
Perl Short Course: Sixth Session

Duncan C. White (d.white@imperial.ac.uk)

Dept of Computing,
Imperial College London

December 2011

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 1 / 28

Contents

In this session, we’ll see how we construct Perl modules:

creating Perl modules
controlling symbol export/import
how to write Perl classes
how to inherit classes

Perl’s approach to modularity, information hiding, abstraction
and OO is refreshingly lightweight: Perl constructs its modules
and classes using about half a dozen new concepts and keywords.

Modularity: splitting a large program into separate source files.
All serious languages have some form of this capability, often
linked with separate compilation and control of the interface.
These separate components are variously called modules, units or
(in extreme cases) classes.

Now, let’s dive straight in, and see how easy it is to build a Perl
module from scratch: suppose we’re working with word
frequencies in a set of files (a corpus), and want to know the
most frequent words.

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 2 / 28

Perl Modules Maximum Word Frequency module (wordfreq-v0)

We might speculatively write the following main program (eg1),
using a module that doesn’t exist yet. (You’ll find this in the
examples tarball inside the wordfreq-v0/ directory):

use maxfreq; # if it exists!

die "Usage: eg1 wordfile [wordfile...]\n" unless @ARGV;

read all words in all files, build a frequency hash...

my %freq = ();

while(my $line = <>)

{

chomp $line;

$line =~ s/^\s+//; $line =~ s/\s+$//; $line = lc($line);

my @wd = split(/\s+/, $line);

foreach my $word (@wd)

{

print "word is blank\n" if $word eq "";

$freq{$word}++;

}

}

tell maxfreq about our frequency data

maxfreq::forget();

maxfreq::remember(%freq);

now maxfreq can tell us the maximum frequency in the

whole data set, and all words with that frequency..

my($maxfreq, @mostfreqwords) = maxfreq::getbest();

my $str = join(’,’, @mostfreqwords);

print "maximum word frequency: $maxfreq, most frequent words: $str\n";

Syntax check this with perl -cw eg1 - even Perl complains
about a missing module!

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 3 / 28

Perl Modules Maximum Word Frequency module (wordfreq-v1)

Create a stub module as follows (in examples tarball in the
wordfreq-v1/ directory):

package maxfreq;

use strict;

use warnings;

frequency module: record any amount of item frequency data (via "remember")

and then report the maximum frequency, and items with that frequency.

#

forget(); initialize/reset - forget all frequency data

#

sub forget () { print "forget(): stub call\n"; }

#

remember(%data);

add more frequency data to what we remember, accumulating

frequencies across multiple remember() calls. eg. if first

told remember freq{x}=3 and later freq{x}=7, then freq{x}=10.

#

sub remember (%) { my(%data) = @_; print "remember(): stub call\n"; }

#

my($maxfreq, @mostfreqitems) = getbest();

report the maximum frequency in all remembered items,

and all items with precisely that frequency.

#

sub getbest () { print "getbest(): stub call returning 0\n"; return (0); }

1;

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 4 / 28

Perl Modules Maximum Word Frequency module (wordfreq-v1)

What can we see immediately?

A Perl module called maxfreq is stored in a file called
maxfreq.pm.
maxfreq.pm starts with the declaration package maxfreq to
give its’ subroutines (and global our variables, if any) a private
namespace. The default package is called main - so all our
previous examples were in package main.
maxfreq.pm switches on strict mode and then defines several
ordinary subroutines. In this case, stub implementations.
One weird detail is that each module must end with a spurious
true value, such as ‘1;’.
Such a module is imported into a program by the usual
use maxfreq syntax, just like pre-written modules.

Now syntax check both the module (perl -cw maxfreq.pm)
and eg1 (perl -cw eg1). Run eg1 ../corpus/* to make it
analyse a small corpus of words.

Of course it doesn’t produce any answers - with a stub module.
We have to implement maxfreq!

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 5 / 28

Perl Modules Maximum Word Frequency module (wordfreq-v2)

First, we have to decide what data structures we need. We’ll
certainly need a cumulative frequency hash to store all the items
and their frequencies that we currently remember.
There is a choice of whether to store the maximum frequency
seen and the items with that maximum frequency, or whether to
calculate them on demand. We choose to store them:

my %freq = (); # cumulative freqencies of everything we’ve seen.

my $maxfreq = 0; # current maximum frequency of any item.

my @mostfreq = (); # list of all items with $maxfreq.

forget() repeats the above initializations (without ‘my’).
remember(%data) is implemented by:

while(my($k,$v) = each(%data))

{

$freq{$k} += $v;

updatemaxfreq($k, $freq{$k});

}

updatemaxfreq($k,$f) is a private routine implemented by:
if($f == $maxfreq)

{

push @mostfreq, $k; # add to most frequent list

} elsif($f > $maxfreq)

{

$maxfreq = $f; # new maximum frequency

@mostfreq = ($k); # only $k is most frequent

}

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 6 / 28

Perl Modules Maximum Word Frequency module (wordfreq-v2)

Finally, getbest() is implemented by:
return ($maxfreq, @mostfreq);

You’ll find the full version of maxfreq in the examples tarball
inside the wordfreq-v2/ directory.

After syntax checking, if we rerun eg1 ../corpus/* it should
tell us the most frequent single word. Any guesses what it will be
beforehand?

If we wanted to know the top 10 (most frequent) words, an
obvious extension would be to extend maxfreq, adding:

#

delbest();

delete all the "most frequent" items, recalculate the

new maximum frequency and most frequent items

#

sub delbest ()

{

implement me..

}

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 7 / 28

Perl Modules Extending maxfreq (wordfreq-v3)

Then extend eg1 to say:
my $howmany = 10;

print "top $howmany word-sets by word frequency:\n\n";

foreach (1..$howmany)

{

my($maxfreq, @freqwords) = maxfreq::getbest();

last if $maxfreq < 1;

my $str = join(’,’, @freqwords);

print "word frequency: $maxfreq, words: $str\n";

maxfreq::delbest();

}

You can find the extended versions of eg1 and maxfreq.pm in
the examples tarball inside the wordfreq-v3/ directory.

Running this version, we get the top 10 words:
word frequency: 440, words: the

word frequency: 190, words: of

word frequency: 98, words: and

word frequency: 94, words: in

word frequency: 68, words: to

word frequency: 57, words: a

word frequency: 54, words: is

word frequency: 49, words: binding

word frequency: 46, words: energy

word frequency: 41, words: potential

Anyone care to guess what specialised subject the input
documents referred to?

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 8 / 28

Perl Modules Shared Variables: my vs our

We’ve seen that we can declare shared variables in modules via
the usual ‘my’ syntax, near the top of the package.

We’ve mentioned that we can declare a different type of shared
variables - called package variables - using the syntax ‘our’.

So what’s the difference for shared variables in modules?

‘my’ variables are associated with the lexical scope - they are
only accessible from the single Perl source file defining the
module, from the point of declaration down to the bottom.

Hence, only the package subroutines (in the rest of the file) can
see these ‘my’ variables. They are shared between those
subroutines - and are truly private to them.

‘our’ variables belong to the package not the file. They are
accessible outside the package via naughty people writing (for
example) push @maxfreq::mostfreq, "hello".

In summary, use ‘my’ variables most of the time. Only in special
cases - where other parts of Perl need to be able to inspect
package variables - should you use ‘our’.

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 9 / 28

Perl Modules Interface Control

All this maxfreq::remember stuff is rather longwinded, in most
languages the module designer can control the interface - choose
which (public) symbols to export, and the module user can
choose which symbols to import.

How do we do it in Perl? By using a Perl special module called
Exporter which exists for precisely this purpose:

Exporter defines three conceptual sets, which must be defined
by our variables:

The set of symbols exported from a module and imported into a
client by default (our @EXPORT).
The set of additional symbols exported from a module which a
client can choose to import (our @EXPORT_OK).
The set of named tags, each of which represents a set of symbols
which may be imported via the tag name (our %EXPORT_TAGS).

We will cover the first two - see perldoc Exporter for all the
gory details (tagged symbol sets, importing symbols matching a
regex, etc).

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 10 / 28

Perl Modules Interface Control (wordfreq-v4)

On the client side, we control what is imported via variations on
the use syntax:
use module; import the default set of symbols - everything on the module’s

@EXPORT list.
use module (); import no symbols.
use module qw(A B C); import only symbols A, B and C - these symbols must either be on

the default list @EXPORT or the optional list @EXPORT_OK.
use module qw(:DEFAULT A B C); import the default set and symbols A, B and C from the optional list

@EXPORT_OK.

To make maxfreq an Exporter module, add:
use Exporter qw(import);

our @EXPORT = qw(forget remember getbest delbest);

our @EXPORT_OK = qw();

You’ll find the final exporter-friendly version of maxfreq.pm and
eg1 (with the maxfreq:: prefixes removed) inside the tarball’s
wordfreq-v4/ directory. Syntax check and rerun.

What can/should we Export?

The information hiding principle says that you should hide as
much as possible, exporting as little as possible,

A sensible recommendation is: export only public subroutines.

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 11 / 28

Perl Modules Interface Control (@EXPORT vs @EXPORT OK?)

When you’ve decided that something should be exported, there’s
still the choice of whether to export it by default (in @EXPORT) or
optionally (in @EXPORT_OK).

The namespace pollution principle suggests that as little as
possible should be in @EXPORT. Put most in @EXPORT_OK.

The basic rule of thumb is that it should be “safe” to import the
default set without causing problems.

Name clashes: If two modules both export symbol X, and a
single client script tries to import X from both modules, you get
a perl warning: Subroutine packagename::X redefined; the
second X is used!

The client can always choose whether or not to import that
symbol via specifying an import list. But it’s particularly
unpleasant if the client can no longer import the default set!

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 12 / 28

Perl Objects and Classes

The basic purpose of classes in Perl is to provide objects - tidy
little collections of data and behaviour.

We’ve already seen how to use predefined classes to create and
use objects, now we’ll see how to write classes.

The main concepts involved here are objects, classes, methods
(object and class) and inheritance. Here’s a rough set of Perlish
definitions:

A class is a Perl module, usually exporting nothing, containing
class and object methods obeying the following conventions.
An object is some piece of reference data - usually a hashref -
which remembers the name of it’s own class. This is called a
blessed reference.
A class method (such as the class constructor) is a subroutine
that takes the class name as it’s first argument. The class
constructor is conventionally called new, destructors are possible.
An object method takes the object ($self) as the first argument.
Single and multiple inheritance are provided by a simple package
search algorithm used to locate method subroutines.

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 13 / 28

Perl Objects and Classes Example Perl Class - Person.pm

package Person;

use strict;

use warnings;

my %default = (NAME=>"Shirley", SEX=>"f", AGE=>26);

the object constructor

sub new {

my($class, %arg) = @_;

my $obj = bless({}, $class);

$obj->{NAME} = $arg{NAME} // $default{NAME};

$obj->{SEX} = $arg{SEX} // $default{SEX};

$obj->{AGE} = $arg{AGE} // $default{AGE};

return $obj;

}

get/set methods - set the value if given extra arg

sub name {

my($self, $value) = @_;

$self->{NAME} = $value if defined $value;

return $self->{NAME};

}

sub sex {

my($self, $value) = @_;

$self->{SEX} = $value if defined $value;

return $self->{SEX};

}

sub age {

my($self, $value) = @_;

$self->{AGE} = $value if defined $value;

return $self->{AGE};

}

1;

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 14 / 28

Perl Objects and Classes Example Perl Class - Person.pm

Here’s eg2, the main program that uses Person:
use Person;

sub printperson ($)

{

my($person) = @_;

my $class = ref($person);

my $name = $person->name;

my $age = $person->age;

my $sex = $person->sex;

print "$class: name=$name, age=$age, sex=$sex\n";

}

my $dunc = Person->new(NAME => "Duncan",

AGE => 42,

SEX => "m");

printperson($dunc);

$dunc->age(20);

$dunc->name("Young dunc");

printperson($dunc);

Note that the function ref() applied to a blessed reference
returns the name of the package the reference was blessed into.
When syntax checked and run, eg2 produces:

Person: name=Duncan, age=42, sex=m

Person: name=Young dunc, age=20, sex=m

But why did we put printperson in the main program - it
obviously should have been a method in class Person! How hard
is converting a normal subroutine to a method?

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 15 / 28

Perl Objects and Classes Aside - Overloading Stringification

Perl has an advanced feature called operator overloading. We
can use this to specify how to automatically convert a Person

object to a string.

First, split out the formatting code from printperson into a
separate method called as_string:

new method

sub as_string {

my($self) = @_;

my $class = ref($self);

my $name = $self->name;

my $age = $self->age;

my $sex = $self->sex;

return "$class: name=$name, age=$age, sex=$sex\n";

}

Now, printperson is simply:
print $self->as_string;

Now, add the magic pragma:
use overload ’""’ => \&as_string;

and the printperson method becomes:
print $self;

Now, delete the printperson method entirely - eg2 can now
simply print each object itself.

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 16 / 28

Perl Objects and Classes Inheritance = Method Search

Our final modularity concept is inheritance, sometimes known as
subclassing. Perl implements full single or multiple inheritance in
a very simple way:
A Perl class can name one or more parent classes as an ordered
list, in package variable our @ISA.
@ISA is used in only one way: to determine which package’s
subroutine should be invoked when a method call is made. Here’s
the method search algorithm for a method (say hello):

Start the search in the object’s blessed package. If that package
has a hello subroutine, use that.
Otherwise, perform a depth first search of the first parent class
named in @ISA.
If still not found, perform a depth first search of the second parent
class named in @ISA.
And so on through the remaining @ISA elements.
If still not found, report an error.

Note that this search algorithm is even used for constructors -
unlike many other OO languages, only one constructor method is
called automatically. Do your own constructor chaining..

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 17 / 28

Perl Objects and Classes Subclassing: Programmers are People too

Let’s create a Programmer subclass of Person, with an
additional property - a hashref storing language skills (each skill
is a language name and an associated competence level).
It’s good practice when subclassing to check that an empty
subclass doesn’t break things, before adding new stuff.
So, here’s our empty subclass version of Programmer:

stub class Programmer - reuse all methods!

package Programmer;

use strict; use warnings;

use Person;

our @ISA = qw(Person);

1;

Let’s make eg3 a copy of our final version of eg2, and then
change both occurrences of Person to Programmer, i.e.:

use Programmer;

my $dunc = Programmer->new(NAME => "Duncan",

AGE => 42,

SEX => ’m’);

What do we expect to happen? It should work just like before,
but the object should know that it’s a Programmer! After syntax
checking, run eg3 to see what happens:

Programmer: name=Duncan, age=42, sex=m

Programmer: name=Young dunc, age=20, sex=m

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 18 / 28

Perl Objects and Classes Subclassing: Programmers are People too

But how did it work? Let’s start by understanding how the
constructor call works:

Constructor call: Programmer->new(args)

Does Programmer::new exist? no! continue search...
Find the first parent class of Programmer @Programmer::ISA = (Person), so Person is first parent
Does Person::new exist? yes! use that!
Call Person::new as a class method: Person::new("Programmer",args)

Person::new is called with the arguments:
$class = "Programmer";

%arg = ("NAME" => "Duncan", "AGE" => 42, "SEX" => "m");

and then creates a new object, blesses it into package $class

(i.e. "Programmer"), initializes it, and finally returns it.

All the ordinary method calls are handled in the same way, each
time they are tried in package Programmer, found not to exist,
and then tried (and found) in package Person.

Note that stringifying our object for printing still works - so even
the stringification overloading must be inherited properly.

Ok, now let’s start really implementing Programmer.

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 19 / 28

Perl Objects and Classes Subclassing: Programmers are People too

Add a new skills method and override as_string:
package Programmer;

use strict; use warnings;

use Person;

our @ISA = qw(Person);

sub skills { # additional get/set method

my($self, $value) = @_;

$self->{SKILLS} = $value if defined $value;

return $self->{SKILLS};

}

sub skills_as_string { # additional method

my($self) = @_;

my $sk = $self->skills;

my @str = map {

sprintf("%s:%s", $_, $sk->{$_})

} sort(keys(%$sk));

return "{" . join(", ", @str) . "}";

}

use overload ’""’ => \&as_string;

sub as_string { # override method

my($self) = @_;

my $pers = $self->Person::as_string;

my $skills = $self->skills_as_string;

return "$pers\t skills=$skills\n";

}

1;

$self->Person::as_string is an example of method chaining,
which does a normal method call to Person::as_string.

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 20 / 28

Perl Objects and Classes Subclassing: Programmers are People too

Here’s our test harness eg3a which uses some of the new
features:

use strict;

use warnings;

use Programmer;

my $dunc = Programmer->new(NAME => "Duncan",

AGE => 42,

SEX => "m",

SKILLS => {

"C" => "godlike",

"perl" => "godlike",

"C++" => "ok",

"pascal" => "good",

"java" => "minimal"

});

print $dunc;

$dunc->age(20);

$dunc->name("Young dunc");

$dunc->skills({ "C" => "good", "pascal" => "ok" });

print $dunc;

When syntax checked and run, eg3a produces:
Programmer: name=Duncan, age=42, sex=m

skills={}

Programmer: name=Young dunc, age=20, sex=m

skills={C:good, pascal:ok}

But... this is awful! Where have all Duncan’s skills gone?
Answers on a postcard please:-)

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 21 / 28

Perl Objects and Classes Subclassing: Programmers are People too

The problem is that Person::new has no code to initialize a
SKILLS field. And nor should it!

So we must define our own Programmer constructor. The
following would definitely work, by repeating all of
Person::new’s initializations:

my %default = (NAME=>"Shirley", SEX=>"f", AGE=>26, SKILLS=>{java=>"ok"});

sub new { # the object constructor

my($class, %arg) = @_;

my $self = bless({}, $class);

$self->{NAME} = $arg{NAME} // $default{NAME};

$self->{SEX} = $arg{SEX} // $default{SEX};

$self->{AGE} = $arg{AGE} // $default{AGE};

$self->{SKILLS} = $arg{SKILLS} // $default{SKILLS};

return $self;

}

Here we’re breaking a cardinal rule of programmers: Don’t
Repeat Yourself - this is prone to errors.

What we really want is constructor chaining - use Person::new:
my %default = (SKILLS => { java => "ok" });

sub new {

my($class, %arg) = @_;

my $obj = Person->new(%arg);

$obj->{SKILLS} = $arg{SKILLS} // $default{SKILLS};

bless($obj, $class);

return $obj;

}

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 22 / 28

Perl Objects and Classes Subclassing: Programmers are People too

Note that Person->new(%arg) creates a full-blown Person

object, blessed into package Person, which we then modify - add
the SKILLS field, and re-bless the object into $class.
Give this version (inside the tarball programmer-v3/ dir) a try.
Isn’t there a better way? Well, the only thing varying per-class
appears to be the set of data fields which we want to initialize,
and their default values. Even better, the data fields are just the
keys of the default values. Remove Programmer’s constructor,
and generalise Person’s constructor as follows:

sub new {

my($class, %arg) = @_;

my $obj = bless({}, $class);

my %default = $obj->_defaultvalues;

while(my($datum,$value) = each(%default))

{

$obj->{$datum} = $arg{$datum} // $value;

}

return $obj;

}

Now, each class defines a private _defaultvalues method,
listing the default values of all the initializable data fields:

sub Person::_defaultvalues {

return (NAME=>"Shirley", SEX=>"f", AGE=>26);

}

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 23 / 28

Perl Objects and Classes Subclassing: Programmers are People too

Continuing:
sub Programmer::_defaultvalues {

return (NAME=>"Shirley", SEX=>"f",

AGE=>26, SKILLS=>{java=>"ok"});

}

These methods allow a single generic Person::new constructor
to initialize all the desired data fields. Of course, we are still
repeating all the defaults in each subclass.

Can we fix this? Yes, with method chaining!
sub Programmer::_defaultvalues {

my $self = shift;

my %default = $self->Person::_defaultvalues;

$default{SKILLS} = { java => "ok" };

return %default;

}

More generically, we can write the chained method call as:
my %default = $self->SUPER::_defaultvalues;

to call the first available parental _defaultvalues method.

That’s enough OO for now! Happy OO Perl programming.

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 24 / 28

Where are Modules found?

When you say use module where does Perl search for the file
module.pm?

Evidently, the current directory is searched, otherwise our
examples wouldn’t work! Similarly, wherever the Perl standard
(and additional CPAN) modules are stored is searched.

When we’re writing programs for other users to use, the directory
where you develop the code (the source directory) is not the same
as where the code is installed for use (the installation directory).

Typically, then, we build a Perl program and some associated
modules, and then want to:

Install the program into (say) /homes/dcw/bin.
Ensure that /homes/dcw/bin is on our path.
Install the modules into (say) /homes/dcw/perllib.
And have the program know where to find the modules.

Perl has a list of locations that it searches, called the include
path. The include path is available within a Perl script as the
special variable @INC.

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 25 / 28

Where are Modules found?

You can add an extra directory (/homes/dcw/perllib for
example) to the include path in two ways:

Run your Perl script via:
perl -I/homes/dcw/perllib ...

Alternatively, near the top of your script, add:
use lib qw(/homes/dcw/perllib);

This works, but it’s a real pain to move to another location -
because you have to change all references to
/homes/dcw/perllib to (say) /vol/project/XYZ/lib.

This becomes a serious program as your applications grow larger;
imagine an application comprising 10 main programs and 50
support modules.

We’d like a position independent way of specifying where to find
the modules. The standard Perl module FindBin helps:

use FindBin qw($Bin);

use lib qw($Bin/../perllib);

use MyModule;

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 26 / 28

What haven’t we mentioned?

Perl features such as:

typeglobs - manipulating symbol tables.
The old local keyword - a first attempt at my variables with
lifetime-based semantics, still useful sometimes.
Autoloading - defining a subroutine AUTOLOAD which handles
missing subroutines!
Compile time vs run time distinctions, BEGIN and END blocks.
Writing Perl code on the fly via eval.

Using the Perl debugger (perldoc perldebug and perldoc
perldebtut).
Perl and graphics - building GUIs using Tk or Gtk, visualizing
directed graphs via GraphViz and it’s friends, constructing image
files via GD (useful for CGI programs generating dynamic images).
Parser generators using Perl - especially the awesome yacc-like
module Parse::RecDescent.
Perl threads - semaphores, thread queues etc.
Interfacing external C libraries into Perl via XS, and embedding a
Perl interpreter in other programs, eg. Apache and mod perl.
And lots lots more.... Perl 5.10 new features, Perl 6, Parrot..

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 27 / 28

Finding More Information about Perl

O’Reilly’s site http://www.perl.com/ (The Perl Resource) is a
wonderful source of Perl information, containing links to a
multitude of Perl information.

Our old friend CPAN, found at
http://www.cpan.org/.

The wonderful Perl Journal at http://tpj.com/ which started
out as a quarterly paper journal and recently changed to a
monthly e-zine in PDF format, still on subscription.

The Perl Directory at http://www.perl.org/ is a directory of
links to other Perl information and news.

The Perl Monks at http://www.perlmonks.org/ is a
forum-based discussion site for all matters Perlish.

That’s all folks! Enjoy your Perl programming - and remember
the Perl motto:
There’s More Than One Way To Do It!

Duncan White (CSG) Perl Short Course: Sixth Session December 2011 28 / 28

	Contents
	Perl Modules
	Maximum Word Frequency module (wordfreq-v0)
	Maximum Word Frequency module (wordfreq-v1)
	Implementing maxfreq
	Maximum Word Frequency module (wordfreq-v2)
	Extending maxfreq (wordfreq-v3)
	Shared Variables: my vs our
	Interface Control
	Interface Control (wordfreq-v4)
	Interface Control (@EXPORT vs @EXPORT_OK?)

	Perl Objects and Classes
	Example Perl Class - Person.pm
	Aside - Overloading Stringification
	Inheritance = Method Search
	Subclassing: Programmers are People too

	Where are Modules found?
	What haven't we mentioned?
	Finding More Information about Perl

