
Perl Short Course: Introduction

Duncan C. White (d.white@imperial.ac.uk)

Dept of Computing,
Imperial College London

December 2011

Duncan White (CSG) Perl Short Course: Introduction December 2011 1 / 18

Structure

This short practical course introduces you to Larry Wall’s
immensely flexible Perl programming language.

It consists of a series of 6 one-hour lectures, with slides and
practical examples.

The course materials for the course can be found at:
http://www.doc.ic.ac.uk/~dcw/perl2011/

This first lecture will give a general introduction to Perl, a fast
and shallow scan across most of the important features.
The second, third and fourth lectures will go over Perl in more
detail, introducing most interesting features.
The fifth and sixth lectures will describe the Perl module archive
(CPAN) and some of it’s modules, and how to construct your own
modules and classes.

There are two good books describing Perl: Randal Schwartz’s excellent
introduction Learning Perl and Larry Wall and Randal Schwartz’s
rather more advanced Programming Perl.

Duncan White (CSG) Perl Short Course: Introduction December 2011 2 / 18

Why Perl?

Why yet another programming language? Why should I learn it?

We shall see that Perl was designed by a busy sysadmin -
someone who needs a powerful language in which programs can
be written, tested and deployed quickly to solve urgent problems.

Such programs range from ”Perl one liners” typed direct on the
command line as part of a pipeline, to properly designed,
engineered and maintained large modular programs.

Perl gives us great leverage in writing programs when compared
to languages like C, C++ or Java. Instead of starting from the
architectural level (highly machine-efficient but not
programmer-efficient) Perl lets you program at a level much
higher up, with more powerful tools.

Perl is an immensely pragmatic language, borrowing the best
features from many other languages - forming a coherent whole,
more powerful than the sum of its parts.

Perl is known as the Swiss Army Chainsaw of programming; it
makes the easy tasks easy, the hard tasks possible.

Duncan White (CSG) Perl Short Course: Introduction December 2011 3 / 18

Perl Components

Perl borrows the best from several different languages, and binds
them together into a seamless whole:

Perl’s control structures come from C and the shell.
Perl’s expression syntax comes from C, with several operators
brought in from the shell – such as a set of file test operators.
Perl provides more powerful data types (dynamic arrays, lists
and hashes - associative arrays) than most other languages, and
makes them very easy to use!
Perl has regular expressions built-in (as used in filters sed and
grep), and extends them in a gradually increasing number of
ways to make them even more powerful.
Perl gives you the ability to build filters easily - to manipulate
files, processes and command line arguments simply and
efficiently.
Most crucially, Perl does all storage management for us - just
like awk, and Java, unlike C.
Plus: threads, portable graphics, OOP, functional programming,
network programming and more modules than you can count.

Duncan White (CSG) Perl Short Course: Introduction December 2011 4 / 18

Perl does Storage Management

The main ways Perl does storage management are as follows:

Strings are a basic type - not arrays of characters as they are in
C. Strings grow as needed - and they can be enormous!

Arrays grow as needed - simply assign to an element and the
array extends to include that element automatically. All elements
that have not had a value assigned to them have the undefined
value, effectively zero.

Perl provides unlimited length Prolog-style lists, actually
arrays. Perl provides many powerful list/array operators.

These lists can also act as Prolog-style tuples - an unnamed
collection of data like a record.

Perl also provides associative arrays, ie. arrays where the index
is an arbitrary string - i.e. a collection of (key,value) pairs
indexed by key. These are called hashes in Perl speak.

To do anything more complex, eg. multi-dimensional arrays, Perl
provides references - an ability for one variable to refer to
another variable. Rather like pointers.

Duncan White (CSG) Perl Short Course: Introduction December 2011 5 / 18

Your First Perl Program (eg1)

Ok, let’s jump in and get started. Following a long tradition, our
first Perl program will be the classic ”hello world” program.

Using any editor (vi, pico, nedit, emacs), we create a file called
eg1, containing the following lines:

#

eg1: a first Perl program

#

print "hello world\n";

Then, we syntax check the program:

perl -cw eg1

Finally, we run the program by typing:

perl eg1

What can we see immediately about Perl from this example?

Lines beginning with # are comments, ignored by Perl.
Statement are terminated with semi-colons.
A string is placed in double quotes, and can contain C-style
special characters such as \n.

Duncan White (CSG) Perl Short Course: Introduction December 2011 6 / 18

Personalising the Message (eg2)

Suppose we now create eg2 containing the following:

print "Please enter your name: ";

my $name = <STDIN>;

print "\nhello $name!\n";

What’s going on here?

my $name declares a scalar variable. It can hold a number (integer
or real) or an arbitrary length string. The $ is always present.
<STDIN> means read one line from stdin.
The line read is then assigned to $name.
The second print statement prints the result of the string
"\nhello $name!\n" after variable interpolation: the current
value of $name is interpolated into the string in place of the
character sequence $name.
For instance, if $name = "duncan" then the string would be
"\nhello duncan!\n".

Once again, we syntax check eg2 and then run it.

Was there anything that surprised you when the program ran?

Duncan White (CSG) Perl Short Course: Introduction December 2011 7 / 18

Why was the ! on a separate line?

Because the <> operator reads a line and returns it including the
newline at the end.

To get round this common problem, add:

chomp $name;

immediately after reading $name. This deletes a trailing newline.

Rerun and check that the ! is now on the same line as the name.

Suppose we now wish to lowercase the whole name, and then
capitalise the first letter:

We simply add (after the chomp):

$name = ucfirst(lc($name));

Recheck it and rerun it now.

How long would that have taken to write in C and know it’s
bug-free?

Duncan White (CSG) Perl Short Course: Introduction December 2011 8 / 18

Adding Special Cases (eg4)

Suppose we now want a special-case - if the name is your first
name, print out a special message:

Embed the final print inside the else part of the following new if
statement:

if($name eq "Duncan")

{

print "\nwotcha Dunc mate!\n";

} else

{

print "\nhello $name!\n";

}

Syntax check, run it again a few times. Check it works.

You may wish to try this with your own name instead..

Duncan White (CSG) Perl Short Course: Introduction December 2011 9 / 18

Adding Special Cases (eg4)

Let’s just refresh our memories - the complete program is now:

#

eg4: special case greeting

#

print "Please enter your name: ";

my $name = <STDIN>;

chomp $name;

$name = ucfirst(lc($name));

if($name eq "Duncan")

{

print "\nwotcha Dunc mate!\n";

} else

{

print "\nhello $name!\n";

}

Duncan White (CSG) Perl Short Course: Introduction December 2011 10 / 18

Adding some Fuzziness (eg5)

So far, the name entered (after capitalization changes) must be
your first name exactly for the special case to apply.

For example, duncan, DUNCAN, Duncan, DunCAn are accepted,
but Dunc, Dunk and the regrettable Dunky Babe are not.

Replace the if condition with:

if($name =~ /^Dun[ck]/)

What on earth does this mean?

This is an example of matching a string against a regular
expression - known as a regex - as found in the Unix filters sed,
grep and awk.

regexes are explained in more detail later, so for now let’s just
say that it succeeds if $name starts with the string "Dun",
immediately followed by either "c" or "k". Graphically:

u n

c

k

STOP

STOP

START
D

Duncan White (CSG) Perl Short Course: Introduction December 2011 11 / 18

Adding a Secret Word (eg6)

Now, suppose that we require a secret word from anyone other
than "Dunc". Right at the top, below the comment lines, add:

my $secretword = "Klingon";

In the else part, add the following:

print "What is the secret word: ";

while(1)

{

my $guess = <STDIN>;

chomp $guess;

last if $guess eq $secretword;

print "Wrong - guess again: ";

}

This is an infinite while loop. Inside, we obtain a line of input,
store it in $guess and chomp it as usual.

We break out of the loop (last) if the guess is exactly the same
as the secret word. If the guess is wrong, we continue round the
loop. (Notice the last if alternative syntax).

Duncan White (CSG) Perl Short Course: Introduction December 2011 12 / 18

More than One Secret Word (eg7)

Suppose we now want several secret words. We want a list!

Replace the assignment to $secretword at the top with:

my @secretword = ("Klingon", "Romulan", "Vulcan");

Replace the last if line with:

my $correct = 0;

foreach my $i (@secretword)

{

$correct = 1 if $i eq $guess;

}

last if $correct;

Now any of the secret words will be accepted.

But there’s something slightly strange about what we just did:
We stored the words in an ordered list and sequenced through it.

But we didn’t want to sequence through a list: We wanted a set
of secret words and to test set membership.

Duncan White (CSG) Perl Short Course: Introduction December 2011 13 / 18

Using a Hash (eg8)

A Perl hash stores an arbitrary number of (key, value) pairs,
indexing the keys.

Replace the @secretword initialization with:

my %issecretword = ();

$issecretword{"Klingon"} = 1;

$issecretword{"Romulan"} = 1;

$issecretword{"Vulcan"} = 1;

Now replace the entire $correct loop we just added with:

last if $issecretword{$guess};

Here we use a hash (where all the values are 1) as a set.

Hashes take quite a bit of getting used to! Not many languages
support them - in C, you’d probably have used an array and
linear search.

Once you’ve got used to hashes, you never want to be without
them! Many data structures you would build using pointers etc
in C can be done with the combination of lists and hashes.

Duncan White (CSG) Perl Short Course: Introduction December 2011 14 / 18

Permanent Storage (eg9)

It’s a bit stupid to store the secret words in plain view inside the
Perl script. Let’s store them in plain view in a text file instead:-)
Near the top, add:

use IO::File;

Replace the initialisation of the $issecretword elements with:

my $in = new IO::File("secretwords") || die;

while(my $line = <$in>)

{

chomp $line;

$issecretword{$line} = 1;

}

$in->close;

This shows us Perl’s classic idiom foreach line in a file:

We open a text file called secretwords, exiting if the open fails.
While the file contains another line of text, read it.
Then we process the line - in this case, add the line to the sethash.
When we have read the last line from the file, quit the while loop
and close the file.

Duncan White (CSG) Perl Short Course: Introduction December 2011 15 / 18

Better Storage (eg10)

There is an even better way of storing the secret words on disk
and retrieving them: Unix provides a highly efficient storage
system called DBM that stores arbitrary (key,value) string pairs.

Sound familiar? Perl provides a trivial interface to DBM files -
the concepts of DBM map perfectly onto a Perl hash.

Now, for the first time, we need two programs: one to initialise
the DBM file, and our existing program (modified a bit) to read
the DBM file:

First, the creation program mksecret is as follows:

#

mksecret: create the secret words DBM file

#

dbmopen(my %secret, "secretwords", 0666) || die;

$secret{"Romulan"} = 1;

$secret{"Klingon"} = 1;

$secret{"Vulcan"} = 1;

dbmclose(%secret);

Duncan White (CSG) Perl Short Course: Introduction December 2011 16 / 18

Better Storage (eg10)

Back in the main program - now called eg10 - remove all the file
reading code (up to CLOSE(IN)) and replace it with:

dbmopen(my %issecretword, "secretwords", 0666) || die;

Right at the end of the program, add:

dbmclose(%issecretword);

Now, the file reading is done entirely automatically for you.

But more efficiently: the DBM file is not a plain text file. In a
large DBM file containing millions of (key, value) pairs,
retrieving the value corresponding to a specific key is usually
done using only two disk accesses!

By using this highly efficient system, we get persistent storage for
Perl programs, for free!

This is an example of what I meant by leverage.

Duncan White (CSG) Perl Short Course: Introduction December 2011 17 / 18

Better Storage (eg10)

Let’s close by showing the final version eg10:
#

eg10: secret words from a dbm file

#

dbmopen(my %issecretword, "secretwords", 0666) || die;

print "Please enter your name: ";

my $name = <STDIN>;

chomp $name;

$name = ucfirst(lc($name));

if($name =~ /^Dun[ck]/)

{

print "\nwotcha Dunc mate!\n";

} else

{

print "\nhello $name!\n";

print "Please enter one of the secret words: ";

while(1)

{

my $guess = <STDIN>;

chomp $guess;

last if $issecretword{$guess};

print "Wrong - guess again: ";

}

}

dbmclose(%issecretword);

Duncan White (CSG) Perl Short Course: Introduction December 2011 18 / 18

	Structure
	Why Perl?
	Perl Components
	Perl does Storage Management
	Your First Perl Program (eg1)
	Personalising the Message (eg2)
	Why was the ! on a separate line?
	Adding Special Cases (eg4)
	Adding some Fuzziness (eg5)
	Adding a Secret Word (eg6)
	More than One Secret Word (eg7)
	Using a Hash (eg8)
	Permanent Storage (eg9)
	Better Storage (eg10)

