
C Programming Tools: Part 5
Building Lexers and Parsers (cont)

Duncan C. White
d.white@imperial.ac.uk

Dept of Computing,
Imperial College London

Duncan White (Imperial) C Programming Tools: Part 5 1 / 20

Today’s Contents

Last lecture, we started using Yacc and Lex along with Datadec,
tmpl and proto to build a simple calculator for integer
expressions.

Now, in the last C Programming Tools lecture, we’ll show how
Yacc and Lex scale up to help build much larger Code Generators.

Then we’ll briefly discuss a recently discovered alternative
parsing-based technique that I’ve been playing with.

Then we’ll finish off by summarising the Programming Tools
philosophy.

The handout and tarball are available on materials and at:
http://www.doc.ic.ac.uk/~dcw/c-tools-2021/lecture5/

Duncan White (Imperial) C Programming Tools: Part 5 2 / 20

A Bigger Example for Yacc and Lex THS: A Tiny Haskell Subset (01.ths-treebuilder)

It’s time to change up a gear: our second example is for a Tiny
Haskell Subset I imaginatively name THS.

THS comprises:
Zero-or-more function definitions, with optional type definitions;
Followed by a compulsory integer expression (often a call to some
of those functions);
Each function takes and returns a single integer value;
Each function is implemented either by a single expression, or
A sequence of guarded expressions involving simple boolean
expressions, eg. x==0.

For example:
double :: Int -> Int

double x = x*2

abs x | x>0 = x

| x==0 = 0

| 0>x = 0-x

fact x | x==1 = 1

| x>1 = x * fact(x-1)

double(20) + abs(0-2)*fact(arg1)

In a break with strict Haskell-syntax, we’ll decide that brackets on
function calls like abs(10) are compulsory. Why? Because the lack of
brackets confuses me:-)

Duncan White (Imperial) C Programming Tools: Part 5 3 / 20

A Bigger Example for Yacc and Lex THS: A Tiny Haskell Subset (01.ths-treebuilder)

At the lexical level, we add the following new regex/action pairs
to our Lex input file lexer.l - keeping all the integer expression
rules unchanged:

Int return INTTYPE;

True return TRUEV;

:: return COLONCOLON;

-> return IMPLIES;

== return EQ;

= return IS;

> return GT;

!= return NE;

\| return GUARD;

Note that we have included True but not False, ‘>’ but not ‘<’ etc.
These can be trivially added later - in fact, this would make a good
exercise for anyone who’s interested.
The Abstract Syntax of THS, in types.in, is more complex:

arithop = plus or minus or times or divide or mod;

expr = num(int n)

or id(string s)

or binop(expr l, arithop op, expr r)

or call(string s, expr e);

boolop = eq or ne or gt;

bexpr = truev or binop(expr l, boolop op, expr r);

guard = pair(bexpr cond, expr e);

guardlist = nil or cons(guard hd, guardlist tl);

fbody = one(expr e) or many(guardlist l);

fdefn = triple(string fname, string param, fbody b);

flist = nil or cons(fdefn hd, flist tl);

program = pair(flist l, expr e);
Duncan White (Imperial) C Programming Tools: Part 5 4 / 20

mailto:d.white@imperial.ac.uk

A Bigger Example for Yacc and Lex THS: A Tiny Haskell Subset (01.ths-treebuilder)

Turning to the Yacc input file parser.y, Our ast variable (that
stores the AST after a successful parse) was an expr, now it’s
program ast = NULL;

The %union declaration is much bigger this time:
%union

{

int n; char *s;

expr e; bexpr b;

guard g; guardlist gl;

fdefn f; flist fl;

}

Our token lists are bigger than before:
%token COLONCOLON IMPLIES EQ GT NE TRUEV PLUS MINUS MUL DIV MOD OPEN

CLOSE GUARD IS INTTYPE TOKERR

%token <n> NUMBER

%token <s> IDENT

Our parse rule type association list is also bigger:
%type <e> factor term expr

%type bexpr

%type <g> guard

%type <gl> guards

%type <f> fdefinition

%type <fl> fdefns

Duncan White (Imperial) C Programming Tools: Part 5 5 / 20

A Bigger Example for Yacc and Lex THS: A Tiny Haskell Subset (01.ths-treebuilder)

Next, parser.y tells Yacc which parse rule to start parsing with:
%start program

Recall that this forces the parser to parse the entire input using
the program rule.
The rest of the parser.y lists the grammatical parse rules that
define THS, plus the corresponding tree-building actions to take
when the rules match:

%%

program : fdefns expr { ast = program_pair($1, $2); }

;

fdefns : /* empty */ { $$ = flist_nil(); }

| fdefns ftypedefn { $$ = $1; /* ignore type defns */ }

| fdefns fdefinition { $$ = flist_cons($2, $1); }

;

ftypedefn : IDENT COLONCOLON INTTYPE IMPLIES INTTYPE { free_string($1); }

;

fdefinition : IDENT IDENT IS expr { $$ = fdefn_triple($1, $2, fbody_one($4)); }

| IDENT IDENT guards { $$ = fdefn_triple($1, $2, fbody_many($3)); }

;

guards : guard { $$ = guardlist_cons($1, guardlist_nil()); }

| guards guard { $$ = guardlist_push($1, $2); }

;

guard : GUARD bexpr IS expr { $$ = guard_pair($2, $4); }

;

bexpr : expr EQ expr { $$ = mkequals($1, $3); }

| expr NE expr { $$ = mknotequals($1, $3); }

| expr GT expr { $$ = mkgreaterthan($1, $3); }

| TRUEV { $$ = bexpr_truev(); }

;
Duncan White (Imperial) C Programming Tools: Part 5 6 / 20

A Bigger Example for Yacc and Lex THS: A Tiny Haskell Subset (01.ths-treebuilder)

The grammar rules finish off with expr, term and factor, mostly
unchanged, although there’s an extra factor rule, allowing a
function call:

factor : IDENT OPEN expr CLOSE { $$ = expr_call($1,$3); }

Picking one of our parse rules/action pairs out for a detailed
inspection, we see:

guard : GUARD bexpr IS expr { $$ = guard_pair($2, $4); }

When this rule matches, $2 is the abstract boolean expression
and $4 is the abstract integer expression. The action builds
guard_pair($2, $4), and assigns it to $$.
Having built a new abstract guard, and associated it with the
successful match of the guard parse rule, parsing continues trying
to parse a non-empty sequence of guards, in which we have
either a single guard, or some guards followed by one more guard:

guards : guard { $$ = guardlist_cons($1, guardlist_nil()); }

| guards guard { $$ = ?????($1, $2); }

;

When the guards guard rule matches, we want our action to
build a guard list with the guards in the order they were
encountered in the THS input file.

Duncan White (Imperial) C Programming Tools: Part 5 7 / 20

A Bigger Example for Yacc and Lex THS: A Tiny Haskell Subset (01.ths-treebuilder)

But Yacc’s love of left recursion causes us a problem, because:

$1 is set to the guardlist value associated with the guards
recursive invocation (which has just matched all guards except the
last one);
and $2 is set to the value associated with the last guard.

So $1 is a guardlist, and $2 is a single guard (the last one). If we
write the obvious action $$ = guardlist_cons($2,$1) we generate the
guard list in reverse order, causing us a problem later on.

Obviously, we can’t swap the arguments and write
$$ = guardlist_cons($1,$2) because the generated C code will not compile.

In a previous version, I let Yacc build the guard list in reverse
order, and then wrote a guardlist_reverse() function later.

But now, the action I write is $$ = guardlist_push($1,$2). This function
was manually written (you’ll find it in the prelude section of
types.in) and modifies the existing guardlist, finding the last node
and adding the new guard on the end.

Duncan White (Imperial) C Programming Tools: Part 5 8 / 20

A Bigger Example for Yacc and Lex THS: A Tiny Haskell Subset (01.ths-treebuilder)

Once we have built our guard list, when an entire function with
guard list body is parsed successfully, the guard list gets
incorporated into an abstract function definition by the
fdefinition parse rules and actions.

Function definitions get incorporated into function lists, by the
fdefns parse rules and actions. Note that function type definitions
are simply discarded. But why do we have to free_string($1)?

Note that the function lists are built in reverse order, because we
build them using flist_cons(). This doesn’t matter because
the order of functions is irrelevant - unlike the order of guards in
a function body which mattered.

Finally, turning to the start rule, program:
program : fdefns expr { ast = program_pair($1, $2); }

;

When this rule matches the entire input, the action is invoked
with the final function list in $1, and the main expression in $2,
both get incorporated into a program pair(), which is assigned to
program ast.

Duncan White (Imperial) C Programming Tools: Part 5 9 / 20

A Bigger Example for Yacc and Lex THS: A Tiny Haskell Subset (01.ths-treebuilder)

The 01-ths.treebuilder directory also provides:

The main program (mainprog.c) roughly as it was in the
expression example,
The consthash module exactly as it was from the expression
example,
arithfuncs.in (replacing binfuncs.in), a tmpl-format input file
generating the arithfuncs module using mkmodule, and
boolfuncs.in, a tmpl-format input file generating the boolfuncs
module containing mkequals(), mknotequals() and
mkgreaterthan().
A Makefile to generate and compile everything.

However, the integer expression evaluator module has been
removed - for now, we’ll come back to this.
Note also the types.in uses a useful Datadec feature we haven’t
discussed so far - the print hints mechanism whereby you
annotate each shape of each inductive data type telling Datadec
how to print it out. See if you can work out how it works.
Compile and link by typing make. We end up with a THS parser
and treebuilder ths1, in which we only write about 430 lines of
code. Give it a try!Duncan White (Imperial) C Programming Tools: Part 5 10 / 20

A Bigger Example for Yacc and Lex Semantic Checking for THS (02.ths-semanticchecker)

02.ths-semanticchecker adds semantic checking - in THS, this
means checking that we define every function we call, and also
that every use of an identifier inside an (integer or boolean)
expression is either a predefined named constant in consthash, or
the current function’s parameter. In other languages, we’d have
to perform other semantic checks - for example the number and
types of actual parameters to each called function.
How do we do semantic checks? A semantic checker either walks
the AST, or builds and iterates over equivalent data structures.
To reduce tree-walking, we enhanced parser.y as follows:

As we parse each function, we populate a hash called funchash,
mapping the function name to it’s abstract representation;
As we parse function calls, populate a set called callset - the set of
all called functions.
For simplicity, we perform the identifier in a factor checks inside
parser.y, via a new check id() function. There’s always a fine line
between parse checks and semantic checks.

After a successful parse, the semantic checker iterates through
the callset checking that each called function is present in the
funchash.Duncan White (Imperial) C Programming Tools: Part 5 11 / 20

A Bigger Example for Yacc and Lex Interpreting THS (03.ths-interpreter)

03.ths-interpreter extends our semantic checker, adding an
interpreter to run our THS programs.

How do we write the interpreter? Well, you’ve written
interpreters in Haskell before, so the principles should be familiar:
We write C functions to:

Evaluate an integer expression in the current environment.
Evaluate a boolean expression in the current environment.
Select which guard in a guardlist is true and then evaluate it’s
corresponding integer expression, all in the current environment.
Handle a function call (possibly recursive).

The only tricky part is that in a function call, we evaluate the
actual parameter expression in the current environment, giving
the integer result X, then create a new environment in which the
function’s parameter variable is set to X, then evaluate the
function body (expression or a guardlist) in the new environment.

If we do this right, our interpreter will correctly handle recursion.

Note that we also have to trap runtime errors such as division by
zero and what happens if no guard evaluates to true.

Duncan White (Imperial) C Programming Tools: Part 5 12 / 20

A Bigger Example for Yacc and Lex Translating THS to C (04.ths-codegen)

Our final version of THS, 04.ths-codegen, replaces our interpreter
with a code generator - which translates THS to C!

How do we do code generation? A code generator is just another
AST and funchash walker, one with suitable print statements!

In fact, using Datadec’s print hints mechanism, 80% of the C
code generation was done by making each AST type print itself
in valid C form.

The remaining 20% (approx 60 lines) was custom C code, gluing
everything together.

One subtlety was that Haskell/THS allows any function to call
any other function. This means that the generated C code needs
a block of prototypes for all THS functions. This requires one
more pass through the funchash, emitting a prototype for each
THS function.

Another subtlety was that we have to prevent a function falling
off the bottom (when no guard evaluates to true).

Duncan White (Imperial) C Programming Tools: Part 5 13 / 20

A Bigger Example for Yacc and Lex Recap..

They say a picture’s worth a thousand words, so let’s recap:

Abstract Syntax Tree
datadec

binop

num(123) times num(7)

Code Generator

Parser
yacc

lex

Tokens eg NUMBER(123), MUL, NUMBER(7)

Output: valid C code

Semantic Errors or ok

Input: Little Language, eg 123*7

Lexer

Semantic Checker

Errors or AST,funchash&callset

Our Lexer (constructed for us by
Lex) turns our input (eg “123*7”,
possibly with whitespace) into a
stream of tokens.

Our Parser (constructed for us by
Yacc) checks whether the token
stream matches the grammar,
builds an AST and builds
funchash and callset (not shown).

Our Semantic checker uses the
AST, funchash and callset to
check that there are no
consistency problems.

Our Code generator walks the
AST and funchash, emitting C
code.

Duncan White (Imperial) C Programming Tools: Part 5 14 / 20

A Bigger Example for Yacc and Lex Yacc/Lex summary

We’re now using so many tools to build our code, let’s see what
percentage of the source code we’re writing manually.

In 04.ths-codegen, the make lines target tells us that we have
only written 777 lines of code ourselves - the Lex input file, the
Yacc input file, the Datadec input file, various tmpl-format input
files, and some C code (.c files and .h files).

After datadec, mkmodule, yacc and lex have run, there are
approximately 5200 lines of C code (including headers) overall.

777/5200 is about 14%.

To put that another way: our tools wrote 86% of the code for us.

That’s pretty impressive - very few combinations of tools
automate anywhere near that much of our code!

So, Yacc and Lex and Datadec are a scalable way of building
translators for little languages, vital tools for your toolbox.

In the tarball, left for you to explore, there’s an extended version
of THS - that I call BHS (for ”Bigger Haskell Subset”) that
allows functions to have multiple parameters - all still integer.

Duncan White (Imperial) C Programming Tools: Part 5 15 / 20

Another parsing approach 05.c+pattern-matching

Recently, I’ve been playing with a different parsing approach:
Suppose instead of defining a complete little language, we want
to add a single well-defined feature to a large language like C.
For example: Datadec has no special support for writing
client-side code that uses datadec-generated types. You may
remember our tree type, and our nleaves() counter, from lecture
3. From time to time I’ve thought that some sort of shaped
pattern match would be lovely - in C. I’d love to be able to write,
in an enhanced C-like language:
int nleaves(tree t)

{

whenshape t is leaf(name)

{

return 1;

}

whenshape t is node(l, r)

{

return nleaves(l) + nleaves(r);

}

}

Having defined the syntax of the new feature, we define it’s
semantics via a precise description of how to translate it back to
standard C.
Duncan White (Imperial) C Programming Tools: Part 5 16 / 20

Another parsing approach 05.c+pattern-matching

The first whenshape example turns into the plain C code:
if(tree_kind(t) == tree_is_leaf)

{

string name; get_tree_leaf(t, &name);

return 1;

}

Similarly, the second whenshape example turns into:
if(tree_kind(t) == tree_is_node)

{

tree l; tree r; get_tree_node(t, &l, &r);

return nleaves(l) + nleaves(r);

}

But how do we implement this? In Yacc and Lex, we’d have to
implement all of normal C as well as our new feature.

We could get a complete open-source C compiler (like Gcc or
Clang) and graft our new feature into it.

But that sounds like hard work! Gcc is very complex.

Duncan White (Imperial) C Programming Tools: Part 5 17 / 20

Another parsing approach 05.c+pattern-matching

Another way would be to build (or find) a C to C translator
which can be extended. Perhaps someone has already built one
that we could extend?
If not, you could build one by finding a complete Yacc grammar
spec, Lex lexer spec and AST module for C and extend them -
adding our new tokens to the lexer spec, new rules to the
grammar spec to recognise our new forms of syntax, and new
actions to build AST fragments representing the plain C
equivalents for each new construct.
This also sounds like a lot of work!
Isn’t there a ...smaller way to do this? That might be doable in
an evening? Yes there is!
Graft our new feature into C by writing a simple line-by-line
pre-processor that copies most lines through unchanged
(assuming, or hoping, that they contain valid C), but locates
specially marked extension directives, turning each into a
corresponding chunk of plain C.
Thus, C with directives comes in, standard C goes out.
Duncan White (Imperial) C Programming Tools: Part 5 18 / 20

Another parsing approach 05.c+pattern-matching

In 05.c+pattern-matching you’ll find my experimental Perl script
cpm, which translates C with pattern matching to plain C,
working in concert with datadec.
In the tree-eg subdirectory, you’ll find nleaves.cpm that
implements a close approximation to what we wanted to write:
int nleaves(tree t)

{

%when tree t is leaf(name)

{

return 1;

}

%when tree t is node(l, r)

{

return nleaves(l) + nleaves(r);

}

}

There are several other pattern matching directives as well.
See interprete.cpm (found in the interprete-eg subdir) for a
bigger example - the THS interpreter rewritten using the lovely
new syntax.
BTW, cpm reads information about types, shapes, and their
parameters from datadec in a particularly sneaky fashion, which
I’m very proud of.
Duncan White (Imperial) C Programming Tools: Part 5 19 / 20

Summary Everyone needs their toolkit!

Ok, that’s quite enough parsing. Let’s sum up what I’ve been trying
to say in these lectures - the Programming Tools philosophy:

Follow 100,000 years of human history by tool-using and
tool-making. Build yourself a powerful toolkit. Choose tools you
like; become expert in each.
When necessary, build tools yourself to solve problems that
irritate you. Be strong! Tools often save you much more time
than they cost you to make.
Text manipulation languages are fantastic timesavers. Perl is
especially good - known as The Swiss Army Chainsaw by
SysAdmins. I used to run a Perl course, see
http://www.doc.ic.ac.uk/~dcw/perl2014/

I also write an occasional series of Practical (Pragmatic?)
Software Development articles:
http://www.doc.ic.ac.uk/~dcw/PSD/

Read The Pragmatic Programmer. Then read it again!
Most importantly: enjoy your C programming! Build your toolkit
- and let me know if you build any particularly cool tools!
Duncan White (Imperial) C Programming Tools: Part 5 20 / 20

	Today's Contents
	A Bigger Example for Yacc and Lex
	THS: A Tiny Haskell Subset (01.ths-treebuilder)
	Semantic Checking for THS (02.ths-semanticchecker)
	Interpreting THS (03.ths-interpreter)
	Translating THS to C (04.ths-codegen)
	Recap..
	Yacc/Lex summary

	Another parsing approach
	05.c+pattern-matching

	Summary
	Everyone needs their toolkit!

