
Perl Short Course: Fourth Session

Duncan C. White (d.white@imperial.ac.uk)

Dept of Computing,
Imperial College London

December 2011

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 1 / 23

Contents

In this fourth session, we’ll go over some of the more advanced
parts of Perl. Specifically:

Toughening up - warnings, strict and undef,
Perl’s standard library of predefined functions,
defining our own functions,
making complex data structures with references.

Run-time Warnings

As our Perl scripts grow in size and complexity, there are several
things we can ask Perl to do to toughen its checking regime to
help us to catch more errors before they bite us.

We have seen compile-time syntax check: perl -cw program

However, not all warnings can be detected at compile-time, so
try switching run time warnings on.

There are two ways of enabling run-time warnings: the first is
perl -w script. On Unix, we can put ‘-w’ in the hash-bang
line: #!/usr/bin/perl -w

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 2 / 23

Toughening up Run-time Warnings and the Undefined Value

The second way (useful on platforms where hash-bang doesn’t
work - eg. Windows), is to write:

use warnings;

near the top of your program. I recommend you switch warnings
on, and fix every problem that causes a warning immediately.

Now, what sort of things give run-time warnings?

We have mentioned several times that functions return the
undefined value when they fail; that uninitialized scalar variables
(and array and hash elements) have the undefined value, etc.

Perl’s undefined value (written as undef) is analogous to the
concept of a null pointer.

It is different from the empty string ’’ – the empty string is a
string of length 0 whereas undef is not a string at all.

However, undef behaves like the empty string in string contexts,
like 0 in numeric contexts, and like false in boolean contexts.

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 3 / 23

Toughening up The Undefined Value

Let’s investigate boolean-ness and defined-ness:
#

eg1: play around with empty strings and undef

#

my @pairs = (0, "zero",

’’, "emptystr",

undef, "undef",

1, "one",

17.3, "17.3",

’hello’, "hello");

foreach (testval,label) in @pairs

while(($testval,$label,@pairs) = @pairs)

{

my $boolstr = $testval ? "true" : "false";

print "$label: <$testval>, $boolstr\n";

}

The program runs fine without warnings, but with ‘-w’, a use of
uninitialized value $testval in a string warning appears.

To fix this, decide how to display undef, and test for defined-ness
using the function defined, as in:

my $display = defined $testval ? $testval : "UNDEF";

print "$label: <$display>, $boolstr\n";

This form of ”value or default” is so common, Perl 5.10
introduces a new operator:

my $display = $testval // "UNDEF";

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 4 / 23

Toughening up Strict Mode

If you put the pragmas:
use strict;

use warnings;

near the top of your programs then Perl will perform stricter
syntax checks for you. This has several effects - for example, all
warnings become fatal errors.

Let’s try adding use strict to eg1 and see what error messages
perl -cw eg1 generates.

Oops! We forgot to declare some of our variables: under
use strict, Perl insists that you declare all your variables
properly (using my).

Let’s spend a moment making eg1 work in strict mode - declare
all our variables.

Note that we’ve been declaring our variables all along, but
actually we didn’t need to do so until we encounter strict mode.

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 5 / 23

Toughening up More about ”my”

The ‘my’ declarations that we’ve been using declare lexical
variables which exist only for the duration of a particular lexical
scope (for example, in a particular block).

They are like local variables - but if you declare them outside of a
block, they exist from the point of declaration down to the
bottom of the Perl script - and are effectively global variables.

Most of the time, we declare and initialize variables at the same
time, but you can declare one or many variables without
initializing them by:

my $a;

my($x, $y, @z);

There’s another type of global variable, called package variables,
declared by replacing ‘my’ with ‘our’, as in:

our($x, $y, @z);

Later on, we’ll see a few places where package variables are
needed, but for now I recommend that you use ‘my’ variables
everywhere until further notice.

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 6 / 23

Perl’s Predefined Functions

Perl has hundreds of predefined functions. Let’s look at a few of
the most useful ones - consult the Llama or Camel book or
perldoc perlfunc for more details.

@arr = split(/regex/, string, n)

Splits a string into an array of pieces, splitting the string wherever
the regex matches - i.e. the regex indicates what separates the
interesting parts.
If no value of n is given, the maximum number of splits are
performed. If $n is given, the string is split into exactly $n pieces,
the last piece contains the rest of the string.
If no string is given then $_ is used by default. A common use of
this is to split $_ into whitespace separated ‘words’ or ‘tokens’:
my @wd = split(/\s+/);

$str = join(sep_string, array)

This function joins the elements of the array together, using the
given string as a separator, i.e. between every pair of elements.
For example:
print join(’,’, @wd);

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 7 / 23

Perl’s Predefined Functions

push(@array, list)

This function appends the given list (or single scalar) to the end
of an array.
Common use: accumulate entries in an array:

push(@done, $filename);

$x = pop(@array)

Remove the last element from the array and return it. Common
use: (with push) implement a stack:

push(@stack, (3, 2));

$x = pop(@stack); # gets 2

$y = pop(@stack); # gets 3

$x = shift(@array)

This extracts the first element of the array, removing that element
from the array, shifting every other element down one space.

unshift(@array, list)

Opposite of shift: The list (or single scalar) is inserted into the
array at the front, shifting all existing elements up out of the way.

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 8 / 23

Perl’s Predefined Functions

@result = sort(list)

This function sorts an array such that each element is placed in an
ascending order - by default into alphabetical order.
You can specify a different sort order, such as numeric, using the
highly magical :
@sorted = sort { $a <=> $b } (@array)

Consult perldoc -f sort for more information.

@result = reverse(list)

This function reverses an array (such that each element is placed
after all its predecessors).

@result = glob(wildcard)

This performs a shell compatible file glob - returning a list of files
which match the wildcard. For example glob("*.[ch]")

matches all ‘.c’ or ‘.h’ files in the current directory.

$len = length(string)

This trivial function is the equivalent of C’s strlen - it returns
the length of the given string expression.

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 9 / 23

Perl’s Predefined Functions

printf("format string", args);

$str = sprintf("format string", args)

When you need more formatting than print can do - use printf

and sprintf. These are closely modelled on the C functions and
are much too complex to explain here... For example, eg2:

my $string = ’pi’; my $pi = 3.1415926536;

printf("<%-10s><%12.8f>\n", $string, $pi);

would produce output:
<pi >< 3.14159265>

See perldoc -f sprintf for more details.

@result = grep { expr } list

This function evaluates the expression for each element in the list
(with the element itself stored in a localized copy of $_), and
extracts the elements for which the expression is true.
It is equivalent to (but more efficient than):
@result = ();

foreach $_ (list) { push(@result, $_) if expr; }

Common use - pretend we’re the Unix grep utility:
my @result = grep { /he*llo/ } @array;

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 10 / 23

Perl’s Predefined Functions map

@result = map { operation } @array

map is very similar to the functional programming (Haskell etc)
map function, which applies an operation to every element of an
array, building a new array.
Just like grep, within the operation the current array element is
stored in a localized $_.
The operation is any valid Perl expression - so, for example, eg3:

my @orig = (1,2,5,8,9,10,5);

my @doubled = map { $_ * 2 } @orig;

print join(’,’, @doubled)."\n";

will double all the original numbers and then print the results in
comma-separated format.
You can also use map destructively - if you modify $_ the original
element is modified (eg4):

my @array = (1,2,5,8,9,10,5);

map { $_ *= 2 } @array;

does the same but modifies @array in place.

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 11 / 23

Perl’s Predefined Functions map

map cont:

The operation in a functional map always receives a single array
element, but it can return a list of scalars rather than a single
scalar, in this case all the little lists are appended together.
For example, eg5:

my @orig = (1,2,5,8,9,10,5);

my @result = map { $_, $_ * 2 } @orig;

generates a pair (x, 2x) from each element of the original
array, thus setting @result to a flat list twice as long -
(1,2,2,4,5,10..).
This is often used to turn an array into a hash - when you assign a
flattened list of (key,value) pairs to a hash, Perl initialises it
pairwise. As in eg6:

my @orig = (1,2,5,8,9,10,5);

my %double = map { $_, $_*2 } @orig;

The comma can be written as => to look nicer:
my %double = map { $_ => $_*2 } @orig;

One use of this is to turn an array into a set hash:
my %set = map { $_ => 1 } @orig;

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 12 / 23

Perl’s Predefined Functions Defining Our Own Functions

Practically all languages provide functions, subroutines or
procedures. In Perl, they are called subroutines.

You decide on a coherent block of code with a nameable
purpose, for example, sum up an array and return the total, and
give it a name like sumarray.

Decide what arguments sumarray takes, and what results it
returns. The easiest way of showing this is to write down a
typical call:

my $total = sumarray(@arr);

This means: call function sumarray, passing the array @arr in to
it, and storing the scalar value that is returned into $total.

Then write the outer shell of your function as a sub declaration,
including a comment describing the function’s purpose:
#

my $total = sumarray(@array):

sum up the elements of the @array.

#

sub sumarray

{

}

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 13 / 23

Perl’s Predefined Functions Defining Our Own Functions

Now, inside the {}, write the body of the function:
my @array = @_;

my $total = 0;

foreach my $elem (@array)

{

$total += $elem;

}

return $total;

Perl flattens all the arguments in a subroutine call into a single
list, called @_. Note that the original argument array elements
will change if you change @_ elements.
Perl’s local variables are our old friends - lexically scoped ‘my’

variables.
They spring into existence when we enter the function, eclipsing
existing variables of the same names, and disappear when we
leave the function.
In sumarray, we take a copy of @_ into ‘my @array’ (to avoid
any possibility of changing the parameters). Then we declare
ourselves two additional ‘my’ variables $elem and $total.
Finally, to communicate the final result back to the caller we use
return $total. This destroys all the function’s local variables.

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 14 / 23

Perl’s Predefined Functions Defining Our Own Functions

Putting the whole program together:

#!/usr/bin/perl

#

eg7: sum up the elements of an array,

using a separate subroutine.

use strict;

use warnings;

#

my $total = sumarray(@array):

sum up the elements of the @array.

#

sub sumarray

{

my(@array) = @_;

my $total = 0;

foreach my $elem (@array)

{

$total += $elem;

}

return $total;

}

main program

my @x = @ARGV > 0 ? @ARGV : (10, 39, 45, 28, 49, 3);

my $sum = sumarray(@x);

my $str = join(’,’, @x);

print "sum of $str is $sum\n";

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 15 / 23

Perl’s Predefined Functions Prototypes

Prototypes were added in Perl 5.6 and allow us to specify how
many parameters a subroutine takes. In a subroutine header
write:

sub fred ($$@)

This declares that fred must be called with two scalars and a
(possibly empty) array. If Perl has already seen a prototype
declaration for sub fred when it parses a call to fred it will
produce a warning unless there are at least two scalar arguments.

One option is to separate the prototypes from the subroutines:
first declare the prototypes:

sub fred ($$@);

sub bob ($);

......

define the subroutines from here on, any order:

sub fred

{

my($a, $b, @rest) = @_;

......

}

sub bob

{

my($arg) = @_;

......

}

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 16 / 23

Perl’s Predefined Functions Prototypes

Prototypes are not perfect, they’re likely to undergo more change
in Perl 6. They don’t affect the fact that all arguments to a
function call are still flattened into a single list - so you can’t just
say sub fred (@@%) and pass two whole arrays and a hash to
fred... To do this, you have to use Perl references - read on.
Note that a Perl subroutine can return a scalar, an array or a
hash - so for example it’s fine to think of a subroutine as
returning a tuple, as in:

my($a,$b) = callme(arguments); return ($x, $y);

Exercise: take any of the programs that you’ve already done in
previous sessions and restructure it into several functions with
separate prototypes at the top.
Exercise: Choose some simple recursive function - perhaps
fibonacci, factorial or quicksort - code it up in Perl, get it
working and thus convince yourself that there’s nothing abnormal
about recursion in Perl. In particular, convince yourself that each
recursive call has its own local argument array, and its own local
set of my variables.

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 17 / 23

References

In Perl 4, the only data structures that existed were scalars,
arrays of scalars and hashes of scalars. No multi-dimensional
array facilities (array of array ... of scalars) were provided.

In Perl 5, Larry Wall decided to graft multi-dimensional
structures into the language. Rather than change the whole term
syntax, he did it by adding a new type of scalar - a reference.

A reference is very like a pointer in C. To make a reference, use
the backslash operator (like C’s address-of operator, &):

my $x = 10;

my $ref = \$x;

$ref now refers to (or points to) $x. Dereferencing is done by
using $ref instead of a variable name:

print "before: x is $x\n";

print "before: ref refers to x - value $$ref\n";

$$ref++;

print "after: x is $x\n";

Make this into a program eg8 and try it out...

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 18 / 23

References

You can also make a reference to an array (eg9):
my @a = (54, 17, 23);

print "before: " . join(’,’, @a) . "\n";

my $ref = \@a;

$$ref[2] = 18; # sets $a[2]

print "after: " . join(’,’, @a) . "\n";

Note that $$ref[2] binds like ${$ref}[2]. This $$ref[$n]

syntax is so unpleasant that Perl gives us a nicer alternative:
$ref->[$n].

You can dereference the whole array as @$ref.

You can also make an anonymous array ref (eg10):
my $ref = [54, 17, 23];

print "before: access via ref: " . join(’,’, @$ref) . "\n";

$ref->[2] = 18; # overrides ’23’ value

print "after: access via ref: " . join(’,’, @$ref) . "\n";

You can also have references to hashes (eg11):
my %hash = ("duncan" => "d.white", "bilbo" => "b.baggins");

my $ref = \%hash;

$ref->{frodo} = "f.baggins"; # stores a new key, value pair

while(my($key,$value) = each(%$ref))# now print all pairs out

{

print "$key => $value\n";

}

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 19 / 23

References

We can declare anonymous hash refs (eg12):
my $ref = { duncan => "d.white", bilbo => "b.baggins" };

$ref->{frodo} = "f.baggins"; # store a new key, value pair

delete $ref->{duncan}; # deletes a k,v pair

while(my($key,$value) = each(%$ref)) # print out all pairs

{

print "$key => $value\n";

}

We can now create hashes of hashes, arrays of arrays, or any
combination. For instance:
my @fred = (

{ "one" => "ena", "two" => "duo" },

{ "three" => "drei" },

{ "one" => "une", "two" => "deux" }

);

@fred is an array of references to hashes: $fred[$r] is now a
reference to one hash, %$fred[$r] is one whole hash, and
$fred[$r]->{$c} is a single element. This last can, as a special
convenience, be written as $fred[$r]{$c}.

Thus, it looks very like a multi-dimensional array, but it isn’t
really!

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 20 / 23

References

How might we printout such a complex data structure as @fred

(an array of references to hashes)? There are two ways:
Write our own function, carefully tailored to the exact
specification we want (eg13):

foreach my $hashref (@fred)

{

my @x = ();

foreach my $key (sort keys %$hashref)

{

my $value = $hashref->{$key};

push @x, "$key->$value";

}

print join(", ", @x). "\n";

}

Or use Perl module Data::Dumper - which is designed to
navigate and print reference structures (eg14):

use Data::Dumper;

... definition of fred ...

print Dumper \@fred;

How does that work? It’s complicated... However, the core of it
uses a Perl function ref() which takes a reference and returns a
string such as ‘HASH’ to tell you what the reference is currently
referring to. Using that information, a reference navigator can be
written pretty easily.

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 21 / 23

References to Functions

You can also take a reference to a function (a subroutine) and
call it (later) through the reference - just like C’s pointer to
function concept:

sub fred ($)

{

...

}

my $funcref = \&fred; # ref to function

...

$funcref->(10); # calls fred with arg 10

Perl also allows us to create anonymous function references on
the fly, as in:

my $doubleme = sub { return 2 * $_[0]; };

my $x = $doubleme->(10);

print "10 doubled is... wait for it.. $x\n";

Using function references, you can do higher order functions,
callbacks, factories etc. Lambda calculus in Perl? If you must!
map and grep help too.

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 22 / 23

Exercises

In the last session, there was a multi-part exercise that attempted
to build word frequency indexes of files. We can do more now:
Use split to allow the indexing program to split each line into
multiple words and index each word.
Convert the indexer into separate functions, nicely laid out. Add
prototypes and use strict.
Record when each data file was last indexed. Write a reindex

program to check the modification time of each indexed
document file and reindex modified documents.
Hint: use Perl’s stat function to find a file’s modification
timestamp (see perldoc -f stat for details).
Familiarise yourself with complex references - use the
Data::Dumper module to print them out.
Modify eg13 replacing the entire inner foreach loop that builds
the @x array with a map invocation that begins
my @x = map If you’re feeling brave, you can remove @x

altogether and make the body of the outer foreach a single
statement beginning print join(", ", map....

Duncan White (CSG) Perl Short Course: Fourth Session December 2011 23 / 23

	Contents
	Toughening up
	Run-time Warnings and the Undefined Value
	 The Undefined Value
	Strict Mode
	More about "my"

	 Perl's Predefined Functions
	map
	Defining Our Own Functions
	Prototypes

	References
	References to Functions
	Exercises

