
C Programming Tools: Part 4
Building Lexers and Parsers

Duncan C. White
d.white@imperial.ac.uk

Dept of Computing,
Imperial College London

The handout and tarball are available on materials.doc.ic.ac.uk and at:
http://www.doc.ic.ac.uk/~dcw/c-tools-2021/lecture4/

Duncan White (Imperial) C Programming Tools: Part 4 1 / 20

Today’s Contents

Last lecture, we started building our own tools when necessary, at
a range of scales from tiny to large.

Most of those tools were Code Generators - Code that Writes
Code (Tip 29).

A Code Generator defines some Little Language and then
translates that into some other form - eg valid C source code.

The main topic of this lecture is to find how to make writing
Code Generators even easier.

Duncan White (Imperial) C Programming Tools: Part 4 2 / 20

Back to Code Generators

The first part of writing any Code Generator is to build a lexical
analyser (aka a Lexer) and a Parser for your little language.
Everyone should write a couple of lexers and parsers by hand to
get the hang of them, but.. After that, it’s just boring gruntwork
- so use tools:
Lex generates C code (a Lexer) from declarative definitions of
lexical tokens, and how to recognise them in the input.
Yacc generates C code (a Parser) from declarative definitions of
the grammar, plus actions to take when grammatical constructs
are parsed successfully. The parser calls the lexer to supply the
next token.
The actions you tell Yacc to take when constructs are parsed can
do anything, but typically they build an Abstract Syntax Tree or
AST, aka the parse tree. This is an internal form of the little
language input, used by later phases of compilation (semantic
checking and code generation) - implemented as AST tree
walkers.
Note: Datadec is the perfect tool to generate ASTs.
Duncan White (Imperial) C Programming Tools: Part 4 3 / 20

Lexer Generator tool: Lex Integer Expressions: (tarball 01.expr-lexonly)

What Little Language shall we use as an example?

Let’s start with integer constant expressions such as
3*(10+eek*(123/3) mod 7).

Looking first at the lexical level, the basic ‘tokens’ needed are:

Numeric constants (eg ‘123’).
Identifiers - named constants (eg ‘eek’) whose values are defined
elsewhere.
Various one-character operators (eg. ‘(’, ‘+’, ‘*’, ‘)’ etc).
A Haskell-inspired keyword ‘mod’ (i.e. modulus, ‘%’ in C terms).

Two of those tokens have associated values:
A numeric constant has an associated integer value - which
particular number we have seen, eg. 3, 10, 123 etc.
An identifier has an associated string (char *) - the actual name
of the identifier that we’ve seen, eg ”eek”.

If we were writing the lexer in Haskell, then a token would be
represented by the following inductive data type:

token = PLUS or MINUS or MOD or MUL or DIV or OPEN or CLOSE

or IDENT(string s) or NUMBER(int n) or TOKERR;

Duncan White (Imperial) C Programming Tools: Part 4 4 / 20

mailto:d.white@imperial.ac.uk

Lexer Generator tool: Lex Integer Expressions: (tarball 01.expr-lexonly)

To represent this in C, we define the tokens themselves as integer
constants (using any distinct, non zero values we like):

#define PLUS 1

#define MINUS 2

#define MUL 3

#define DIV 4

#define MOD 5

#define OPEN 6

#define CLOSE 7

#define TOKERR 8

#define NUMBER 9

#define IDENT 10

To represent the associated values (an integer n and a char *s), in a
Lex-compatible way, we define a union type and a variable of that type:

typedef union

{

int n;

char *s;

} YYSTYPE;

extern YYSTYPE yylval; // "lexical value" associated with current token, if any

We put these definitions in lexsupport.h, along with a prototype for a
function to print out the current token:

extern void print_token(FILE * out, int tok);

Duncan White (Imperial) C Programming Tools: Part 4 5 / 20

Lexer Generator tool: Lex Integer Expressions: (tarball 01.expr-lexonly)

In lexsupport.c we write:
#include <stdio.h>

#include "lexsupport.h"

YYSTYPE yylval; // value associated with current token, if any

/*

Print token <tok> and it’s associated

value from yylval (if any) to <out>

*/

void print_token(FILE *out, int tok)

{

switch(tok)

{

case PLUS: fputc(’+’, out); break;

case MINUS: fputc(’-’, out); break;

case MUL: fputc(’*’, out); break;

case DIV: fputc(’/’, out); break;

case MOD: fputs("mod", out); break;

case OPEN: fputc(’(’, out); break;

case CLOSE: fputc(’)’, out); break;

case TOKERR: fputs("<UNKNOWN TOKEN>", out); break;

case NUMBER: fprintf(out, "number(%d)", yylval.n); break;

case IDENT: fprintf(out, "ident(%s)", yylval.s); break;

default: fprintf(out, "<IMPOSSIBLE TOKEN %d>", tok);

}

}

(and a small irritating Lex-support function called yywrap, not shown).

Duncan White (Imperial) C Programming Tools: Part 4 6 / 20

Lexer Generator tool: Lex Integer Expressions: (tarball 01.expr-lexonly)

Now, to define the lexical rules for our tokens, Lex allows us to
specify regular expression/action pairs:

\+ return PLUS;

- return MINUS;

* return MUL;

\/ return DIV;

\(return OPEN;

\) return CLOSE;

mod return MOD;

[0-9]+ yylval.n=atoi(yytext); return NUMBER;

[a-z][a-z0-9]* yylval.s=strdup(yytext);return IDENT;

[\t\n]+ /* ignore whitespace */;

. return TOKERR;

Most Lex rules are obvious, essentially when you match this string,
return this token value. Note that regular expression rules mean that
special characters like +, *, /, (and) need to be back-slashed.
A few rules are more complex - the rule [\t\n]+ /* ignore whitespace */;

matches any number of adjacent space, tab and newline characters,
then executes the empty action, leaving us still in the Lexer trying to
find the next token, looking for any pattern matches.
Next, let’s look at the NUMBER rule:

[0-9]+ yylval.n=atoi(yytext); return NUMBER;

The regex pattern [0-9]+ represents an arbitrarily long sequence of
one or more adjacent decimal digits.

Duncan White (Imperial) C Programming Tools: Part 4 7 / 20

Lexer Generator tool: Lex Integer Expressions: (tarball 01.expr-lexonly)

Looking at the action yylval.n=atoi(yytext); return NUMBER, we wonder what
yytext is?

When a Lex pattern matches the first few characters in the
unconsumed input, the lexer consumes the matching chunk of
input, copying it into a string called yytext.

So, when the regex [0-9]+ has matched, the longest digit
sequence found in the input is stored in yytext.

Then our Lex action runs: it extracts the integer value via
atoi(yytext), stores it in yylval.n (the integer associated with a
NUMBER token) and returns NUMBER.

So, for example, if the lexer is called to deliver the next token
and the next few characters of input are:

12345*eek123 mod (x+77)

the lexer sees that the input 12345 matches [0-9]+, so 12345 is
consumed from the input, yytext is set to ”12345”, yylval.n is set to
12345, and the lexer returns NUMBER.

The unconsumed input is now: *eek123 mod (x+77)

Duncan White (Imperial) C Programming Tools: Part 4 8 / 20

Lexer Generator tool: Lex Integer Expressions: (tarball 01.expr-lexonly)

Similarly, when we look at the IDENT rule:
[a-z][a-z0-9]* yylval.s=strdup(yytext);return IDENT;

The regex represents a lower case letter ([a-z]) followed by zero or
more lower case letters or digits ([a-z0-9]*), ie. a lower case
alphanumeric string.
When the pattern matches, the longest alphanumeric sequence found at
the front of the input is stored in yytext - and consumed from the input.
We strdup(yytext) to give ourselves a long-lived copy of the string,
storing that in yylval.s, and then return IDENT.
For example, if the unconsumed input is: eek123 mod (x+77)

Then eek123 is consumed from the input, yytext is set to ”eek123”,
which is then duplicated and stored in yylval.s, leaving mod (x+77)

unconsumed.
Note that Lex automatically handles overlapping patterns - the keyword
mod is not confused with an identifier, despite the string mod also
matching a lower case letter (m) followed by zero or more letters or
digits (od).
See lexer.l in 01.expr-lexonly for the full Lex input file, containing the
above plus some prelude. This file can be turned into C code via: lex -o
lexer.c lexer.l.

Duncan White (Imperial) C Programming Tools: Part 4 9 / 20

Lexer Generator tool: Lex Integer Expressions: (tarball 01.expr-lexonly)

We complete the example with a main program mainprog.c, that
repeatedly calls the yylex() function that Lex generates, and
prints out each token that it finds:

int main(int argc, char **argv)

{

int tok;

while((tok=yylex()) != 0)

{

printf("token: ");

print_token(stdout, tok);

putchar(’\n’);

}

yylex_destroy();

return 0;

}

You’ll find all these files in the 01.expr-lexonly directory, together with a
Makefile to compile everything up. Type make and you’re left with the
executable lextest, which reads tokens from standard input. Run it
with input:

12345*eek123 mod (x+77)

and it generates output:
token: number(12345) token: ident(x)

token: * token: +

token: ident(eek123) token: number(77)

token: mod token:)

token: (

Duncan White (Imperial) C Programming Tools: Part 4 10 / 20

Parser Generator tool: Yacc Parsing Integer Expressions: (tarball 02.expressions)

Turning to the parser that Yacc is about to generate for us, this
parser has two tasks:

First, to check that this sequence of tokens generated by the lexer
is valid under the grammatical rules we tell it.
Second, if it is valid, to generate an Abstract Syntax Tree
representation of it.

Our Abstract Syntax is most usefully defined as a series of
Haskell-style inductive data types, specified (of course!) in a
Datadec input file called types.in:

arithop = plus or minus or times or divide or mod;

expr = num(int n)

or id(string s)

or binop(expr l, arithop op, expr r);

So, our parser’s main job is to build an Abstract expr tree from
our token stream.

To generate the parser, we provide a quite complicated Yacc
input file called parser.y.

Duncan White (Imperial) C Programming Tools: Part 4 11 / 20

Parser Generator tool: Yacc Parsing Integer Expressions: (tarball 02.expressions)

parser.y starts with a long prelude of plain C code:
%{

// some includes and externs..

expr ast = NULL;

int yyerrors = 0;

void yyerror(const char *str)

{

fprintf(stderr, "Error on line %d: %s\n", yylineno, str);

yyerrors++;

}

%}

The parser calls the yyerror() function to report parse errors.
Note the use of the current source line number yylineno, which
yylex() automatically keeps track of.

Also note that we count the total number of parse errors in
yyerrors.

The variable definition:
expr ast = NULL;

defines the variable ast that we will use to store the AST
representation (an expr) of the whole integer expression after a
successful parse.

Duncan White (Imperial) C Programming Tools: Part 4 12 / 20

Parser Generator tool: Yacc Parsing Integer Expressions: (tarball 02.expressions)

Next parser.y contains a %union declaration listing all possible
types of data associated with tokens (and parse rules):

%union

{

int n;

char *s;

expr e;

}

Yacc auto-generates the YYSTYPE union declaration and the
yylval variable (that we previously defined in lexsupport.h) from
this information, and places it in parser.h.

The Lex prelude is modified slightly to include parser.h rather
than lexsupport.h, allowing Lex rules to store values in yylval.n
and yylval.s as before.

Our %union also contains field expr e. We’ll come back to that.

Below the %union we see a list of all the tokens, first those
without associated values:

%token PLUS MINUS MUL DIV MOD OPEN CLOSE TOKERR

Then we list those tokens with associated values:
%token <n> NUMBER

%token <s> IDENT

Duncan White (Imperial) C Programming Tools: Part 4 13 / 20

Parser Generator tool: Yacc Parsing Integer Expressions: (tarball 02.expressions)

These tell Yacc that a NUMBER token has an associated int n
value, and an IDENT token has an associated char *s value.
So, the lexer deposits the actual number seen in yylval.n and
Yacc looks in yylval.n to retrieve that value later on.
Next, we tell Yacc that several parse rules also have associated
values - the expr e field in the union, allowing those parse rules to
build abstract expressions:

%type <e> factor term expr

Next, we tell Yacc which rule the parser that it generates must
attempt to parse, i.e. which is the whole input must match this
rule. Here we call that start rule top:

%start top

The rest of parser.y lists the grammatical parse rules that define
integer expressions (in BNF), and the corresponding tree-building
actions to take when a rule matches. The first rule is:

%%

top : expr { ast = $1; }

;

So our parser must match the entire input - with none left over -
as an expression. We’ll discuss the action in a moment.
Duncan White (Imperial) C Programming Tools: Part 4 14 / 20

Parser Generator tool: Yacc Parsing Integer Expressions: (tarball 02.expressions)

The parse rules continue:
expr : expr PLUS term { $$ = mkplus($1, $3); }

| expr MINUS term { $$ = mkminus($1, $3); }

| term { $$ = $1; }

;

term : term MUL factor { $$ = mktimes($1, $3); }

| term DIV factor { $$ = mkdivide($1, $3); }

| term MOD factor { $$ = mkmod($1, $3); }

| factor { $$ = $1; }

;

factor : NUMBER { $$ = expr_num($1); }

| IDENT { $$ = expr_id($1); }

| OPEN expr CLOSE { $$ = $2; }

;

Looking just at the rules (ignoring the actions for a moment):

an expression is a list of one or more terms linked by
PLUS/MINUS tokens,
a term is a list of one or more factors linked by MUL/DIV/MOD
tokens
and a factor is a numeric constant, an identifier or a bracketed
sub-expression.

But what about the actions?

Duncan White (Imperial) C Programming Tools: Part 4 15 / 20

Parser Generator tool: Yacc Parsing Integer Expressions: (tarball 02.expressions)

Picking one of our parse rules/action pairs out, we see:
expr : expr PLUS term { $$ = mkplus($1, $3); }

This rule says that one syntactic form of an integer expression
comprises a sub-expression, followed by a PLUS token (‘+’),
followed by a term.
Note that recursive rules in Yacc like this one must be written
with the recursive invocation of expr first. Yacc’s algorithm can’t
handle it the other way round - Yacc will generate a fatal error if
you write the more intuitive: expr : term PLUS expr.
When our expr PLUS term rule matches, the action is executed,
with:

$1 set to the value (if any) associated with the sub-expr rule,
$2 set to the value (if any) associated with the PLUS token,
$3 set to the value (if any) associated with the term rule.

Of course, we know that only expr and term have associated
values, PLUS does not; so using $2 would be an error. We use
$1 and $3 to call mkplus($1, $3). mkplus() is:

expr mkplus(expr a, expr b) { return expr_binop(a, arithop_plus(), b); }

Assigning that new expression to $$ sets the value associated
with the whole expr rule, think of this as the rule return value.
Duncan White (Imperial) C Programming Tools: Part 4 16 / 20

Parser Generator tool: Yacc Parsing Integer Expressions: (tarball 02.expressions)

Let’s look at the rest of the expr rules and actions:
expr : expr PLUS term { $$ = mkplus($1, $3); }

| expr MINUS term { $$ = mkminus($1, $3); }

| term { $$ = $1; }

;

We’ve explained the first one. The second is very similar:
another syntactic form of expression comprises an expression
followed by a MINUS token followed by a term. When that
matches, $1 is the sub-expression’s associated value and $3 the
term’s associated value. These are combined by
mkminus($1,$3) and assigned to $$.

mkminus() is:
expr mkminus(expr a, expr b) { return expr_binop(a, arithop_minus(), b); }

The third rule is simpler: another form of an expression is a single
term (with no additive operators such as PLUS or MINUS). In
this case, we simply copy the term’s associated value $1 into $$.

Terms are incredibly similar - but with the higher priority
multiplicative operators, so we’ll not bother to explain them.

Duncan White (Imperial) C Programming Tools: Part 4 17 / 20

Parser Generator tool: Yacc Parsing Integer Expressions: (tarball 02.expressions)

Factors are more interesting, and deserve an explanation:
factor : NUMBER { $$ = expr_num($1); }

| IDENT { $$ = expr_id($1); }

| OPEN expr CLOSE { $$ = $2; }

;

So: a factor may be a plain integer constant (the NUMBER
token), in which case we construct an expr_num() from the
number’s associated value $1 - yylval.n.

Or a factor may be an identifier (the IDENT token), in which
case we construct an expr_id() from the identifier’s associated
value $1 - yylval.s, a malloc()d string allocated by strdup().

Finally, a factor may be a bracketed sub-expression, in which case
we copy the associated value $2 of the sub-expression.

The top level (start) rule, top, has a subtly different action:
top : expr { ast = $1; };

When this matches the entire input, with no junk left following a
valid expr, that final abstract expr is copied from $1 to the
expr ast variable. This enables the final fully built expr AST to
be extracted from Yacc’s clutches and returned to us.
Duncan White (Imperial) C Programming Tools: Part 4 18 / 20

Parser Generator tool: Yacc Parsing Integer Expressions: (tarball 02.expressions)

Turn parser.y into a C module (parser.c and parser.h) via: yacc
-vd -o parser.c parser.y.
One remaining point is where the AST builder functions like
mkplus() are actually stored, we’ve shown a couple of individual
ones, but not where they’re stored. Each is a thin wrapper on
top of the datadec-generated types:

expr mkplus(expr a, expr b)

{

return expr_binop(a, arithop_plus(), b);

}

This function and all it’s friends (mkminus() etc) are very
repetitive. In the previous lecture we wrote a tiny tmpl tool to
generate such output, so let’s reuse it! We generate these
functions from the input file binfuncs.in:

TEMPLATE,expr mk<0>(expr a, expr b)\n{\n\treturn expr_binop(a, arithop_<0>(), b);\n}\n

plus

minus

times

divide

mod

A tiny helper shell script mkmodule is run with binfuncs as it’s
argument, it uses tmpl to turn binfuncs.in into binfuncs.c, then
uses my other tool proto to generate binfuncs.h from binfuncs.c.Duncan White (Imperial) C Programming Tools: Part 4 19 / 20

Parser Generator tool: Yacc Parsing Integer Expressions: (tarball 02.expressions)

The 02.expressions directory also provides:

A main program (mainprog.c) which initialises the lexer, calls the
parser, and prints out the AST (if parsing is successful) or prints
error messages if not,
A module called consthash that gives expressions the ability to use
predefined named constants (such as powers of two), and
command line arguments (arg1..argn), these constants are stored
in a longhash (from the previous lecture’s libADTs library),
A module called eval that evaluates expressions, by walking expr
ast, using consthash to look up identifiers, and
A Makefile to build everything, using lex, yacc, datadec and
mkmodule to generate the lexer, parser, types module and
binfuncs module, and then compiles and links everything.

Build by typing make. We end up with an expression parser,
treebuilder and evaluator called expr, in which we only write
about 350 lines of code. Give it a try!
So far, we’ve used all this heavy-duty technology to essentially
build a 5 dollar calculator. Are you impressed? Weellll.. Perhaps
not:-). But in the final lecture we’ll see how to scale our input
language up significantly.Duncan White (Imperial) C Programming Tools: Part 4 20 / 20

	Today's Contents
	Back to Code Generators
	Lexer Generator tool: Lex
	Integer Expressions: (tarball 01.expr-lexonly)

	Parser Generator tool: Yacc
	Parsing Integer Expressions: (tarball 02.expressions)

