I

@ In this fourth session, we'll go over some of the more advanced
parts of Perl. Specifically:

o Toughening up - warnings, strict and undef,
e Perl’s standard library of predefined functions,
J o defining our own functions,

Perl Short Course: Fourth Session e making complex data structures with references.

Run-time Warnings

D . Whi white@i ial.ac.uk . . .
uncan C ite (d.whiteQimperial.ac.uk) @ As our Perl scripts grow in size and complexity, there are several

. things we can ask Perl to do to toughen its checking regime to
Dept of Computing, .
Imperial College London help us to catch more errors before they bite us.

o We have seen compile-time syntax check: perl -cw program

December 2011 . o
@ However, not all warnings can be detected at compile-time, so

try switching run time warnings on.
@ There are two ways of enabling run-time warnings: the first is

perl -w script. On Unix, we can put ‘-w’ in the hash-bang
line: #!/usr/bin/perl -w

Duncan White (CSG) December 2011 1/23 Duncan White (CSG) December 2011 2/23
Run-time Warnings and the Undefined Value Toughening up The Undefined Value

@ Let's investigate boolean-ness and defined-ness:

@ The second way (useful on platforms where hash-bang doesn’t .

WOI’k -eg VVIndOWS) |s to erte # egl: play around with empty strings and undef
)) : .
use warnings; my @pairs = (0, "zero",
. "emptystr",
. . undef, "undef",
near the top of your program. | recommend you switch warnings 1, "one",
. . . . 17.3, "17.3",
on, and fix every problem that causes a warning immediately. ‘hello’, "hello");
foreach (testval,label) in @pairs
@ Now, what sort of things give run-time warnings? ghilsC (Sestval,flabel, Gpairs) = Opairs)
. . . my $boolstr = $ val ? "true" : "false";
@ We have mentioned several times that functions return the o int wbiabel: <oteival>, Sbeslatriat:
undefined value when they fail; that uninitialized scalar variables ’
(and array and hash elements) have the undefined value, etc. @ The program runs fine without warnings, but with ‘-w’, a use of

@ Perl's undefined value (written as undef) is analogous to the uninitialized value $testval in a string warning appears.

concept of a null pointer. @ To fix this, decide how to display undef, and test for defined-ness
using the function defined, as in:

my $display = defined $testval ? $testval : "UNDEF";

o It is different from the empty string >’ — the empty string is a

string of length 0 whereas undef is not a string at all. print "$label: <Sdisplay>, Sboolstr\n';
@ However, undef behaves like the empty string in string contexts, @ This form of "value or default” is so common, Perl 5.10
like 0 in numeric contexts, and like false in boolean contexts. introduces a new operator:

my $display = $testval // "UNDEF";

Duncan White (CSG) December 2011 3/23 Duncan White (CSG) December 2011 4/23

Toughening up AT EWYIeIe[Toughening up More about "my"

@ The ‘my’ declarations that we've been using declare lexical

@ If you put the pragmas:

use strict;
use warnings;

near the top of your programs then Perl will perform stricter
syntax checks for you. This has several effects - for example, all
warnings become fatal errors.

o Let's try adding use strict to egl and see what error messages
perl -cw egl generates.

@ Oops! We forgot to declare some of our variables: under
use strict, Perl insists that you declare all your variables
properly (using my).

@ Let's spend a moment making egl work in strict mode - declare
all our variables.

@ Note that we've been declaring our variables all along, but
actually we didn't need to do so until we encounter strict mode.

variables which exist only for the duration of a particular lexical
scope (for example, in a particular block).

They are like local variables - but if you declare them outside of a
block, they exist from the point of declaration down to the
bottom of the Perl script - and are effectively global variables.
Most of the time, we declare and initialize variables at the same
time, but you can declare one or many variables without
initializing them by:

my $a;
my($x, $y, @z);

There's another type of global variable, called package variables,
declared by replacing ‘my’ with ‘our’, as in:

our($x, $y, 0z);
Later on, we'll see a few places where package variables are
needed, but for now | recommend that you use ‘my’ variables

everywhere until further notice.

Duncan White (CSG) December 2011 5/23 Duncan White (CSG) December 2011 6/23

Perl's Predefined Functions Perl's Predefined Functions

@ Perl has hundreds of predefined functions. Let's look at a few of @ push(Qarray, list)
the most useful ones - consult the Llama or Camel book or o This function appends the given list (or single scalar) to the end

perldoc perlfunc for more details. of an array.

e Qarr = split(/regex/, string, n) e Common use: accumulate entries in an array:

. L . o . sh(@done, $filename);
e Splits a string into an array of pieces, splitting the string wherever push($ei)

the regex matches - i.e. the regex indicates what separates the @ $x = pop(Qarray)
interesting parts. o Remove the last element from the array and return it. Common
o If no value of n is given, the maximum number of splits are use: (with push) implement a stack:
performeq. If $n is given, the string is Sp.|lt into exactly $n pieces, push(@stack, (3, 2));
the last piece contains the rest of the string.
N . $x = pop(@stack); # gets 2
o If no string is given then $_ is used by default. A common use of
. ; . : . . , $y = pop(@stack); # gets 3
this is to split $_ into whitespace separated ‘words’ or ‘tokens’:
my Gud = split(/\s+/); o $x = shift(Qarray)
o This extracts the first element of the array, removing that element

@ $str = join(sep_string, array) e
from the array, shifting every other element down one space.

e This function joins the elements of the array together, using the
given string as a separator, i.e. between every pair of elements.

e For example: o Opposite of shift: The list (or single scalar) is inserted into the
print join(’,’, ewd); array at the front, shifting all existing elements up out of the way.

Duncan White (CSG) December 2011 7/23 Duncan White (CSG) December 2011 8/23

@ unshift(Qarray, list)

Perl's Predefined Functions Perl's Predefined Functions

@ Qresult = sort(list) o printf("format string", args);
o This function sorts an array such that each element is placed in an $str = sprintf("format string", args)
ascending order - by default into alphabetical order. e When you need more formatting than print can do - use printf
e You can specify a different sort order, such as numeric, using the and sprintf. These are closely modelled on the C functions and
highly magical : are much too complex to explain here... For example, eg2:
@sorted = sort { $a <=> $b } (@array) my $string = ’pi’; my $pi = 3.1415926536;

. . intf("<%-10s><%12.8f>\n", $string, $pi);
o Consult perldoc -f sort for more information. e ° e

_ . would produce output:
@ Oresult = reverse(list) i < 3 141500655
o This function reverses an array (such that each element is placed

. o See perldoc -f sprintf for more details.
after all its predecessors).

() @ Oresult = grep { expr } list
@ Q@result = glob ildcard
resu gLobt wi * e This function evaluates the expression for each element in the list

(with the element itself stored in a localized copy of $_), and
extracts the elements for which the expression is true.
o It is equivalent to (but more efficient than):

@ $len = length(string) gresuls = O

foreach $_ (1list) { push(@result, $_) if expr; }

e This performs a shell compatible file glob - returning a list of files
which match the wildcard. For example glob("*. [ch]")
matches all “.c’ or “.h’ files in the current directory.

e This trivial function is the equivalent of C's strlen - it returns

e Common use - pretend we're the Unix grep utility:
the length of the given string expression.

my @result = grep { /hexllo/ } @array;

Duncan White (CSG) December 2011 9/23 Duncan White (CSG) December 2011 10 / 23
Perl's Predefined Functions map Perl's Predefined Functions map

@ map cont:

@ Oresult = map { operation } Qarray e The operation in a functional map always receives a single array

e map is very similar to the functional programming (Haskell etc) element, but it can return a list of scalars rather than a single
map function, which applies an operation to every element of an scalar, in this case all the little lists are appended together.
array, building a new array. o For example, egb:

o Just like grep, within the operation the current array element is my orig = (1,2,5,8,9,10,5);)

) R my @result = map { $_, $_ * 2 } Qorig;
stored in a localized $_.] o
o The operation is any valid Perl expression - so, for example, eg3: generates a pair (x, 2x) from each element of the original

ny Gorig = (1,2,5,8,9,10,5); array, thus setting @result to a flat list twice as long -

my @doubled = map { $_ * 2 } Qorig; (1,2,2,4,5,10..).

print join(’,’, @doubled)."\n";

e This is often used to turn an array into a hash - when you assign a

will double all the original numbers and then print the results in flattened list of (key,value) pairs to a hash, Perl initialises it
comma-separated format. pairwise. As in egb:

e You can also use map destructively - if you modify $_ the original my Gorig = (1,2,5,8,9,10,5);
element is modified (eg4): my Ydouble = map { $_, $_%2 } Corig;

ny earray = (1,2,5,8,9,10,6); e The comma can be written as => to look nicer:

map { $_ *= 2 } Qarray;
my %double = map { $_ => $_*2 } Qorig;

does the same but modifies @array in place. .. .
yimnp e One use of this is to turn an array into a set hash:

my %set =map { $_ => 1 } Qorig;

Duncan White (CSG) December 2011 11/ 23 Duncan White (CSG) December 2011 12 /23

Perl's Predefined Functions Defining Our Own Functions

o Practically all languages provide functions, subroutines or
procedures. In Perl, they are called subroutines.

@ You decide on a coherent block of code with a nameable
purpose, for example, sum up an array and return the total, and
give it a name like sumarray.

o Decide what arguments sumarray takes, and what results it
returns. The easiest way of showing this is to write down a
typical call:

my $total = sumarray(Qarr);

This means: call function sumarray, passing the array @arr in to
it, and storing the scalar value that is returned into $total.

@ Then write the outer shell of your function as a sub declaration,
including a comment describing the function's purpose:

#

my $total = sumarray(Qarray):

sum up the elements of the Qarray.
#

sub sumarray

{

}

Duncan White (CSG) December 2011

Defining Our Own Functions
Putting the whole program together:

#!/usr/bin/perl

#

eg7: sum up the elements of an array,
using a separate subroutine.

use strict;
use warnings;

#

my $total = sumarray(Qarray):

sum up the elements of the Qarray.
#

sub sumarray

my(Qarray) = Q_;
my $total = O;
foreach my $elem (Qarray)
{

$total += $elem;
¥
return $total;

}

main program

my @x = @ARGV > O ? QARGV : (10, 39, 45, 28, 49, 3);
my $sum = sumarray(@x);

my $str = join(’,’, @x);

print "sum of $str is $sum\n";

Duncan White (CSG) December 2011

13/ 23

Defining Our Own Functions
@ Now, inside the {}, write the body of the function:

my Qarray = Q@_;

my $total = O;

foreach my $elem (@array)
$total += $elem;

}

return $total;

@ Perl flattens all the arguments in a subroutine call into a single
list, called @_. Note that the original argument array elements
will change if you change @_ elements.

@ Perl’s local variables are our old friends - lexically scoped ‘my’
variables.

@ They spring into existence when we enter the function, eclipsing
existing variables of the same names, and disappear when we
leave the function.

e In sumarray, we take a copy of @_ into ‘my @array’ (to avoid
any possibility of changing the parameters). Then we declare
ourselves two additional ‘my’ variables $elem and $total.

@ Finally, to communicate the final result back to the caller we use
return $total. This destroys all the function’s local variables.

Duncan White (CSG) December 2011 14 / 23

Perl's Predefined Functions Prototypes

@ Prototypes were added in Perl 5.6 and allow us to specify how
many parameters a subroutine takes. In a subroutine header
write:

sub fred ($$0)

@ This declares that fred must be called with two scalars and a
(possibly empty) array. If Perl has already seen a prototype
declaration for sub fred when it parses a call to fred it will
produce a warning unless there are at least two scalar arguments.

@ One option is to separate the prototypes from the subroutines:

first declare the prototypes:
sub fred ($$0);
sub bob ($);

define the subroutines from here on, any order:
sub fred

my($a, $b, Qrest) = @_;

sub bob
{
my($arg) = @_;

Duncan White (CSG) December 2011 16 / 23

Perl's Predefined Functions Prototypes

@ Prototypes are not perfect, they're likely to undergo more change
in Perl 6. They don't affect the fact that all arguments to a
function call are still flattened into a single list - so you can't just
say sub fred (@@J) and pass two whole arrays and a hash to
fred... To do this, you have to use Perl references - read on.

@ Note that a Perl subroutine can return a scalar, an array or a
hash - so for example it's fine to think of a subroutine as
returning a tuple, as in:

my($a,$b) = callme(arguments); return ($x, $y);

o Exercise: take any of the programs that you've already done in
previous sessions and restructure it into several functions with
separate prototypes at the top.

@ Exercise: Choose some simple recursive function - perhaps
fibonacci, factorial or quicksort - code it up in Perl, get it
working and thus convince yourself that there’s nothing abnormal
about recursion in Perl. In particular, convince yourself that each

References

@ In Perl 4, the only data structures that existed were scalars,

arrays of scalars and hashes of scalars. No multi-dimensional
array facilities (array of array ... of scalars) were provided.

In Perl 5, Larry Wall decided to graft multi-dimensional
structures into the language. Rather than change the whole term
syntax, he did it by adding a new type of scalar - a reference.

A reference is very like a pointer in C. To make a reference, use
the backslash operator (like C's address-of operator, &):

my $x = 10;

my $ref = \$x;
$ref now refers to (or points to) $x. Dereferencing is done by
using $ref instead of a variable name:

print "before: x is $x\n";

print "before: ref refers to x - value $$ref\n";

$$ref++;
print "after: x is $x\n";

recursive call has its own local argument array, and its own local
set of my variables.

Duncan White (CSG) December 2011 17 /23 Duncan White (CSG) December 2011 18 / 23

@ Make this into a program eg8 and try it out...

References References

@ You can also make a reference to an array (eg9): @ We can declare anonymous hash refs (egl2):

my @ = (54, 17, 23);

print "before: " . join(’,’, @a) . "\n"
my $ref = \Qa;

$$ref[2] = 18; # sets $a[2]

print "after: " . join(’,’, @) . "\n";

@ Note that $$ref [2] binds like ${$ref} [2]. This $$ref [$n]
syntax is so unpleasant that Perl gives us a nicer alternative:
$ref->[$n].

@ You can dereference the whole array as @$ref.

@ You can also make an anonymous array ref (egl0):

my $ref = [54, 17, 23 1;

print "before: access via ref: " . join(’,’, @$ref) . "\n";
$ref->[2] = 18; # overrides ’23’ value
print "after: access via ref: " . join(’,’, @$ref) . "\n";

@ You can also have references to hashes (egll):

my %hash = ("duncan" => "d.white", "bilbo" => "b.baggins");
my $ref = \%hash;
$ref->{frodo} = "f.baggins"; # stores a new key, value pair
while(my($key,$value) = each(%$ref))# now print all pairs out
{

print "$key => $value\n";

Duncan White (CSG) December 2011 19 /23

my $ref = { duncan => "d.white", bilbo => "b.baggins" };
$ref->{frodo} = "f.baggins"; # store a new key, value pair
delete $ref->{duncan}; # deletes a k,v pair
while(my($key,$value) = each($ref)) # print out all pairs
{

print "$key => $value\n";

@ We can now create hashes of hashes, arrays of arrays, or any

combination. For instance:

my @fred = (

{ "one" => "ena", "two" => "duo" },
{ "three" => "drei" },
{ "one" => "une", "two" => "deux" }

);

@fred is an array of references to hashes: $fred[$r] is now a
reference to one hash, %$fred[$r] is one whole hash, and
$fred [$r]->{$c} is a single element. This last can, as a special
convenience, be written as $fred [$r]1{$c}.

Thus, it looks very like a multi-dimensional array, but it isn't
really!

Duncan White (CSG) December 2011 20 /23

Duncan White (CSG)

Duncan White (CSG)

References

@ How might we printout such a complex data structure as @fred
(an array of references to hashes)? There are two ways:

@ Write our own function, carefully tailored to the exact
specification we want (egl3):

foreach my $hashref (@fred)
{
my 0x = ();
foreach my $key (sort keys Y%$hashref)
{
my $value = $hashref->{$key};
push @x, "$key->$value";
¥

print join(", ", @x). "\n";

@ Or use Perl module Data: :Dumper - which is designed to
navigate and print reference structures (egl4):

use Data::Dumper;
. definition of fred ...
print Dumper \@fred;

@ How does that work? It's complicated... However, the core of it
uses a Perl function ref () which takes a reference and returns a
string such as ‘HASH’ to tell you what the reference is currently
referring to. Using that information, a reference navigator can be

written pretty easily.
December 2011 21 /23

Exercises

@ In the last session, there was a multi-part exercise that attempted
to build word frequency indexes of files. We can do more now:

@ Use split to allow the indexing program to split each line into
multiple words and index each word.

o Convert the indexer into separate functions, nicely laid out. Add
prototypes and use strict.

@ Record when each data file was last indexed. Write a reindex
program to check the modification time of each indexed
document file and reindex modified documents.

@ Hint: use Perl’s stat function to find a file's modification
timestamp (see perldoc -f stat for details).

@ Familiarise yourself with complex references - use the
Data: :Dumper module to print them out.

@ Modify egl3 replacing the entire inner foreach loop that builds
the @x array with a map invocation that begins
my @x = map If you're feeling brave, you can remove @x
altogether and make the body of the outer foreach a single
statement beginning print join(", ", map....

December 2011 23 /23

References to Functions

@ You can also take a reference to a function (a subroutine) and
call it (later) through the reference - just like C's pointer to
function concept:

sub fred ($)

{

¥

my $funcref = \&fred; # ref to function

$funcref->(10); # calls fred with arg 10

@ Perl also allows us to create anonymous function references on
the fly, as in:
my $doubleme = sub { return 2 * $_[0]; };

my $x = $doubleme->(10);
print "10 doubled is... wait for it.. $x\n";

@ Using function references, you can do higher order functions,
callbacks, factories etc. Lambda calculus in Perl? If you must!
map and grep help too.

December 2011

Duncan White (CSG)

22 /23

	Contents
	Toughening up
	Run-time Warnings and the Undefined Value
	 The Undefined Value
	Strict Mode
	More about "my"

	 Perl's Predefined Functions
	map
	Defining Our Own Functions
	Prototypes

	References
	References to Functions
	Exercises

