
Perl Short Course: Third Session

Duncan C. White (d.white@imperial.ac.uk)

Dept of Computing,
Imperial College London

December 2011

Duncan White (CSG) Perl Short Course: Third Session December 2011 1 / 27

Contents

In this third session, we’ll go over more of Perl in detail, we’ll look at:

arrays and lists

hashes

special variables (@ARGV, $_, %ENV) and

regular expressions.

Aside: A better way to run Perl Programs

We have seen that when we want to run a Perl program called
eg1, we say: perl eg1.

Wouldn’t it be better if we could just type eg1 to run our
program?

Then we could install our own Perl programs in a public place
and let our friends run them - without them caring what
language the programs are written in!

Duncan White (CSG) Perl Short Course: Third Session December 2011 2 / 27

A better way to run Perl Programs

Well, on Unix we can:

First, issue the Unix command:

chmod +x eg1

This makes the file executable.

Second, edit eg1 and add the following line at the top:

#!/usr/bin/perl

This is a special line interpreted by Unix when it executes a
non-machine code program.

Unix executes the named program (the Perl interpreter) with the
script eg1 as a command line argument.

Perl starts up, reads eg1 and proceeds to run it - and then
ignores the first line because it’s a comment!

Now, run eg1 by eg1 (if . is on your path), or ./eg1 if not.

Duncan White (CSG) Perl Short Course: Third Session December 2011 3 / 27

Arrays and Lists

An array is an ordered collection of scalars (strings or numbers),
declared via my @array, the @ being compulsory.

An array such as @fred is not the same as $fred. Perl keeps the
namespaces of arrays and scalars separate.

Array indices start at 0, like C, C++ and Java, but unlike many
other languages.

An array may be built up piece by piece:
my @fred;

$fred[0] = "hello";

$fred[1] = 7.1+$a;

$fred[2] = 17.3;

$fred[3] = $c;

Each element of the array is a scalar, which is why an individual
element of @fred is accessed using $fred[expr] not
@fred[expr]. This is admittedly confusing!

Assigning to an element beyond the current end of the array
causes the array to be silently extended. All intervening elements
are made the undefined value (looks just like 0).

Duncan White (CSG) Perl Short Course: Third Session December 2011 4 / 27

Arrays and Lists

A single item may be extracted from an array:
$sum += $fred[$i];

The index expression will be truncated to an integer before the
array is accessed.

Building an array piece by piece is painful: instead, assign a
bracketed comma-separated list of scalar expressions straight into
an array:

my @fred = ("hello", 7.1+$a, 17.3, $c);

Inside a list, the .. operator can be used as in (1..20) or
(’a’..’z’).

If you have a list of single words, for example:
my @fred = ("hello", "there", "how", "are", "you");

Perl provides the following syntactic sugar:
my @fred = qw(hello there how are you);

Duncan White (CSG) Perl Short Course: Third Session December 2011 5 / 27

Arrays and Lists Arrays as Tuples

You can also break up an array into a list:
my($a, $b, $c) = @fred;

This copies $fred[0] to $a, $fred[1] to $b and $fred[2] to
$c. Any remaining elements in the array are ignored. If @fred
has (say) only 2 elements then $c is set to the undefined value.

An array can be used to soak up the remainder:
my($a, $b, @c) = @fred;

This gives you a very easy swap operation:
($x, $y) = ($y, $x);

which takes y and x, forms them into a two-element list, and
assigns the first two elements of that list back into x and y.

In summary, Perl arrays act as dynamic arrays, tuples, lists,
stacks and queues.

Duncan White (CSG) Perl Short Course: Third Session December 2011 6 / 27

Arrays and Lists Scalar/Array Context

Some operators behave differently when placed in a scalar
context or in an array context. An array context is one where
an array is expected rather than a scalar.

<> is one such operator:

In a scalar context, eg $line = <$in>, it reads a single line.
In an array context, eg @line = <$in>, it reads the rest of the
input, returning an array of lines - still with all the newlines.
Fortunately, chomp @line chomps the newline from every line.

Similarly, array assignment:

Assigning an array to another array, eg. @x = @y, copies the
entire array.
Assigning an array to a scalar, eg $count = @y, means set
$count to the number of elements in @y.

You can force a scalar context when you’re not sure what Perl
would do by wrapping an expression in the function scalar().

Duncan White (CSG) Perl Short Course: Third Session December 2011 7 / 27

Hashes

Declare a hash variable by my %fred, such a hash occupies a
different namespace from $fred and @fred.

A hash stores (key, value) pairs - for each string scalar (the key),
it stores an arbitrary scalar (the value).

A hash literal can be written as a list of pairs with the
key => value syntax:

my %roomno = (

"dcw" => "225",

"sza" => "226",

"iwm" => "228"

);

You can think of a hash as a two-column database table (but
stored in memory), indexed on the key:

Key Value
dcw 225
sza 226
iwm 228
....

Duncan White (CSG) Perl Short Course: Third Session December 2011 8 / 27

Hashes

Hashes have a highly efficient indexing system (a hash table,
hence the name), so you can look up a key’s value very quickly.

To add a single (key, value) pair into a hash, do:
$roomno{"susan"} = "569";

As a convenience, Perl allows you to omit the quotes on a literal
key string, and write:

$roomno{susan} = "569";

To check whether a key is present in the hash, use exists, eg:
print "elvis has left the building\n" unless exists $roomno{elvis};

To delete a single (key, value) pair from a hash:
delete $roomno{dcw};

Alternatively, the entire hash may be cleared by:
%roomno = ();

Our original hash literal example could be written as:
my %roomno = ();

$roomno{dcw} = "225";

$roomno{sza} = "226";

$roomno{iwm} = "228";

Duncan White (CSG) Perl Short Course: Third Session December 2011 9 / 27

Hashes

To retrieve a particular value from a hash, use:
my $room = $roomno{$person};

If no value has been stored against the key $person, the
undefined value is returned.

To process an entire hash, you can use the keys() function:
foreach my $key (keys(%roomno))

{

my $value = $roomno{$key};

print "$key in room $value\n";

}

Note that keys(%roomno) builds an array containing the keys of
%roomno. This could be very large!

The keys do not come out in any predefined order - certainly not
alphabetical order, or insertion order! They come out in an
efficient internal order! Because of this, you often see:

foreach my $key (sort keys(%roomno))

...

Very occasionally, you only need the values:
foreach my $value (values(%roomno))

{

print "room value $value\n";

}

Duncan White (CSG) Perl Short Course: Third Session December 2011 10 / 27

Hashes

If you need both keys and values, use the each() function and a
while loop to iterate over all the (key, value) pairs:

while(my($key,$value) = each(%roomno))

{

print "$key in room $value\n";

}

Note: keys(), values() and each() produce results in whatever
order Perl likes.
Exercise: build a Perl program storing (username,roomno) pairs
in a hash, which then reads usernames - from stdin, or a text file,
as you like - until the end-of-input is reached, and prints the
name and corresponding room number for each.
Then replace the set of names and their associated room
numbers with an external data file, reading them in and then
building the in-memory hash. (At this early stage in your Perl
knowledge, you might need to store usernames and room
numbers on adjacent lines in the file).
Next, replace the hash with a dbm file (with an initialization
program that reads the names and room numbers from a text
file, and stores them in the dbm-tied hash).

Duncan White (CSG) Perl Short Course: Third Session December 2011 11 / 27

Special Variables The Argument Vector

Perl has many special variables (see perldoc perlvar for a complete
list). Here are a few of the most useful:

When you invoke one of your Perl programs, you can place
arguments on the command line, eg:

myprog first second third

When you do this, Perl makes the strings first, second and
third available in a special array called @ARGV. Specifically:

$ARGV[0] = "first";

$ARGV[1] = "second";

$ARGV[2] = "third";

As usual, @ARGV evaluated in a scalar context gives the number
of elements (in the example, 3).

The array function shift() can be used on @ARGV:
my $arg = shift @ARGV;

This sets $arg to element 0 of the array, and removes that
element from the array, shifting the other elements down one.

Duncan White (CSG) Perl Short Course: Third Session December 2011 12 / 27

Special Variables The Argument Vector

It’s up to the program to decide what the strings mean!

If they are filenames to be opened and processed, the open and
process every line in every file idiom is often used:

foreach my $arg (@ARGV)

{

my $in = new IO::File($arg) || next;

while(my $line = <$in>)

{

chomp $line;

now process $line

}

$in->close;

}

The above pattern (processing several files, not caring where one
ends and the next begins), is so common that Perl has a special
shorthand:

while(my $line = <>)

{

chomp $line;

now process $line

}

Exercise: generalise one of the earlier STDIN or single-file
processing programs to take one or more command line
arguments using either of these idioms.

Duncan White (CSG) Perl Short Course: Third Session December 2011 13 / 27

Special Variables The Implicit Variable

You may find a puzzling shorthand, as in eg2:
while(<>)

{

chomp;

print "found ’$_’\n" if /dun[ck]/i;

}

Where are we storing the line we read?
What are we chomping?
What are we matching /dun[ck]/ against (in a case insensitive
way)?
What’s that $_ interpolated into the print?

$_ is the implicit variable: the default argument to many
functions:

The default variable where <> stores its input line.
The default variable that chop and chomp modify.
The default variable to match a regex against.
The default value to print if none is given.
The default foreach variable, as in foreach (@ARGV).
.. and many more cases.

Duncan White (CSG) Perl Short Course: Third Session December 2011 14 / 27

Special Variables Environment Variables

Unix (like most other platforms) has environment variables:
arbitrary (name, value) pairs, created by setenv NAME value

commands in the shell (by convention, environment variable
names are upper case).

To see the current set of environment variables, type env at the
command line. A list of NAME=value pairs fly past.

Once set, environment variables are passed around automatically
to every Unix process in the current session. Perl makes these
variables accessible via a single hash called %ENV.

For example, an important environment variable is HOME (the
pathname of your home directory). Get this by:

my $home = $ENV{HOME} || die "no home?\n";

Other platforms – such as Windows – also have environment
variables, Perl on those platforms can access environment
variables in the same way, but of course what environment
variables exist and what they mean) are different.

Duncan White (CSG) Perl Short Course: Third Session December 2011 15 / 27

Regular Expressions

We saw in the first session that we could write:
if($name =~ /^Dun[ck]/)

This is an example of matching a string against a regular
expression (or regex), as in the Unix filters sed, grep and awk.

A regular expression is a way of describing a class of similar
strings in a very compact pattern notation. In the above example,
the match will succeed if the current value of $name starts with:

A capital ‘D’ [must be the very first character],
The lower case letters ‘u’ and ‘n’ as the next two characters,
then either a lower case ‘c’ or a ‘k’.

A whole regex is (usually) placed inside a pair of ‘/’ signs.
Within the slashes, characters are interpreted pretty much like in
a double-quoted string. In particular, variables are interpolated
before pattern-matching occurs.

A regex is made up of single character patterns, grouping
patterns, alternation patterns, anchoring patterns and bracketing
patterns. We’ll look at each in turn.

Duncan White (CSG) Perl Short Course: Third Session December 2011 16 / 27

Regular Expressions Single character patterns

‘.’ matches any single character.

A single printable character matches itself (except
meta-characters like ‘.’, ‘*’ etc, which may be preceded by a
backslash when you really want to match the character itself!).

[set] matches any single character in the set.
For example, [aeiou] matches any single lower-case vowel.

Also, the set may contain items of the form a-f, which is a
shorthand for abcdef.
For example, [a-z#%] matches any single lower-case letter, a
hash-mark, or a percent sign.

If a set starts with a ‘^’ character (eg. [^a-z#%]), the set is
negated - the pattern matches any character NOT in the set.

Several useful character classes are predefined:

Digit \d [0-9]

Non-digit \D [^0-9]

Word \w [a-zA-Z0-9_]

Non-word \W [^a-zA-Z0-9_]

Whitespace \s space or tab

Non-whitespace \S not space or tab

Duncan White (CSG) Perl Short Course: Third Session December 2011 17 / 27

Regular Expressions Grouping Patterns

Sequence of single-character patterns: matches a
corresponding sequence of characters. eg. /[a-z]bc/ matches
any lower case letter, followed immediately by a ‘b’, followed
immediately by a ‘c’, anywhere in the string.

Optional: ‘?’ makes the previous pattern optional - i.e. match
zero or one times. eg. /he?llo/ matches ‘hello’ or ‘hllo’.

Zero-or-more: ‘*’ makes the previous pattern apply any
number of times (from 0 upwards). eg. /he*llo/ matches
‘hllo’, ‘hello’, ‘heello’ etc. It consumes the maximum
number of ‘e’s possible (it’s greedy).

One-or-more: ‘+’ means match 1 or more times. eg. /he+llo/

matches ‘hello’, ‘heello’, ‘heeello’ etc but not ‘hllo’.

If the greediness of ‘*’ and ‘+’ is ever a problem, use *? or +?
to consume as few characters as possible.

A regex can contain several of these operators: eg:
/h[uea]*l+o/ matches ‘hlo’, ‘hullo’, ‘hulllllo’,
‘heeelo’, ‘heuaueaaeuelllllllo’ etc.

Duncan White (CSG) Perl Short Course: Third Session December 2011 18 / 27

Regular Expressions Anchoring Patterns; Using Regexps

Placing ‘^’ at the start of a regex matches the start of the
string. Similarly, ‘$’ at the end of a regex matches the end of
the string.
‘\b’ constrains the regex to match only at a word boundary.
Without any anchoring, the regex can match anywhere.

There are two main ways of using regexes:

To check whether a string matches a regex. We specify the
string to match against using the =~ operator, or the not match
operator !~:

print "<$str> matches\n" if $str =~ /h[eua]*l+o/;

If a regex match is followed by i, as in /h[eua]*l+o/i, the
matching is done case insensitively.
Secondly, a regex can be used to search and replace all
occurrences of a regex within a string (again, we specify the
string to modify using the =~ operator):

$str =~ s/[aeiou]+/a/g;

The trailing g makes Perl replace ALL vowel sequences in $str

with ‘a’. Without the g Perl would only replace the first match.
Duncan White (CSG) Perl Short Course: Third Session December 2011 19 / 27

Regular Expressions Testing Regexes

As a general way of testing regular expressions, I recommend a
program like eg3:

#!/usr/bin/perl

#

eg3: regex test harness..

#

print "Please enter a string: ";

my $str = <STDIN>;

chomp $str;

print "\nat start : <$str>\n";

test search and replace:

$str =~ s/^\s+//;

print "\nafter s///: <$str>\n";

test pattern match:

print "\n<$str> matches hello regex\n" if $str =~ /h[eua]*l+o/;

This whole program exists in order to let you test search and
replace and/or pattern matches using a string entered at the
keyboard. By the way, s/^\s+// is a useful regex - worth
committing to memory - that removes any leading whitespace.
Similarly, the regex s/\s+$// removes trailing whitespace.

I strongly recommend that you use this program to test lots of
different regexes and their behaviour against various strings.

Duncan White (CSG) Perl Short Course: Third Session December 2011 20 / 27

Regular Expressions Alternation and Bracketing Patterns

A regex of the form /h[eua]*llo|wo+tcha/ matches either
/h[eua]*llo/ or /wo+tcha/. Note that /a|b|c|g/ should be
written as /[abcg]/ instead for efficiency.

Brackets may be placed around any complete sub-pattern, as a
way of enforcing a desired precedence. For example, in
/so+ng|bla+ckbird/ obviously bird is only part of the second
alternative (bla+ckbird).

If you meant ”/so+ng|bla+ck/ followed by /bird/”, then write
that as /(so+ng|bla+ck)bird/.

If you want a repetition (‘+’, ‘*’ or ‘?’) of anything longer
than a single character pattern, you need brackets, as in
/(hello)*/ – /hello*/ means /hell/ followed by /o*/!

Brackets have another useful side effect: they tell Perl’s regex
engine to remember what text fragment matched the inner
pattern for later reporting or reuse.

Duncan White (CSG) Perl Short Course: Third Session December 2011 21 / 27

Regular Expressions Bracketing: Capturing parts of the matched text

For example, in the code:
my $str = "I’m a melodious little soooongbird, hear me sing";

print "found <$1>\n" if $str =~ /(so+ng|bla+ck)bird/;

After the match succeeds, the capture buffer variable $1 contains
soooong - the part of $str matching the bracketed regex.
Use up to nine bracketed sub-patterns in a single pattern match -
capture buffer variables $1 to $9 - available for use as soon as
the pattern match has succeeded.
Capture buffers can be used in a search and replace operation:

$str =~ s/^(\w+)\s+(\w+)/$2 $1/;

which - if there are two or more space separated words at the
front of $str - swaps the first two.
Another example: /first(.*)second/ matches exactly the
same strings as /first.*second/, but remembers the particular
sequence of characters found between first and second as $1.
If the string contains several occurrences of first and second,
greediness maximises /.*/ so the regex matches the leftmost
first and the rightmost second:

.....first...first...second...first...second........

^^^^^!!!!!!!!!!!!!!!!!!!!!!!!!!!!^^^^^^

Duncan White (CSG) Perl Short Course: Third Session December 2011 22 / 27

Regular Expressions Bracketing: Capturing parts of the matched text

We can also reuse a capture buffer (under the syntax \1) to
enforce the same literal text is found twice in a pattern match:

/first(.*)second\1/

This will only match strings like:
...........firstXYZsecondXYZ...............

but not strings like:
...................firstABCsecondXYZ...........

Test eg3 out with a variety of inputs and regexes and check you
understand how they work.
If your pattern contains lots of ‘/’ characters - while you can
write each as ‘\/’ - it’s easier to change the regex quote
character:

$str =~ m%^/([^/]+)/%;

$str =~ s!/[^/]*$!!;

Here, the character immediately following ‘m’ (for match) or
‘s’ (for search and replace) is used as the regex quote character.
That’s a basic overview of Perl regexes; there are loads more
features (a few more bizarre ones seem to get added every year
or so). See perldoc perlre for more details.

Duncan White (CSG) Perl Short Course: Third Session December 2011 23 / 27

Another Useful operator: tr

$str =~ tr/firstcharlist/secondcharlist/[cds]

tr is the character transliterator. It works very like the Unix filter
tr - turning each occurrence of a character from the first
character list into the corresponding character from the second
character list.

eg: tr/aB/Ab/ uppercases every ‘a’ and lowercases every ‘B’.

tr is rather like a series of regexes that only use character classes
- the above example is equivalent to s/a/A/g followed by
s/B/b/g. But tr is much more efficient.

tr// is bound to a variable using the =~ syntax (like regexes).

Like s///, tr// also returns a scalar value - a count of how
many characters were modified/deleted.

Let’s give some examples:
$str =~ tr/A-Z/a-z/ lowercase every character in $str.
$str =~ tr/xyz/ZYX/ turn every occurence of x into Z, y into Y and z into X.
$str =~ tr/A-Z//d delete all upper case letters.
$str =~ tr/A-Z//cd delete all characters except upper case letters.
$str =~ tr/aeiou/V/ replace any lower case vowel with a ‘V’.
$str =~ tr/aeiou/V/s replace each sequence of vowels with a single ‘V’.
$count = ($str =~ tr/a-z/a-z/) Set $count to the number of lower case letters found in $str (without

changing $str).

Duncan White (CSG) Perl Short Course: Third Session December 2011 24 / 27

Extended Examples Reinvent grep

Implement a simplified Perl version of the Unix grep command -
take two or more command line arguments (die with a nice usage
message if not enough!):

First argument: a literal string to search for (use shift @ARGV to
extract and remove it).
All remaining arguments: filenames to search for the above string.

Use the process-all-lines-in-all-files idiom, and print out the
current filename and line if the line contains the search string.

Add line number counting (reset it for each file) and print out
the current line number on matching lines (as well as the
filename and line itself).

Now add in a sanity check to ensure that the search string does
not contain any regex meta-characters. Die with a nice helpful
message if it does (or escape them first!).

Duncan White (CSG) Perl Short Course: Third Session December 2011 25 / 27

Extended Examples Search by Word Frequency

Prepare an input file containing a list of words, in no particular
order, one per line. Write a program to open such a file - take
the filename on the command line - read each line, delete leading
and trailing whitespace from each line, delete leading or trailing
punctuation too, and then print each line (word) out.

Now make this word-splitter program count word frequencies - do
$freq{$word}++ for each word $word you find. After processing
all lines, print out a sorted list of frequencies of all the words
found - using magic syntax:

foreach my $word (sort {$a <=> $b} (keys(%freq)))

Now, wrap the complete make and print frequency table logic in
a loop that processes each of the files named in @ARGV -
emptying the frequency hash for each file.

Now, modify the program so that $ARGV[0] contains a word to
search for, and all the rest of @ARGV contains filenames to look in.

For each file, first use your frequency building code to build the
frequency table for that file.

Duncan White (CSG) Perl Short Course: Third Session December 2011 26 / 27

Extended Examples Search by Word Frequency

Then print out the filename if the particular word was present in
the table (i.e. if the frequency of that word is more than 0!).

This is now a primitive indexer - you give it a word and a list of
filenames (all in one-word-per-line format) and it searches for the
word in all the filenames.

It would be nice to generalise this to normal text files with
multiple words per line, but you don’t yet know how to split a
string apart into pieces. Delay this until next time!

Now store the frequency arrays to disk, so that next time we
could just use the frequency table not have to recalculate it!

To do this, you’d need to use a Unix DBM file for each file’s
frequency array. It would be sensible to store the DBM files in a
separate directory, to avoid cluttering up the normal directory.

You’d also need two programs - one to index (or reindex) a list of
files, and another to perform a search for a word...

Duncan White (CSG) Perl Short Course: Third Session December 2011 27 / 27

	Contents
	A better way to run Perl Programs
	 Arrays and Lists
	Arrays as Tuples
	 Scalar/Array Context

	 Hashes
	Special Variables
	The Argument Vector
	The Implicit Variable
	Environment Variables

	 Regular Expressions
	Single character patterns
	Grouping Patterns
	Anchoring Patterns; Using Regexps
	Testing Regexes
	Alternation and Bracketing Patterns
	Bracketing: Capturing parts of the matched text

	Another Useful operator: tr
	Extended Examples
	Reinvent grep
	Search by Word Frequency

