
Perl Short Course: Fifth Session

Duncan C. White (d.white@imperial.ac.uk)

Dept of Computing,
Imperial College London

December 2012

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 1 / 24

Contents

In this session, we’ll discuss using add-on modules to make Perl
even more powerful.

We’ll cover:

Perl’s documentation system
what a module is
where we can find many useful modules
how we use them in our own programs
a brief detour into Perl objects and
lots of examples of using some common modules.

Hashes as Records

But first, an aside: we’ve already said that you can omit the
quotes on a literal hash key string, this is often used to pretend
that a hash is a record/structure, as in:

$info{forename} = ’Duncan’

where forename is a string, pretending to be a field name.

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 2 / 24

Perl’s Documentation System

Perl has a tremendous amount of online documentation - reference
info, tutorials, cookbooks and FAQs. All is accessed using perldoc -
start by looking at the overview perldoc perl. You can also lookup
documentation for:

Any standard function: perldoc -f functionname.

Any installed module: perldoc modulename.

Standard library overview: perldoc perlfunc.

Standard modules overview: perldoc perlmodlib.

What a module really is: perldoc perlmod.

The Perl FAQ: perldoc perlfaq.

Search the FAQ for a term such as password:
perldoc -q password.

All Perl documentation is written in Perl’s own format called POD:
Plain Old Documentation (see perldoc perlpod for details).
Perl allows POD documentation to be included directly in your own
Perl scripts and modules - so you can’t lose the documentation!

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 3 / 24

Extending Perl - Add-on Modules

A major motivation of the Perl 5 redesign was to allow additional
C libraries to be dynamically loaded into a running Perl
interpreter. This feature is used to add major new functionality
to Perl without having to recompile the Perl interpreter.

Perl modules can either be pure Perl – literally just containing
Perl code – or XS – containing code in C as well as Perl, to (for
instance) provide an interface to an existing C library (like Tk).

We’re going to look at how to use modules which have been
made available to us by others.

When we are writing large programs, we want to structure our
code as several Perl modules, with data hiding, abstraction and
separate name spaces. This will be covered in the sixth lecture.

As well as the Perl standard library of functions (see perldoc
perlfunc and session 4 for details) Perl comes with a large
number of modules installed by default, which we can use simply
by writing use modulename in our Perl scripts. So far we’ve met
IO::File and Data::Dumper.

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 4 / 24

Extending Perl - Add-on Modules CPAN: the Comprehensive Perl Archive Network

Beyond Perl’s standard modules, there are thousands of
high-quality modules written by Perl developers, held together in
a well organized collection called CPAN, found at:

http://www.cpan.org/

As well as the CPAN website – helpfully mirrored all over the
world – there is a Perl module (called CPAN) which you can use
to install most CPAN modules automatically. See perldoc
CPAN for more information.
It is definitely worth looking at CPAN before you start to write
significant chunks of code – there may well be a module that
already does a large part of what you want to do!

Module Naming Conventions

The Perl module namespace can be hierarchical. Many module
names - like Data::Dumper - contain :: and the first part of
their name is usually a general indication of their area of interest.
So Data::Dumper pretty-prints complex data structures for us,
XML::Simple gives us a simple interface to XML, Math::BigInt
allows us to do mathematics with very large integers, etc etc.

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 5 / 24

Extending Perl - Add-on Modules CPAN: the Comprehensive Perl Archive Network

Installing and Using Modules

If you have to download and install a module yourself, you will be
pleased to discover that the vast majority of modules have a
common installation method:

perl Makefile.PL

make

make install

You can specify extra switches on the Makefile.PL line to either
install the module system-wide or for you alone. See perldoc
perlmodinstall for details.

Once a module has been installed, you need to tell Perl that you
want to use the module in your own program:
use Data::Dumper;

Where are Modules found?

Perl modules are always stored in files with the extension .pm,
e.g. POSIX.pm – where pm stands for “Perl Module”.

A hierarchical module like Data::Dumper will be stored in a file
called Dumper.pm inside a directory called Data.

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 6 / 24

Extending Perl - Add-on Modules Where are Modules found?

When you say use module where does Perl search for the file
module.pm?

Perl has a list of locations that it searches, called the include
path. The include path is available within a Perl script as the
special variable @INC.

@INC always includes the current directory (so local modules
work) and wherever system-installed modules (Perl standard and
CPAN modules chosen by the sysadmin) have been placed.

When we’re writing programs for other users to use, the directory
where you develop the code (the source directory) is not the same
as where the code is installed for use (the installation directory).

Typically, then, we build a Perl program and some associated
modules (CPAN or our own locally written) and then want to:

Install the program into (say) /homes/dcw/bin.
Ensure that /homes/dcw/bin is on our path.
Install the modules into (say) /homes/dcw/lib/perl.
And have the program know where to find the modules.

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 7 / 24

Extending Perl - Add-on Modules Adding a directory to the include path

You can add an extra directory (/homes/dcw/lib/perl for
example) to the include path in two ways:

Run your Perl script via:
perl -I/homes/dcw/lib/perl ...

Alternatively, near the top of your script, add:
use lib qw(/homes/dcw/lib/perl);

This works, but it’s a real pain to move to another location -
because you have to change all references to
/homes/dcw/lib/perl to (say) /vol/project/XYZ/lib.
This becomes a serious problem as your applications grow larger;
imagine an application comprising 10 main programs and 50
support modules.
We’d like a position independent way of specifying where to find
the modules. The standard Perl module FindBin helps, by
finding the directory where the running Perl script is located, and
specifying the library location relative to that directory:

use FindBin qw($Bin);

use lib qw($Bin/../lib/perl);

use MyModule;

Here, MyModule.pm in ../lib/perl will be found and used.
Duncan White (CSG) Perl Short Course: Fifth Session December 2012 8 / 24

Perl Objects Creating Objects

Often, Perl modules just provide a collection of functions for you
to use, but many also provide an object-oriented view of their
functionality.

Some of the modules we’re about to use are OO-based, and so
we need to briefly discuss how Perl does OO.

In Perl, a class is a special kind of module, so class names like
IO::File are common.

In Perl a constructor can be called whatever the class designer
chooses! However, the convention is to call the constructor new.

So, assuming we have a class Student, if we want to create a
new instance of a Student, we say:

use Student;

my $bob = Student->new();

For greater familiarity, Perl provides the syntactic sugar:
my $bob = new Student();

Either way, $bob is now an instance of class Student.

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 9 / 24

Perl Objects Using Objects

Now we have $bob, we can now use it as an object.

Assuming the class Student has an object method called
attend, taking the name of a lecture and a room, we could say:

$bob->attend(’Perl Short Course’, ’Huxley 311’);

Note that the syntax is very similar to reference syntax. Behind
the scenes, objects are implemented as references - usually
hashrefs - associated with a specific Perl package.

Many methods want optional arguments, and a conventional way
of doing this has emerged: pass a single hash literal, with
parameter names as keys and parameter values as values. The
keys are conventionally chosen starting with ‘-’ and written
without string quote marks, as in:

$object->method(-name => ’hello’,

-values => [’a’, ’b’, ’c’]);

This tells us enough about Perl objects to begin discussing
modules with OO interfaces.

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 10 / 24

Writing CGI scripts

CGI stands for Common Gateway Interface, and specifies how
external programs can communicate with a webserver, and hence
with a client viewing a web page.
We know what HTML looks like, producing it in Perl is simple:

print "<html>\n";

print " <head><title>Hello World!</title></head>\n";

print " <body><h1>This is a simple web page.</h1>\n";

print " <h2>Brought to you the hard way.</h2>\n";

print " </body>\n";

print "</html>\n";

All we need to know to get started with CGI scripting is that we must
send a Content-type header before the content, followed by a blank
line. So, to make our Perl script work from the web, we add to the
beginning (giving example eg1):

print "Content-type: text/html\n\n";

Having made eg1 executable, syntax checked it, let’s run it standalone
(./eg1) and eyeball the output. Now, to install it as a CGI script:

cp eg1 ~/public_html/perl2012/eg1.cgi

and then point a web browser at
http://www.doc.ic.ac.uk/~dcw/perl2012/eg1.cgi

However, all this literal HTML is horribly unwieldy. Surely there must
be a better.. more Perlish.. way?

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 11 / 24

Writing CGI scripts Use the CGI module, stupid!

Of course there is! Perl has a brilliant OO CGI module that deals
with all of this nastiness. The following example eg2 produces
the same effect (albeit with somewhat more verbose HTML and
fewer linebreaks!):

use CGI;

my $cgi = CGI->new;

print $cgi->header,

$cgi->start_html("Hello World!"),

$cgi->h1("This is a simple web page."),

$cgi->h2("Brought to you the easy way."),

$cgi->end_html;

CGI contains many more methods, and can produce web forms:
use CGI;

my $cgi = new CGI;

print $cgi->header,

$cgi->start_html(’A trivial form’),

$cgi->h1(’A trivial form’),

$cgi->start_form,

’Enter your name:’, $cgi->textfield(’name’), $cgi->p,

’Select your level of Perl expertise:’,

$cgi->popup_menu(

-name => ’expertise’,

-values => [’Newbie’, ’Adequate’, ’Guru’, ’Larry’]

), $cgi->p,

$cgi->submit,

$cgi->defaults(’Clear’),

$cgi->end_form;

print $cgi->end_html;

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 12 / 24

Writing CGI scripts Processing Web Forms

The CGI module can also deal with processing form responses -
the param() method either tells you whether any parameters are
available, or extracts a particular parameter’s value.

So, let’s extend our form to generate a suitably sarcastic
response when you fill in the form and submit it (eg3):

my %response = (

Newbie => "Get on with it then!",

Adequate => "One day you too may wear sunglasses",

Guru => "Pretty cool sunglasses",

Larry => "We bow before your godlike powers!"

);

if($cgi->param)

{

Process form parameters...

my $name = ucfirst(lc($cgi->param(’name’)));

my $expertise = $cgi->param(’expertise’);

my $msg = $response{ $expertise } || "umm?";

print $cgi->hr, "Hello, $name the $expertise - $msg";

}

Now, after selecting a name (Joe) and an expertise level (Newbie), we
get output like:

Hello, Joe the Newbie - Get on with it then!

This is only scratching the surface of what CGI can do - use perldoc
CGI to find out more.

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 13 / 24

Fetching Webpages Module LWP::Simple

LWP::Simple is a very useful module - but strangely named -
which provides a simple method of fetching web pages. If you’re
curious, LWP stands for libwww-perl.

Think of it as Webclient::Simple.

Take a simple example: perhaps we want to be able to read an
arbitrary web page from within a Perl script (eg4):

use LWP::Simple;

my $url = shift @ARGV || "http://www.doc.ic.ac.uk/~dcw/perl2012/";

my $contents = get($url) || die "oops, no webpage $url\n";

print $contents;

Note how the entire text of the web page is stored in a single
Perl scalar. Did we mention that Perl strings can be big?

Another powerful function provided by this module is
getstore($url, $filename)

which downloads the contents of $url directly to the named
$filename.

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 14 / 24

Fetching Webpages Module HTML::Parser

One thing we can do with our newly-downloaded web page is to
parse the HTML.

HTML::Parser is a complex beast, read its Perl documentation
(via perldoc HTML::Parser) to understand it fully! It’s really
more of an HTML lexical analyser (not a full parser).

Let’s link LWP::Simple and HTML::Parser together to do
something useful! (eg5):

use Function::Parameters;

use LWP::Simple;

use HTML::Parser;

use URI::URL;

my $url;

my @links = ();

#

deal with a start tag with its attributes

#

fun findlinks ($tag, $attr)

{

return unless $tag eq "a";

my $link = $attr->{href};

return unless defined $link;

$link = url($link, $url)->abs;

push @links, $link;

}

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 15 / 24

Fetching Webpages Module HTML::Parser

And here’s the main program of eg5:
main program

die "Usage: eg5 [url]\n" unless @ARGV < 2;

$url = shift @ARGV || "http://www.doc.ic.ac.uk/~dcw/perl2012/";

my $contents = get($url) || die "eg5: can’t fetch URL $url\n";

my $parser = new HTML::Parser(

start_h => [\&findlinks, ’tagname,attr’]);

$parser->parse($contents);

now @links contains the links - print them out.

foreach (@links)

{

print "link: <$_>\n";

}

Now, suppose we want to fetch all linked .ps or .tgz files,
storing them together in a new directory. Replace the link
printout with:

mkdir($destdir, 0755) unless -d $destdir;

chdir($destdir) || die "can’t cd into $destdir\n";

foreach (@links)

{

next unless m#([^/]+\.(ps|tgz))$#;

my $filename = $1;

print "fetching $_ -> $destdir/$filename\n";

getstore($_, $filename) || next;

}

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 16 / 24

Accessing databases Module DBI - connecting

DBI is a module which allows Perl to connect to databases and
manipulate data within them.

Databases supported by DBI include MySQL, Oracle, Sybase,
Microsoft SQL server, and PostgreSQL – we use the last two
here in DoC.

DBI provides a class method connect to connect to a database.
A typical example would be:

use DBI;

my $db = ’films’;

my $host = ’db.doc.ic.ac.uk’;

my $port = 5432;

my $user = my $password = ’lab’;

my $dbh = DBI->connect(

"dbi:Pg:dbname=$db;host=$host;port=$port",

$user, $password

) || die "can’t connect to $db as $user";

$dbh is now a database handle, connected to the chosen
database - in this case the DoC lab “films” database.

When we have finished, we need to disconnect the handle.
$dbh->disconnect;

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 17 / 24

Accessing databases Module DBI cont - Issuing queries

Once we have a connection to the database, we then need to be
able to issue queries over that connection to retrieve data. For
each SQL query, we prepare then execute the SQL:

my $sth = $dbh->prepare("select * from films");

$sth->execute || die "Database error: " . $dbh->errstr;

$sth is a statement handle, which contains the state of the query.
Should an error occur, $dbh->errstr gives us the last DBI error in
human-readable format.

Next, we should fetch the records returned by the query. There
are several methods in DBI to do this – we’ll use
fetchrow_hashref, which returns the next record (or undef
when no more) as a hash reference, with field names as keys and
field values as values:

while(my $record = $sth->fetchrow_hashref)

{

do something with $record hashref, eg...

print "title: $record->{title}\n";

}

Finally, we need to finish the statement handle:
$sth->finish;

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 18 / 24

Accessing databases Module DBI cont - example (eg6)

Let’s put all this together with an example (eg6):
use DBI;

my $db = "films";

my $host = "db.doc.ic.ac.uk";

my $port = 5432;

my $user = ’lab’;

my $password = ’lab’;

my $dbh = DBI->connect(

"dbi:Pg:dbname=$db;host=$host;port=$port",

$user, $password

) || die "can’t connect to $db as $user";

my $sth = $dbh->prepare("select * from films");

$sth->execute || die "Database error: " . $dbh->errstr;

while(my $record = $sth->fetchrow_hashref)

{

print "Title: $record->{title}\n";

print "Director: $record->{director}\n";

print "Origin: $record->{origin}\n";

print "Made: $record->{made}\n";

print "Length: $record->{length}\n";

print "-" x 30 . "\n";

}

$sth->finish;

$dbh->disconnect;

Let’s run it!

And then fix the warning:-)

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 19 / 24

Accessing databases Module DBI cont - example (eg6)

I recommend wrapping all this clutter up into a reusable sql query
function with a per-record callback function (a coderef):

fun sql_foreach($dbh, $sql, $recordcb)

{

my $sth = $dbh->prepare($sql);

$sth->execute || die "Database error: " . $dbh->errstr;

while(my $record = $sth->fetchrow_hashref)

{

$recordcb->($record);

}

$sth->finish;

}

fun printrecord($record)

{

print "Title: $record->{title}\n"; print "Director: $record->{director}\n";

print "Origin: $record->{origin}\n"; print "Made: $record->{made}\n";

my $length = $record->{length} // ’’; print "Length: $length\n"; print "-" x 30 . "\n";

}

sql_foreach($dbh, "select * from films", \&printrecord);

Note that if the per-record work is trivial you can call sql_foreach
with an anonymous coderef, as in:

my $numrecords = 0;

sql_foreach($dbh, "select count(*) from films",

fun ($r) { $numrecords = $r->{count} }); # or sub { $numrecords = $_[0]->{count} };

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 20 / 24

DBM - On-Disk Hashes Revisited

In the first session’s exercises, we briefly mentioned DBM - a very
efficient storage system which can associate an arbitrary string
with an arbitrary key with efficient indexed access.

Back then, we used dbmopen and dbmclose to access the file
using a platform-specific default DBM format. However, a much
better way is to use tie, since it will let us specify exactly which
DBM format to use (for there are many)!

Here’s our simple mksecret program from the first session, but
using tie instead to create an SDBM, which is good for small
amounts of data (eg7):

use Fcntl;

use SDBM_File;

tie(my %secret, ’SDBM_File’, ’secrets-sdbm’,

O_RDWR|O_CREAT, 0666

) || die "oops, couldn’t tie SDBM";

$secret{Romulan} = 1;

$secret{Klingon} = 1;

$secret{Vulcan} = 1;

untie(%secret);

Note that SDBM actually creates two files:
secrets-sdbm.pag and secrets-sdbm.dir.

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 21 / 24

Using tie to perform conversions

Using tie more than once allows us to convert between DBM
formats easily! Let’s convert our secrets file from SDBM to
Berkeley DB format, provided by the DB_File module (eg8):

use Fcntl;

use SDBM_File;

use DB_File;

tie(my %secret, ’SDBM_File’, ’secrets-sdbm’,

O_RDWR, 0666

) || die "oops, couldn’t tie SDBM";

tie(my %newsecret, ’DB_File’, ’secrets-bdb’,

O_RDWR|O_CREAT, 0666

) || die "oops, couldn’t tie BDB";

%newsecret = %secret; # shazam!

untie(%newsecret);

untie(%secret);

Berkeley DB is a single-file DBM format, and so it really writes a
file called secrets-bdb (with a .db file extension on some
platforms).

If in doubt which DBM format to use, perldoc AnyDBM File
provides useful information on which to choose in a given
situation.

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 22 / 24

Handling Command Line Options Module Getopt::Long

Many programs take extra options or switches on their command
line. For example, many Unix commands understand --help to
mean “tell the user how to use me”.

We’ve already discussed @ARGV, and we could obviously just use
that to detect and process switches. However, someone else has
already written a module: Getopt::Long.

Getopt::Long’s primary function is GetOptions, which looks at
@ARGV and deals with anything which looks like an option you’ve
told it about, removing them from @ARGV.

use Getopt::Long;

my $list;

my $format = "DB_File";

my $result = GetOptions(’list’ => \$list,

’format=s’ => \$format);

Here --list is merely a flag, whereas --format will require a
string (=s). Both --list and --format are optional.

On the next slide we’ll use Getopt::Long in anger, to provide a
multi-format DBM file viewer (eg9). As usual, consult perldoc
Getopt::Long.

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 23 / 24

Example - Getopt::Long and tie

use Fcntl;

use SDBM_File;

use DB_File;

use Getopt::Long;

my $format = "DB_File";

my $result = GetOptions(’format=s’ => \$format);

die "Usage: eg9 [--format=S] filename [secrets]\n"

unless $result && @ARGV >= 1;

my $filename = shift @ARGV;

tie(my %secret, $format, $filename, O_RDONLY, 0666) ||

die "can’t tie $filename using $format\n";

if(@ARGV == 0)

{

foreach (keys %secret)

{

print "$_ is a secret\n";

}

} else

{

foreach (@ARGV)

{

if(exists $secret{$_})

{

print "Yes, $_ is a secret\n";

} else

{

print "No, $_ is not a secret\n";

}

}

}

untie(%secret);

Duncan White (CSG) Perl Short Course: Fifth Session December 2012 24 / 24

	Contents
	Perl's Documentation System
	Extending Perl - Add-on Modules
	CPAN: the Comprehensive Perl Archive Network
	Where are Modules found?
	Adding a directory to the include path

	Perl Objects
	Creating Objects
	Using Objects

	Writing CGI scripts
	Use the CGI module, stupid!
	Processing Web Forms

	Fetching Webpages
	Module LWP::Simple
	Module HTML::Parser

	Accessing databases
	Module DBI - connecting
	Module DBI cont - Issuing queries
	Module DBI cont - example (eg6)

	DBM - On-Disk Hashes Revisited
	Using tie to perform conversions
	Handling Command Line Options
	Module Getopt::Long

	Example - Getopt::Long and tie

