Next, tarball 04.hash-set.eg contains an example application
that uses some of those ADTs, specifically:

e Hashes and Sets of strings,

e Then combines them to represent family information, i.e. a
mapping from a named parent to set of named children.

o It's left for you to examine and play with.

C+hashes+sets makes it easy to pretend that you're
programming in Perl:-)
Note also tarball 05.utils contains a couple of reusable utility

c_a- PalalW] 1" 1 . 1

C Programlming Tools: ;’art?: b 11/17
include a .ini file parser too; but I've never needed one:-) Do

Large: Reusable ADT modules hashes, lists, trees, sets etc

@ Most problems are made a lot easier by having a library of
trusted reusable ADT modules:

indefinite length dynamic strings

indefinite length dynamic arrays

linked lists (single or double linked)

stacks (can just use lists)

queues and priority queues

binary trees

hashes (aka maps/dictionaries/associative arrays).

sets of strings - several possible implementations.

bags - frequency hashes, mapping strings to integers.

@ Unlike C++, the C standard library fails to provide any of the
above. So, either find a collection of such modules that others
have written, or build them yourself as and when you need them,
and reuse them at every opportunity.

@ Note: Reuse can be done without OO or generics, Make it Easy
to Reuse (PP Tip 12) - in C, use void * for generic pointers,
and use pointers to functions for callbacks.

C Programming Tools: Part 3

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

@ Principle: It's often an excellent idea to import cool features
from other languages.

@ Many years ago, | realised that one of the best features of
functional programming languages such as Haskell is the ability
to define inductive data types, as in:

intlist = nil or cons(int head, intlist tail);
@ I'd dearly love to have that ability in C.

o If only there was a tool that reads such type definitions and
automatically writes a C module that implements them..

o | looked around, but | couldn't find one. Noone seemed to have
ever suggested that such a tool could be useful!

@ Decision time: do | abandon my brilliant idea, or build the tool?

o Cost/benefit analysis: a serious tool, a mini-compiler (with
parser, lexical analyser, data structures, tree walking code
generator): at least a week's work! Think hard!

C Programming Tools: Part 3

10/17

12/17

(IETECHANTCT LTSN QA DR R datadec (tarball 06.datadec/07.datadec-eg)

| built the tool! After a fortnight’s work, the result was datadec -
in the 06.datadec directory (also installed throughout DoC labs).
After installing it, use as follows:

@ In 07.datadec-eg you'll find an input file types.in containing:
TYPE {

intlist
tree

nil or cons(int head, intlist tail);
leaf(string name)
or node(tree left, tree right);

}
@ To generate a C module called datatypes from types.in, invoke:
datadec datatypes types.in

@ This creates datatypes.c and datatypes.h, two normal looking C files,
you can read them, write test programs against the interface, use them
in production code with no license restrictions. But don't modify these
files - if you do then you can't...

@ ... change types.in later - suppose you realise that a tree node also
needs to store a name (just as the leaves do). Change the type defn,
rerun datadec. The tree_node() constructor now takes 3 arguments!

C Programming Tools: Part 3 13 /17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

@ These allow you to write tree-walking code like this leaf-counter:

int nleaves(tree t)

{
if(tree_kind(t) == tree_is_leaf)
{
string name; get_tree_leaf(t, &name);
return 1; // leaf(name): contains 1 leaf.
} else
{
tree 1, r; get_tree_node(t, &1, &r);
// node(1, r): process 1 and r trees.
return nleaves(l) + nleaves(r);
}
}

@ In Haskell, this'd be:

nleaves (leaf (name))
nleaves(node(1,r))

1
nleaves(l) + nleaves(r)

C Programming Tools: Part 3 15 /17

(IETECHANTC LTSN QA DR RN datadec (tarball 06.datadec/07.datadec-eg)

Let's look inside datatypes.h, to find what tree functions datadec
generates, and how to use them.
There are two constructor functions, one for each shape of tree:
extern tree tree_leaf(string name);
extern tree tree_node(tree 1, tree r);
So, this allows us to build trees as in:
tree tl = tree_leaf("absolutely");
tree t2 = tree_leaf("fabulous");
tree t = tree_node(t1, t2);
Then a function telling you which shape a tree is: is it a leaf or a
node?
typedef enum { tree_is_leaf, tree_is_node } kind_of_tree;
extern kind_of_tree tree_kind(tree t);
Then two deconstructor functions which, given a tree of the
appropriate shape, breaks it into it's constituent pieces:
extern void get_tree_leaf(tree t, string *namep);
extern void get_tree_node(tree t, tree *lp, tree *rp);

C Programming Tools: Part 3 14 /17

Large: Autogenerating ADTs datadec (tarball 06.datadec/07.datadec-eg)

The final function prints a tree to a writable file handle, in
human readable format:
extern void print_tree(FILE *out, tree t);

@ To see all the above in use, see mintesttree.c.
@ By default, datadec does not generate free functions. Why?

Hard to do right due to shallow vs deep considerations.

You can now run datadec -f.. to get experimental free TYPE()
functions, although you still have to be careful using these - see
the README file for details.

Looking back, | now view the fortnight | spent building datadec
(and, more recently, the day or two adding free_TYPE() support)
as the single best investment of programming time in my career.
| have saved hundreds of days programming time using it - and
so can you!

You can read a 3-part article | wrote about how | designed
datadec here:

http://www.doc.ic.ac.uk/"dcw/PSD/article8/

C Programming Tools: Part 3 16 /17

Bl datadec (tarball 06.datadec/07.datadec-eg)

Remember:

IF SOMETHING

IS WORTH
DOING ONCE

ITS WORTH
BUILDING A TOOL

TODOIT

ancient gineering
proverb

(and learn Perl, it's great!)

C Programming Tools: Part 3 17 /17

	Today's Contents
	Build your own tools

	Tiny: Building Shortlived tools on the fly
	Patterns (PP tips 28 and 29 - tarball 01.tiny-tool)
	Doing it in Perl - tarball 01.tiny-tool
	Improving our Tiny tool - tarball 01.tiny-tool

	Medium: Generating Prototypes Automatically
	proto: (tarball 02.proto)

	Large: Reusable ADT modules
	hashes, lists, trees, sets etc
	Some ADTs: tarball 03.adts/example 04.hash-set-eg

	Large: Autogenerating ADTs
	datadec (tarball 06.datadec/07.datadec-eg)

