
Perl Short Course: Sixth Session

Duncan C. White (d.white@imperial.ac.uk)

Dept of Computing,
Imperial College London

December 2012

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 1 / 1

Contents

In this session, we’ll see how we construct Perl modules:

creating Perl modules
controlling symbol export/import
how to write Perl classes
how to inherit classes

Perl’s approach to modularity, information hiding, abstraction
and OO is refreshingly lightweight: Perl constructs its modules
and classes using about half a dozen new concepts and keywords.

Modules in any language: allow you to split a large program into
separate source files and namespaces, controlling the interface.
These separate components are variously called modules,
packages, libraries, units or (in extreme cases) classes.

Now, let’s dive straight in, and see how easy it is to build a Perl
module from scratch: let’s implement a linked list type - without
using arrays. (Although we normally use arrays as lists in Perl,
inserting an element on the front of a large array requires
shuffling all the existing elements up 1, an expensive operation).

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 2 / 1

Contents

In this session, we’ll see how we construct Perl modules:

creating Perl modules
controlling symbol export/import
how to write Perl classes
how to inherit classes

Perl’s approach to modularity, information hiding, abstraction
and OO is refreshingly lightweight: Perl constructs its modules
and classes using about half a dozen new concepts and keywords.

Modules in any language: allow you to split a large program into
separate source files and namespaces, controlling the interface.
These separate components are variously called modules,
packages, libraries, units or (in extreme cases) classes.

Now, let’s dive straight in, and see how easy it is to build a Perl
module from scratch: let’s implement a linked list type - without
using arrays. (Although we normally use arrays as lists in Perl,
inserting an element on the front of a large array requires
shuffling all the existing elements up 1, an expensive operation).

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 2 / 1

Contents

In this session, we’ll see how we construct Perl modules:

creating Perl modules
controlling symbol export/import
how to write Perl classes
how to inherit classes

Perl’s approach to modularity, information hiding, abstraction
and OO is refreshingly lightweight: Perl constructs its modules
and classes using about half a dozen new concepts and keywords.

Modules in any language: allow you to split a large program into
separate source files and namespaces, controlling the interface.
These separate components are variously called modules,
packages, libraries, units or (in extreme cases) classes.

Now, let’s dive straight in, and see how easy it is to build a Perl
module from scratch: let’s implement a linked list type - without
using arrays. (Although we normally use arrays as lists in Perl,
inserting an element on the front of a large array requires
shuffling all the existing elements up 1, an expensive operation).

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 2 / 1

Contents

In this session, we’ll see how we construct Perl modules:

creating Perl modules
controlling symbol export/import
how to write Perl classes
how to inherit classes

Perl’s approach to modularity, information hiding, abstraction
and OO is refreshingly lightweight: Perl constructs its modules
and classes using about half a dozen new concepts and keywords.

Modules in any language: allow you to split a large program into
separate source files and namespaces, controlling the interface.
These separate components are variously called modules,
packages, libraries, units or (in extreme cases) classes.

Now, let’s dive straight in, and see how easy it is to build a Perl
module from scratch: let’s implement a linked list type - without
using arrays. (Although we normally use arrays as lists in Perl,
inserting an element on the front of a large array requires
shuffling all the existing elements up 1, an expensive operation).

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 2 / 1

Perl Modules List module (list-v0)

We might speculatively write the following main program (eg1),
using a module that doesn’t exist yet. (You’ll find this in the
inside the list-v0/ tarball directory):

use List; # if it exists!

die "Usage: eg1 wordfile [wordfile...]\n" unless @ARGV;

my $wordlist = List::nil();

while(my $line = <>) # for every line in every file

{

chomp $line;

$line =~ s/^\s+//; # remove leading..

$line =~ s/\s+$//; # .. and trailing whitespace

next unless $line; # skip empty lines

$line = lc($line);

my @wd = split(/\s+/, $line);

foreach my $word (@wd)

{

$wordlist = List::cons($word, $wordlist);

}

}

$wordlist = List::rev($wordlist);

my $len = List::len($wordlist);

print "len(list) = $len\n";

my $str = List::as_string($wordlist);

print "list = $str\n";

Syntax check this with perl -cw eg1 - you get a fatal error
(even Perl complains about a missing module!)

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 3 / 1

Perl Modules List module (list-v0)

We might speculatively write the following main program (eg1),
using a module that doesn’t exist yet. (You’ll find this in the
inside the list-v0/ tarball directory):

use List; # if it exists!

die "Usage: eg1 wordfile [wordfile...]\n" unless @ARGV;

my $wordlist = List::nil();

while(my $line = <>) # for every line in every file

{

chomp $line;

$line =~ s/^\s+//; # remove leading..

$line =~ s/\s+$//; # .. and trailing whitespace

next unless $line; # skip empty lines

$line = lc($line);

my @wd = split(/\s+/, $line);

foreach my $word (@wd)

{

$wordlist = List::cons($word, $wordlist);

}

}

$wordlist = List::rev($wordlist);

my $len = List::len($wordlist);

print "len(list) = $len\n";

my $str = List::as_string($wordlist);

print "list = $str\n";

Syntax check this with perl -cw eg1 - you get a fatal error
(even Perl complains about a missing module!)

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 3 / 1

Perl Modules List stub module (list-v1)

Create a stub module as follows (file List.pm in the list-v1/

examples tarball directory):
package List;

List module: linked lists using references. STUB VERSION..

use strict;

use warnings;

use Function::Parameters qw(:strict);

use Data::Dumper;

$l = nil(): - return an empty list

fun nil() { return "nil"; }

$l = cons($head, $tail) - return a new list node.

$head becomes the head of the new list, and $tail the tail.

fun cons($head, $tail) { return "cons"; }

$isnil = isnil($list) - return true iff the given list is nil

fun isnil($list) { return 1; }

($head, $tail) = headtail($list) - break nonempty list into head and tail

fun headtail($list) { return ("head", "tail"); }

$len = len($list) - return the length of the given list

fun len($list) { return 0; }

$revlist = rev($list) - return the reverse of $list

fun rev($list) { return "reverse"; }

$str = as_string($list) - return the printable form of the given list

fun as_string($list) { return "as_string"; }

1;

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 4 / 1

Perl Modules List stub module (list-v1)

What can we see immediately?

A Perl module called List is stored in a file called List.pm.

List.pm starts with the declaration ‘package List’ to give its’
functions (and global variables) a private namespace. The default
package is called main.
List.pm switches on strict mode, imports the new
Function::Parameters module and Data::Dumper, and then defines several
ordinary functions - with stub implementations at present. We’ve
chosen names rev() and len() to avoid future name clashes.
One weird detail is that each module must end with a spurious
true value, eg ‘1;’, showing that the module loaded successfully.
Such a module is imported into a program by the usual
‘use List’ syntax, just like pre-written modules.

Now syntax check both the module (perl -cw List.pm) and
eg1 (perl -cw eg1). Run eg1 ../wordlist to make it read a
small wordlist file.

Of course it doesn’t produce sensible answers - with a stub
module. We have to really implement module List!

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 5 / 1

Perl Modules List stub module (list-v1)

What can we see immediately?

A Perl module called List is stored in a file called List.pm.
List.pm starts with the declaration ‘package List’ to give its’
functions (and global variables) a private namespace. The default
package is called main.

List.pm switches on strict mode, imports the new
Function::Parameters module and Data::Dumper, and then defines several
ordinary functions - with stub implementations at present. We’ve
chosen names rev() and len() to avoid future name clashes.
One weird detail is that each module must end with a spurious
true value, eg ‘1;’, showing that the module loaded successfully.
Such a module is imported into a program by the usual
‘use List’ syntax, just like pre-written modules.

Now syntax check both the module (perl -cw List.pm) and
eg1 (perl -cw eg1). Run eg1 ../wordlist to make it read a
small wordlist file.

Of course it doesn’t produce sensible answers - with a stub
module. We have to really implement module List!

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 5 / 1

Perl Modules List stub module (list-v1)

What can we see immediately?

A Perl module called List is stored in a file called List.pm.
List.pm starts with the declaration ‘package List’ to give its’
functions (and global variables) a private namespace. The default
package is called main.
List.pm switches on strict mode, imports the new
Function::Parameters module and Data::Dumper, and then defines several
ordinary functions - with stub implementations at present. We’ve
chosen names rev() and len() to avoid future name clashes.

One weird detail is that each module must end with a spurious
true value, eg ‘1;’, showing that the module loaded successfully.
Such a module is imported into a program by the usual
‘use List’ syntax, just like pre-written modules.

Now syntax check both the module (perl -cw List.pm) and
eg1 (perl -cw eg1). Run eg1 ../wordlist to make it read a
small wordlist file.

Of course it doesn’t produce sensible answers - with a stub
module. We have to really implement module List!

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 5 / 1

Perl Modules List stub module (list-v1)

What can we see immediately?

A Perl module called List is stored in a file called List.pm.
List.pm starts with the declaration ‘package List’ to give its’
functions (and global variables) a private namespace. The default
package is called main.
List.pm switches on strict mode, imports the new
Function::Parameters module and Data::Dumper, and then defines several
ordinary functions - with stub implementations at present. We’ve
chosen names rev() and len() to avoid future name clashes.
One weird detail is that each module must end with a spurious
true value, eg ‘1;’, showing that the module loaded successfully.

Such a module is imported into a program by the usual
‘use List’ syntax, just like pre-written modules.

Now syntax check both the module (perl -cw List.pm) and
eg1 (perl -cw eg1). Run eg1 ../wordlist to make it read a
small wordlist file.

Of course it doesn’t produce sensible answers - with a stub
module. We have to really implement module List!

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 5 / 1

Perl Modules List stub module (list-v1)

What can we see immediately?

A Perl module called List is stored in a file called List.pm.
List.pm starts with the declaration ‘package List’ to give its’
functions (and global variables) a private namespace. The default
package is called main.
List.pm switches on strict mode, imports the new
Function::Parameters module and Data::Dumper, and then defines several
ordinary functions - with stub implementations at present. We’ve
chosen names rev() and len() to avoid future name clashes.
One weird detail is that each module must end with a spurious
true value, eg ‘1;’, showing that the module loaded successfully.
Such a module is imported into a program by the usual
‘use List’ syntax, just like pre-written modules.

Now syntax check both the module (perl -cw List.pm) and
eg1 (perl -cw eg1). Run eg1 ../wordlist to make it read a
small wordlist file.

Of course it doesn’t produce sensible answers - with a stub
module. We have to really implement module List!

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 5 / 1

Perl Modules List stub module (list-v1)

What can we see immediately?

A Perl module called List is stored in a file called List.pm.
List.pm starts with the declaration ‘package List’ to give its’
functions (and global variables) a private namespace. The default
package is called main.
List.pm switches on strict mode, imports the new
Function::Parameters module and Data::Dumper, and then defines several
ordinary functions - with stub implementations at present. We’ve
chosen names rev() and len() to avoid future name clashes.
One weird detail is that each module must end with a spurious
true value, eg ‘1;’, showing that the module loaded successfully.
Such a module is imported into a program by the usual
‘use List’ syntax, just like pre-written modules.

Now syntax check both the module (perl -cw List.pm) and
eg1 (perl -cw eg1). Run eg1 ../wordlist to make it read a
small wordlist file.

Of course it doesn’t produce sensible answers - with a stub
module. We have to really implement module List!

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 5 / 1

Perl Modules List stub module (list-v1)

What can we see immediately?

A Perl module called List is stored in a file called List.pm.
List.pm starts with the declaration ‘package List’ to give its’
functions (and global variables) a private namespace. The default
package is called main.
List.pm switches on strict mode, imports the new
Function::Parameters module and Data::Dumper, and then defines several
ordinary functions - with stub implementations at present. We’ve
chosen names rev() and len() to avoid future name clashes.
One weird detail is that each module must end with a spurious
true value, eg ‘1;’, showing that the module loaded successfully.
Such a module is imported into a program by the usual
‘use List’ syntax, just like pre-written modules.

Now syntax check both the module (perl -cw List.pm) and
eg1 (perl -cw eg1). Run eg1 ../wordlist to make it read a
small wordlist file.

Of course it doesn’t produce sensible answers - with a stub
module. We have to really implement module List!

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 5 / 1

Perl Modules Implementing the List module (list-v2)

To implement our linked lists, we must decide how to represent
empty (nil) and non-empty (cons(h,t)) lists. Let’s use the
nearest thing Perl has to pointers - references:

[] seems the obvious representation of nil, although undef is
another sensible choice.

[h, t] seems the most obvious representation of cons(h,t).
That’s a reference to a 2-element array, where the first array
element is the head and the second element is the tail.

fun nil() is thus written:
return [];

fun cons($head,$tail) is implemented by:
return [$head, $tail];

fun isnil($list) checks whether a list (array reference) is nil or not,
first doing a defensive sanity check, using Dumper to display the
unknown scalar if it’s not a list:

die "List::isnil, bad list ".Dumper($list) unless

ref($list) eq "ARRAY" && (@$list == 0 || @$list == 2);

return @$list == 0 ? 1 : 0;

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 6 / 1

Perl Modules Implementing the List module (list-v2)

To implement our linked lists, we must decide how to represent
empty (nil) and non-empty (cons(h,t)) lists. Let’s use the
nearest thing Perl has to pointers - references:

[] seems the obvious representation of nil, although undef is
another sensible choice.

[h, t] seems the most obvious representation of cons(h,t).
That’s a reference to a 2-element array, where the first array
element is the head and the second element is the tail.

fun nil() is thus written:
return [];

fun cons($head,$tail) is implemented by:
return [$head, $tail];

fun isnil($list) checks whether a list (array reference) is nil or not,
first doing a defensive sanity check, using Dumper to display the
unknown scalar if it’s not a list:

die "List::isnil, bad list ".Dumper($list) unless

ref($list) eq "ARRAY" && (@$list == 0 || @$list == 2);

return @$list == 0 ? 1 : 0;

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 6 / 1

Perl Modules Implementing the List module (list-v2)

To implement our linked lists, we must decide how to represent
empty (nil) and non-empty (cons(h,t)) lists. Let’s use the
nearest thing Perl has to pointers - references:

[] seems the obvious representation of nil, although undef is
another sensible choice.

[h, t] seems the most obvious representation of cons(h,t).
That’s a reference to a 2-element array, where the first array
element is the head and the second element is the tail.

fun nil() is thus written:
return [];

fun cons($head,$tail) is implemented by:
return [$head, $tail];

fun isnil($list) checks whether a list (array reference) is nil or not,
first doing a defensive sanity check, using Dumper to display the
unknown scalar if it’s not a list:

die "List::isnil, bad list ".Dumper($list) unless

ref($list) eq "ARRAY" && (@$list == 0 || @$list == 2);

return @$list == 0 ? 1 : 0;

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 6 / 1

Perl Modules Implementing the List module (list-v2)

To implement our linked lists, we must decide how to represent
empty (nil) and non-empty (cons(h,t)) lists. Let’s use the
nearest thing Perl has to pointers - references:

[] seems the obvious representation of nil, although undef is
another sensible choice.

[h, t] seems the most obvious representation of cons(h,t).
That’s a reference to a 2-element array, where the first array
element is the head and the second element is the tail.

fun nil() is thus written:
return [];

fun cons($head,$tail) is implemented by:
return [$head, $tail];

fun isnil($list) checks whether a list (array reference) is nil or not,
first doing a defensive sanity check, using Dumper to display the
unknown scalar if it’s not a list:

die "List::isnil, bad list ".Dumper($list) unless

ref($list) eq "ARRAY" && (@$list == 0 || @$list == 2);

return @$list == 0 ? 1 : 0;

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 6 / 1

Perl Modules Implementing the List module (list-v2)

To implement our linked lists, we must decide how to represent
empty (nil) and non-empty (cons(h,t)) lists. Let’s use the
nearest thing Perl has to pointers - references:

[] seems the obvious representation of nil, although undef is
another sensible choice.

[h, t] seems the most obvious representation of cons(h,t).
That’s a reference to a 2-element array, where the first array
element is the head and the second element is the tail.

fun nil() is thus written:
return [];

fun cons($head,$tail) is implemented by:
return [$head, $tail];

fun isnil($list) checks whether a list (array reference) is nil or not,
first doing a defensive sanity check, using Dumper to display the
unknown scalar if it’s not a list:

die "List::isnil, bad list ".Dumper($list) unless

ref($list) eq "ARRAY" && (@$list == 0 || @$list == 2);

return @$list == 0 ? 1 : 0;

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 6 / 1

Perl Modules Implementing the List module (list-v2)

fun headtail($list) is implemented by:
die "List::headtail, bad list ".Dumper($list) unless

ref($list) eq "ARRAY" && (@$list == 0 || @$list == 2);

die "List::headtail, empty list\n" if @$list == 0;

my($h, $t) = @$list;

return ($h, $t);

fun len($list) is implemented by:
my $len = 0;

while(! isnil($list))

{

(my $h, $list) = headtail($list);

$len++;

}

return $len;

You’ll find the full version of List.pm (containing all the above
plus rev and as_string) inside the list-v2/ tarball directory.

After syntax checking, if we rerun eg1 ../wordlist it should
actually report the number of words in the wordlist and display
the words as a comma-separated list. Check these via:

wc -w ../wordlist

cat ../wordlist

You can write many other useful list routines, append($l1, $l2),
$newl = copylist($l), even maplist {OP} $list and greplist {OP} $list.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 7 / 1

Perl Modules Implementing the List module (list-v2)

fun headtail($list) is implemented by:
die "List::headtail, bad list ".Dumper($list) unless

ref($list) eq "ARRAY" && (@$list == 0 || @$list == 2);

die "List::headtail, empty list\n" if @$list == 0;

my($h, $t) = @$list;

return ($h, $t);

fun len($list) is implemented by:
my $len = 0;

while(! isnil($list))

{

(my $h, $list) = headtail($list);

$len++;

}

return $len;

You’ll find the full version of List.pm (containing all the above
plus rev and as_string) inside the list-v2/ tarball directory.

After syntax checking, if we rerun eg1 ../wordlist it should
actually report the number of words in the wordlist and display
the words as a comma-separated list. Check these via:

wc -w ../wordlist

cat ../wordlist

You can write many other useful list routines, append($l1, $l2),
$newl = copylist($l), even maplist {OP} $list and greplist {OP} $list.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 7 / 1

Perl Modules Implementing the List module (list-v2)

fun headtail($list) is implemented by:
die "List::headtail, bad list ".Dumper($list) unless

ref($list) eq "ARRAY" && (@$list == 0 || @$list == 2);

die "List::headtail, empty list\n" if @$list == 0;

my($h, $t) = @$list;

return ($h, $t);

fun len($list) is implemented by:
my $len = 0;

while(! isnil($list))

{

(my $h, $list) = headtail($list);

$len++;

}

return $len;

You’ll find the full version of List.pm (containing all the above
plus rev and as_string) inside the list-v2/ tarball directory.

After syntax checking, if we rerun eg1 ../wordlist it should
actually report the number of words in the wordlist and display
the words as a comma-separated list. Check these via:

wc -w ../wordlist

cat ../wordlist

You can write many other useful list routines, append($l1, $l2),
$newl = copylist($l), even maplist {OP} $list and greplist {OP} $list.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 7 / 1

Perl Modules Implementing the List module (list-v2)

fun headtail($list) is implemented by:
die "List::headtail, bad list ".Dumper($list) unless

ref($list) eq "ARRAY" && (@$list == 0 || @$list == 2);

die "List::headtail, empty list\n" if @$list == 0;

my($h, $t) = @$list;

return ($h, $t);

fun len($list) is implemented by:
my $len = 0;

while(! isnil($list))

{

(my $h, $list) = headtail($list);

$len++;

}

return $len;

You’ll find the full version of List.pm (containing all the above
plus rev and as_string) inside the list-v2/ tarball directory.

After syntax checking, if we rerun eg1 ../wordlist it should
actually report the number of words in the wordlist and display
the words as a comma-separated list. Check these via:

wc -w ../wordlist

cat ../wordlist

You can write many other useful list routines, append($l1, $l2),
$newl = copylist($l), even maplist {OP} $list and greplist {OP} $list.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 7 / 1

Perl Modules Client Convenience: Printing very long lists (list-v3)

What if our list contains a million elements? Do we really want
as_string($list) to display the whole thing? Many programmers
might like the option of displaying only the first N elements!
Let’s add an optional second parameter to as_string, a per-call limit
(defaulting to 0 if missing):

fun as_string($list, $limit = 0)

{

my $str = "";

for(my $i = 1; ! isnil($list) && ($limit == 0 || $i <= $limit); $i++)

{

(my $h, $list) = headtail($list);

$str .= "$h,";

}

chop $str; # remove trailing ’,’

$str .= "..." unless isnil($list); # must show that list has been cutoff!

return "[$str]";

}

A system wide default limit would also be useful - add a shared
variable to List.pm, near the top: my $as_string_limit = 0;

Add a new setter function: fun as_string_limit($n) { $as_string_limit = $n; }

Now change as_string() to use the system wide limit (rather than 0)
as the default: fun as_string($list, $limit = $as_string_limit). list-v3/

contains this version. Play with it.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 8 / 1

Perl Modules Shared Variables: my vs our (list-v4)

We’ve just seen that we can declare a shared variable in a
module via ‘my $as_string_limit = 0’ near the top.

This variable is associated with the lexical scope - it is only
accessible in the List.pm source file, from the point of
declaration down to the bottom. Hence, only the package
functions can see such a ‘my’ variable, which is shared between
those functions - and truly private to them.

However, a second type of shared variables exist: package
variables, using ‘our’ not ‘my’. What’s the difference?

If we redefine ‘our $as_string_limit = 0’, it belongs to the package not
the file. Determined programmers can access such a variable
from outside the package via $List::as_string_limit = 20.

In general, use ‘my’ variables most of the time. Only use ‘our’

where there’s a good reason. Personally, I reckon abolishing
setter functions is an excellent reason!

list-v4/ contains the ‘limit+our’ version. Compare it with
list-v3/, play with both versions. Pick the one you prefer:-)

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 9 / 1

Perl Modules Shared Variables: my vs our (list-v4)

We’ve just seen that we can declare a shared variable in a
module via ‘my $as_string_limit = 0’ near the top.

This variable is associated with the lexical scope - it is only
accessible in the List.pm source file, from the point of
declaration down to the bottom. Hence, only the package
functions can see such a ‘my’ variable, which is shared between
those functions - and truly private to them.

However, a second type of shared variables exist: package
variables, using ‘our’ not ‘my’. What’s the difference?

If we redefine ‘our $as_string_limit = 0’, it belongs to the package not
the file. Determined programmers can access such a variable
from outside the package via $List::as_string_limit = 20.

In general, use ‘my’ variables most of the time. Only use ‘our’

where there’s a good reason. Personally, I reckon abolishing
setter functions is an excellent reason!

list-v4/ contains the ‘limit+our’ version. Compare it with
list-v3/, play with both versions. Pick the one you prefer:-)

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 9 / 1

Perl Modules Shared Variables: my vs our (list-v4)

We’ve just seen that we can declare a shared variable in a
module via ‘my $as_string_limit = 0’ near the top.

This variable is associated with the lexical scope - it is only
accessible in the List.pm source file, from the point of
declaration down to the bottom. Hence, only the package
functions can see such a ‘my’ variable, which is shared between
those functions - and truly private to them.

However, a second type of shared variables exist: package
variables, using ‘our’ not ‘my’. What’s the difference?

If we redefine ‘our $as_string_limit = 0’, it belongs to the package not
the file. Determined programmers can access such a variable
from outside the package via $List::as_string_limit = 20.

In general, use ‘my’ variables most of the time. Only use ‘our’

where there’s a good reason. Personally, I reckon abolishing
setter functions is an excellent reason!

list-v4/ contains the ‘limit+our’ version. Compare it with
list-v3/, play with both versions. Pick the one you prefer:-)

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 9 / 1

Perl Modules Shared Variables: my vs our (list-v4)

We’ve just seen that we can declare a shared variable in a
module via ‘my $as_string_limit = 0’ near the top.

This variable is associated with the lexical scope - it is only
accessible in the List.pm source file, from the point of
declaration down to the bottom. Hence, only the package
functions can see such a ‘my’ variable, which is shared between
those functions - and truly private to them.

However, a second type of shared variables exist: package
variables, using ‘our’ not ‘my’. What’s the difference?

If we redefine ‘our $as_string_limit = 0’, it belongs to the package not
the file. Determined programmers can access such a variable
from outside the package via $List::as_string_limit = 20.

In general, use ‘my’ variables most of the time. Only use ‘our’

where there’s a good reason. Personally, I reckon abolishing
setter functions is an excellent reason!

list-v4/ contains the ‘limit+our’ version. Compare it with
list-v3/, play with both versions. Pick the one you prefer:-)

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 9 / 1

Perl Modules Shared Variables: my vs our (list-v4)

We’ve just seen that we can declare a shared variable in a
module via ‘my $as_string_limit = 0’ near the top.

This variable is associated with the lexical scope - it is only
accessible in the List.pm source file, from the point of
declaration down to the bottom. Hence, only the package
functions can see such a ‘my’ variable, which is shared between
those functions - and truly private to them.

However, a second type of shared variables exist: package
variables, using ‘our’ not ‘my’. What’s the difference?

If we redefine ‘our $as_string_limit = 0’, it belongs to the package not
the file. Determined programmers can access such a variable
from outside the package via $List::as_string_limit = 20.

In general, use ‘my’ variables most of the time. Only use ‘our’

where there’s a good reason. Personally, I reckon abolishing
setter functions is an excellent reason!

list-v4/ contains the ‘limit+our’ version. Compare it with
list-v3/, play with both versions. Pick the one you prefer:-)

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 9 / 1

Perl Modules Interface Control

This List::headtail stuff is horrid. The module designer
should be able to choose which symbols to export, and the
module user choose which exported symbols to import.

Use Perl’s special module Exporter to do this. Exporter

defines three conceptual sets, which are ‘our’ variables:

The set of symbols exported from a module and imported into a
client by default (our @EXPORT).
The set of additional symbols exported from a module which a
client can choose to import (our @EXPORT_OK).
The set of named tags, each of which represents a set of symbols
which may be imported via the tag name (our %EXPORT_TAGS).

We will cover the first two - see perldoc Exporter for all the
gory details (tagged symbol sets, importing symbols matching a
regex, etc).

To make List an Exporter module, add:
use Exporter qw(import);

our @EXPORT = qw(nil cons isnil headtail len rev as_string);

our @EXPORT_OK = qw(append);

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 10 / 1

Perl Modules Interface Control

This List::headtail stuff is horrid. The module designer
should be able to choose which symbols to export, and the
module user choose which exported symbols to import.

Use Perl’s special module Exporter to do this. Exporter

defines three conceptual sets, which are ‘our’ variables:

The set of symbols exported from a module and imported into a
client by default (our @EXPORT).

The set of additional symbols exported from a module which a
client can choose to import (our @EXPORT_OK).
The set of named tags, each of which represents a set of symbols
which may be imported via the tag name (our %EXPORT_TAGS).

We will cover the first two - see perldoc Exporter for all the
gory details (tagged symbol sets, importing symbols matching a
regex, etc).

To make List an Exporter module, add:
use Exporter qw(import);

our @EXPORT = qw(nil cons isnil headtail len rev as_string);

our @EXPORT_OK = qw(append);

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 10 / 1

Perl Modules Interface Control

This List::headtail stuff is horrid. The module designer
should be able to choose which symbols to export, and the
module user choose which exported symbols to import.

Use Perl’s special module Exporter to do this. Exporter

defines three conceptual sets, which are ‘our’ variables:

The set of symbols exported from a module and imported into a
client by default (our @EXPORT).
The set of additional symbols exported from a module which a
client can choose to import (our @EXPORT_OK).

The set of named tags, each of which represents a set of symbols
which may be imported via the tag name (our %EXPORT_TAGS).

We will cover the first two - see perldoc Exporter for all the
gory details (tagged symbol sets, importing symbols matching a
regex, etc).

To make List an Exporter module, add:
use Exporter qw(import);

our @EXPORT = qw(nil cons isnil headtail len rev as_string);

our @EXPORT_OK = qw(append);

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 10 / 1

Perl Modules Interface Control

This List::headtail stuff is horrid. The module designer
should be able to choose which symbols to export, and the
module user choose which exported symbols to import.

Use Perl’s special module Exporter to do this. Exporter

defines three conceptual sets, which are ‘our’ variables:

The set of symbols exported from a module and imported into a
client by default (our @EXPORT).
The set of additional symbols exported from a module which a
client can choose to import (our @EXPORT_OK).
The set of named tags, each of which represents a set of symbols
which may be imported via the tag name (our %EXPORT_TAGS).

We will cover the first two - see perldoc Exporter for all the
gory details (tagged symbol sets, importing symbols matching a
regex, etc).

To make List an Exporter module, add:
use Exporter qw(import);

our @EXPORT = qw(nil cons isnil headtail len rev as_string);

our @EXPORT_OK = qw(append);

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 10 / 1

Perl Modules Interface Control

This List::headtail stuff is horrid. The module designer
should be able to choose which symbols to export, and the
module user choose which exported symbols to import.

Use Perl’s special module Exporter to do this. Exporter

defines three conceptual sets, which are ‘our’ variables:

The set of symbols exported from a module and imported into a
client by default (our @EXPORT).
The set of additional symbols exported from a module which a
client can choose to import (our @EXPORT_OK).
The set of named tags, each of which represents a set of symbols
which may be imported via the tag name (our %EXPORT_TAGS).

We will cover the first two - see perldoc Exporter for all the
gory details (tagged symbol sets, importing symbols matching a
regex, etc).

To make List an Exporter module, add:
use Exporter qw(import);

our @EXPORT = qw(nil cons isnil headtail len rev as_string);

our @EXPORT_OK = qw(append);

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 10 / 1

Perl Modules Interface Control

This List::headtail stuff is horrid. The module designer
should be able to choose which symbols to export, and the
module user choose which exported symbols to import.

Use Perl’s special module Exporter to do this. Exporter

defines three conceptual sets, which are ‘our’ variables:

The set of symbols exported from a module and imported into a
client by default (our @EXPORT).
The set of additional symbols exported from a module which a
client can choose to import (our @EXPORT_OK).
The set of named tags, each of which represents a set of symbols
which may be imported via the tag name (our %EXPORT_TAGS).

We will cover the first two - see perldoc Exporter for all the
gory details (tagged symbol sets, importing symbols matching a
regex, etc).

To make List an Exporter module, add:
use Exporter qw(import);

our @EXPORT = qw(nil cons isnil headtail len rev as_string);

our @EXPORT_OK = qw(append);

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 10 / 1

Perl Modules Interface Control (list-v5)

The client controls what is imported via ‘use’ variations:
use module; import the default set of symbols - everything on the module’s

@EXPORT list.
use module (); import no symbols.
use module qw(A B C); import only symbols A, B and C - these symbols must either be on

the default list @EXPORT or the optional list @EXPORT_OK.
use module qw(:DEFAULT A B C); import the default set (everything on @EXPORT) and symbols A, B

and C from the optional list @EXPORT_OK.

You’ll find the Exporter-friendly version of List.pm and eg1

(with all List:: prefixes removed, and append() added) inside
the tarball’s list-v5/ directory. Experiment with ‘use’ variations
if you like.

What can/should we Export?

Export only public functions, as few as possible.
Put as little as possible (eg. the “inner core” functions that
everyone will need) into @EXPORT. Put all the occasionally used
functions in @EXPORT_OK.
Name clashes: If two modules both export symbol X (especially
in their @EXPORT arrays), and a single client script tries to import
X from both modules, you get a perl warning:
packagename::X redefined. The second X is used!

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 11 / 1

Perl Modules Interface Control (list-v5)

The client controls what is imported via ‘use’ variations:
use module; import the default set of symbols - everything on the module’s

@EXPORT list.
use module (); import no symbols.
use module qw(A B C); import only symbols A, B and C - these symbols must either be on

the default list @EXPORT or the optional list @EXPORT_OK.
use module qw(:DEFAULT A B C); import the default set (everything on @EXPORT) and symbols A, B

and C from the optional list @EXPORT_OK.

You’ll find the Exporter-friendly version of List.pm and eg1

(with all List:: prefixes removed, and append() added) inside
the tarball’s list-v5/ directory. Experiment with ‘use’ variations
if you like.

What can/should we Export?

Export only public functions, as few as possible.
Put as little as possible (eg. the “inner core” functions that
everyone will need) into @EXPORT. Put all the occasionally used
functions in @EXPORT_OK.
Name clashes: If two modules both export symbol X (especially
in their @EXPORT arrays), and a single client script tries to import
X from both modules, you get a perl warning:
packagename::X redefined. The second X is used!

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 11 / 1

Perl Objects and Classes

The purpose of classes in any language is to provide objects -
tidy little collections of data and behaviour.

We’ve already seen how to use predefined classes to create and
use objects, now we’ll see how to write classes.

The main concepts involved here are objects, classes, class
methods, object methods and inheritance. Here’s a rough set of
Perlish definitions:

A class is a Perl module, usually exporting nothing, containing
class and object methods obeying the following conventions.
An object is some piece of reference data - usually a hashref or an
arrayref - which remembers the name of it’s own class. This is
called a blessed reference.
A class method (such as the class constructor) is a function that
takes the class name as it’s first argument. The constructor is
often called new - but you can have any number of constructors
with any names.
An object method takes the object ($self) as the first argument.
Single and multiple inheritance are provided by a simple package
search algorithm used to locate method functions.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 12 / 1

Perl Objects and Classes

The purpose of classes in any language is to provide objects -
tidy little collections of data and behaviour.

We’ve already seen how to use predefined classes to create and
use objects, now we’ll see how to write classes.

The main concepts involved here are objects, classes, class
methods, object methods and inheritance. Here’s a rough set of
Perlish definitions:

A class is a Perl module, usually exporting nothing, containing
class and object methods obeying the following conventions.
An object is some piece of reference data - usually a hashref or an
arrayref - which remembers the name of it’s own class. This is
called a blessed reference.
A class method (such as the class constructor) is a function that
takes the class name as it’s first argument. The constructor is
often called new - but you can have any number of constructors
with any names.
An object method takes the object ($self) as the first argument.
Single and multiple inheritance are provided by a simple package
search algorithm used to locate method functions.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 12 / 1

Perl Objects and Classes

The purpose of classes in any language is to provide objects -
tidy little collections of data and behaviour.

We’ve already seen how to use predefined classes to create and
use objects, now we’ll see how to write classes.

The main concepts involved here are objects, classes, class
methods, object methods and inheritance. Here’s a rough set of
Perlish definitions:

A class is a Perl module, usually exporting nothing, containing
class and object methods obeying the following conventions.

An object is some piece of reference data - usually a hashref or an
arrayref - which remembers the name of it’s own class. This is
called a blessed reference.
A class method (such as the class constructor) is a function that
takes the class name as it’s first argument. The constructor is
often called new - but you can have any number of constructors
with any names.
An object method takes the object ($self) as the first argument.
Single and multiple inheritance are provided by a simple package
search algorithm used to locate method functions.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 12 / 1

Perl Objects and Classes

The purpose of classes in any language is to provide objects -
tidy little collections of data and behaviour.

We’ve already seen how to use predefined classes to create and
use objects, now we’ll see how to write classes.

The main concepts involved here are objects, classes, class
methods, object methods and inheritance. Here’s a rough set of
Perlish definitions:

A class is a Perl module, usually exporting nothing, containing
class and object methods obeying the following conventions.
An object is some piece of reference data - usually a hashref or an
arrayref - which remembers the name of it’s own class. This is
called a blessed reference.

A class method (such as the class constructor) is a function that
takes the class name as it’s first argument. The constructor is
often called new - but you can have any number of constructors
with any names.
An object method takes the object ($self) as the first argument.
Single and multiple inheritance are provided by a simple package
search algorithm used to locate method functions.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 12 / 1

Perl Objects and Classes

The purpose of classes in any language is to provide objects -
tidy little collections of data and behaviour.

We’ve already seen how to use predefined classes to create and
use objects, now we’ll see how to write classes.

The main concepts involved here are objects, classes, class
methods, object methods and inheritance. Here’s a rough set of
Perlish definitions:

A class is a Perl module, usually exporting nothing, containing
class and object methods obeying the following conventions.
An object is some piece of reference data - usually a hashref or an
arrayref - which remembers the name of it’s own class. This is
called a blessed reference.
A class method (such as the class constructor) is a function that
takes the class name as it’s first argument. The constructor is
often called new - but you can have any number of constructors
with any names.

An object method takes the object ($self) as the first argument.
Single and multiple inheritance are provided by a simple package
search algorithm used to locate method functions.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 12 / 1

Perl Objects and Classes

The purpose of classes in any language is to provide objects -
tidy little collections of data and behaviour.

We’ve already seen how to use predefined classes to create and
use objects, now we’ll see how to write classes.

The main concepts involved here are objects, classes, class
methods, object methods and inheritance. Here’s a rough set of
Perlish definitions:

A class is a Perl module, usually exporting nothing, containing
class and object methods obeying the following conventions.
An object is some piece of reference data - usually a hashref or an
arrayref - which remembers the name of it’s own class. This is
called a blessed reference.
A class method (such as the class constructor) is a function that
takes the class name as it’s first argument. The constructor is
often called new - but you can have any number of constructors
with any names.
An object method takes the object ($self) as the first argument.

Single and multiple inheritance are provided by a simple package
search algorithm used to locate method functions.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 12 / 1

Perl Objects and Classes

The purpose of classes in any language is to provide objects -
tidy little collections of data and behaviour.

We’ve already seen how to use predefined classes to create and
use objects, now we’ll see how to write classes.

The main concepts involved here are objects, classes, class
methods, object methods and inheritance. Here’s a rough set of
Perlish definitions:

A class is a Perl module, usually exporting nothing, containing
class and object methods obeying the following conventions.
An object is some piece of reference data - usually a hashref or an
arrayref - which remembers the name of it’s own class. This is
called a blessed reference.
A class method (such as the class constructor) is a function that
takes the class name as it’s first argument. The constructor is
often called new - but you can have any number of constructors
with any names.
An object method takes the object ($self) as the first argument.
Single and multiple inheritance are provided by a simple package
search algorithm used to locate method functions.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 12 / 1

Perl Objects and Classes Example Perl Class - List.pm (OO version list-v6)

Let’s take our List module and turn it into a class:

nil() and cons($head,$tail) become constructors, so take the classname
as an extra first argument, and use bless $object, $class to associate
the object reference with the class name (ie. “List”).

Here are the new versions:
$l = List->nil - return an empty list

fun nil($class)

{

return bless [], $class;

}

$l = List->cons($head, $tail) - return a new list node.

$head becomes the head of the new list, and $tail the tail.

fun cons($class, $head, $tail)

{

return bless [$head, $tail], $class;

}

Wherever we call nil() or cons($head,$tail) - either in the List module
or in clients using the List module, ie eg1 - we have to write
List->nil() or List->cons($head,$tail) to provide the classname for blessing.

All other functions already take a list as the first argument, so
coincidentally already obey the object method conventions. We
could leave them alone, although...

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 13 / 1

Perl Objects and Classes Example Perl Class - List.pm (OO version list-v6)

Let’s take our List module and turn it into a class:

nil() and cons($head,$tail) become constructors, so take the classname
as an extra first argument, and use bless $object, $class to associate
the object reference with the class name (ie. “List”).

Here are the new versions:
$l = List->nil - return an empty list

fun nil($class)

{

return bless [], $class;

}

$l = List->cons($head, $tail) - return a new list node.

$head becomes the head of the new list, and $tail the tail.

fun cons($class, $head, $tail)

{

return bless [$head, $tail], $class;

}

Wherever we call nil() or cons($head,$tail) - either in the List module
or in clients using the List module, ie eg1 - we have to write
List->nil() or List->cons($head,$tail) to provide the classname for blessing.

All other functions already take a list as the first argument, so
coincidentally already obey the object method conventions. We
could leave them alone, although...

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 13 / 1

Perl Objects and Classes Example Perl Class - List.pm (OO version list-v6)

You probably should update the comments - for clarity - as in:
$isnil = $list->isnil - return true iff the given list is nil

($head, $tail) = $list->headtail - break nonempty list into head and tail

$len = $list->len - return the length of the given list

However, there’s one subtlety: isnil() and headtail() have checks of
the form:

die "....." unless

ref($list) eq "ARRAY" && (@$list == 0 || @$list == 2);

These now fail, because ref($blessed_object_ref) returns the classname
the object belongs to - i.e. “List”. We could change the tests
to read: ref($list) eq "List", but a better alternative is: $list->isa("List").
Note that you can leave object method calls in their non OO
syntax, eg. isnil($list), or write them in the OO form $list->isnil.

(New addition): if we’re prepared to rename $list as $self

throughout, Function::Parameters has another piece of new
syntax to help simplify method declarations:

method name(args) # equivalent to fun name($self, args)

You’ll find the OO version of List.pm (using the new ‘method’
syntax) and eg1 (using OO syntax) inside the tarball’s list-v6/

directory.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 14 / 1

Perl Objects and Classes Example Perl Class - List.pm (OO version list-v6)

You probably should update the comments - for clarity - as in:
$isnil = $list->isnil - return true iff the given list is nil

($head, $tail) = $list->headtail - break nonempty list into head and tail

$len = $list->len - return the length of the given list

However, there’s one subtlety: isnil() and headtail() have checks of
the form:

die "....." unless

ref($list) eq "ARRAY" && (@$list == 0 || @$list == 2);

These now fail, because ref($blessed_object_ref) returns the classname
the object belongs to - i.e. “List”. We could change the tests
to read: ref($list) eq "List", but a better alternative is: $list->isa("List").
Note that you can leave object method calls in their non OO
syntax, eg. isnil($list), or write them in the OO form $list->isnil.
(New addition): if we’re prepared to rename $list as $self

throughout, Function::Parameters has another piece of new
syntax to help simplify method declarations:

method name(args) # equivalent to fun name($self, args)

You’ll find the OO version of List.pm (using the new ‘method’
syntax) and eg1 (using OO syntax) inside the tarball’s list-v6/

directory.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 14 / 1

Perl Objects and Classes Example Perl Class - List.pm (OO version list-v6)

You probably should update the comments - for clarity - as in:
$isnil = $list->isnil - return true iff the given list is nil

($head, $tail) = $list->headtail - break nonempty list into head and tail

$len = $list->len - return the length of the given list

However, there’s one subtlety: isnil() and headtail() have checks of
the form:

die "....." unless

ref($list) eq "ARRAY" && (@$list == 0 || @$list == 2);

These now fail, because ref($blessed_object_ref) returns the classname
the object belongs to - i.e. “List”. We could change the tests
to read: ref($list) eq "List", but a better alternative is: $list->isa("List").
Note that you can leave object method calls in their non OO
syntax, eg. isnil($list), or write them in the OO form $list->isnil.
(New addition): if we’re prepared to rename $list as $self

throughout, Function::Parameters has another piece of new
syntax to help simplify method declarations:

method name(args) # equivalent to fun name($self, args)

You’ll find the OO version of List.pm (using the new ‘method’
syntax) and eg1 (using OO syntax) inside the tarball’s list-v6/

directory.
Duncan White (CSG) Perl Short Course: Sixth Session December 2012 14 / 1

Perl Objects and Classes Aside - Overloading Stringification (list-v7)

Perl has an advanced feature called operator overloading. One
strange “operator” is called stringify, written ’""’, which
controls how our objects are converted into strings.

To enable this, add the following into List.pm below the
declaration of as_string:

Operator overloading of "stringify" (turn into a string)

use overload ’""’ => \&overload_as_string;

fun overload_as_string($list, $x, $y) # don’t care about last 2 params

{

return $list->as_string;

}

Now, when any List object such as $list is used in a string
context, eg. variable interpolation, Perl will do a method call
$list->overload_as_string(undef,0) and interpolate the returned value. The
last two lines of eg1 can be written as:

print "list = $wordlist\n";

You’ll find the ‘with stringification’ version of List.pm and an
altered version of eg1 (using interpolation as above) inside the
tarball’s list-v7/ directory. Syntax check and rerun.
This is so convenient that I’ve started writing more classes than I
ever used to - simply to get automatic stringification.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 15 / 1

Perl Objects and Classes Aside - Overloading Stringification (list-v7)

Perl has an advanced feature called operator overloading. One
strange “operator” is called stringify, written ’""’, which
controls how our objects are converted into strings.
To enable this, add the following into List.pm below the
declaration of as_string:

Operator overloading of "stringify" (turn into a string)

use overload ’""’ => \&overload_as_string;

fun overload_as_string($list, $x, $y) # don’t care about last 2 params

{

return $list->as_string;

}

Now, when any List object such as $list is used in a string
context, eg. variable interpolation, Perl will do a method call
$list->overload_as_string(undef,0) and interpolate the returned value. The
last two lines of eg1 can be written as:

print "list = $wordlist\n";

You’ll find the ‘with stringification’ version of List.pm and an
altered version of eg1 (using interpolation as above) inside the
tarball’s list-v7/ directory. Syntax check and rerun.
This is so convenient that I’ve started writing more classes than I
ever used to - simply to get automatic stringification.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 15 / 1

Perl Objects and Classes Aside - Overloading Stringification (list-v7)

Perl has an advanced feature called operator overloading. One
strange “operator” is called stringify, written ’""’, which
controls how our objects are converted into strings.
To enable this, add the following into List.pm below the
declaration of as_string:

Operator overloading of "stringify" (turn into a string)

use overload ’""’ => \&overload_as_string;

fun overload_as_string($list, $x, $y) # don’t care about last 2 params

{

return $list->as_string;

}

Now, when any List object such as $list is used in a string
context, eg. variable interpolation, Perl will do a method call
$list->overload_as_string(undef,0) and interpolate the returned value. The
last two lines of eg1 can be written as:

print "list = $wordlist\n";

You’ll find the ‘with stringification’ version of List.pm and an
altered version of eg1 (using interpolation as above) inside the
tarball’s list-v7/ directory. Syntax check and rerun.

This is so convenient that I’ve started writing more classes than I
ever used to - simply to get automatic stringification.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 15 / 1

Perl Objects and Classes Aside - Overloading Stringification (list-v7)

Perl has an advanced feature called operator overloading. One
strange “operator” is called stringify, written ’""’, which
controls how our objects are converted into strings.
To enable this, add the following into List.pm below the
declaration of as_string:

Operator overloading of "stringify" (turn into a string)

use overload ’""’ => \&overload_as_string;

fun overload_as_string($list, $x, $y) # don’t care about last 2 params

{

return $list->as_string;

}

Now, when any List object such as $list is used in a string
context, eg. variable interpolation, Perl will do a method call
$list->overload_as_string(undef,0) and interpolate the returned value. The
last two lines of eg1 can be written as:

print "list = $wordlist\n";

You’ll find the ‘with stringification’ version of List.pm and an
altered version of eg1 (using interpolation as above) inside the
tarball’s list-v7/ directory. Syntax check and rerun.
This is so convenient that I’ve started writing more classes than I
ever used to - simply to get automatic stringification.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 15 / 1

Perl Objects and Classes Another Perl Class - Person.pm (person-v1)

New example: model attributes of a Person:

package Person;

use strict;

use warnings;

use Function::Parameters qw(:strict);

my %default = (NAME=>"Shirley", SEX=>"f", AGE=>26);

the object constructor

fun new($class, %arg) {

my $obj = bless({}, $class);

$obj->{NAME} = $arg{NAME} // $default{NAME};

$obj->{SEX} = $arg{SEX} // $default{SEX};

$obj->{AGE} = $arg{AGE} // $default{AGE};

return $obj;

}

get/set methods - set the value if given extra arg

method name($value = undef) {

$self->{NAME} = $value if defined $value;

return $self->{NAME};

}

method sex($value = undef) {

$self->{SEX} = $value if defined $value;

return $self->{SEX};

}

method age($value = undef) {

$self->{AGE} = $value if defined $value;

return $self->{AGE};

}

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 16 / 1

Perl Objects and Classes Another Perl Class - Person.pm (person-v1)

Person cont:
method as_string # stringification

{

my $class = ref($self); my $name = $self->name;

my $age = $self->age; my $sex = $self->sex;

return "$class(name=$name, age=$age, sex=$sex)";

}

use overload ’""’ => \&overload_as_string;

fun overload_as_string($list, $x, $y) { return $list->as_string; }

1;

Here’s eg2, the main program that uses Person:
use Person;

my $dunc = Person->new(NAME => "Duncan", AGE => 45, SEX => "m");

print "$dunc\n";

$dunc->age(20); $dunc->name("Young dunc");

print "$dunc\n";

When syntax checked and run, eg2 produces:
Person(name=Duncan, age=45, sex=m)

Person(name=Young dunc, age=20, sex=m)

We can reimplement all the get/set methods (person-v2):
method _getset($field, $value = undef) {

$self->{$field} = $value if defined $value;

return $self->{$field};

}

method name($value = undef) { return $self->_getset("NAME", $value); }

method sex($value = undef) { return $self->_getset("SEX" , $value); }

method age($value = undef) { return $self->_getset("AGE" , $value); }

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 17 / 1

Perl Objects and Classes Another Perl Class - Person.pm (person-v1)

Person cont:
method as_string # stringification

{

my $class = ref($self); my $name = $self->name;

my $age = $self->age; my $sex = $self->sex;

return "$class(name=$name, age=$age, sex=$sex)";

}

use overload ’""’ => \&overload_as_string;

fun overload_as_string($list, $x, $y) { return $list->as_string; }

1;

Here’s eg2, the main program that uses Person:
use Person;

my $dunc = Person->new(NAME => "Duncan", AGE => 45, SEX => "m");

print "$dunc\n";

$dunc->age(20); $dunc->name("Young dunc");

print "$dunc\n";

When syntax checked and run, eg2 produces:
Person(name=Duncan, age=45, sex=m)

Person(name=Young dunc, age=20, sex=m)

We can reimplement all the get/set methods (person-v2):
method _getset($field, $value = undef) {

$self->{$field} = $value if defined $value;

return $self->{$field};

}

method name($value = undef) { return $self->_getset("NAME", $value); }

method sex($value = undef) { return $self->_getset("SEX" , $value); }

method age($value = undef) { return $self->_getset("AGE" , $value); }

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 17 / 1

Perl Objects and Classes Inheritance = Method Search

Now let’s see some inheritance, sometimes known as subclassing.
Perl implements single and multiple inheritance as follows:

A Perl class can name one or more parent classes via:
use base qw(PARENT1 PARENT2...);

These relationships are used to determine which package’s
function should be invoked when a method call is made. Here’s
the method search algorithm for a method (say hello):

Start the search in the object’s class (the package the object was
blessed into). If that package has a hello function, use that.
Otherwise, perform a depth-first search of the first parent class.
If not found, depth-first search in the second parent class.
And so on through the remaining parent classes.
If still not found, report an error.

Note that this search algorithm is even used for constructors -
starting at the named class. Unlike many other OO languages,
only one constructor method is called automatically.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 18 / 1

Perl Objects and Classes Inheritance = Method Search

Now let’s see some inheritance, sometimes known as subclassing.
Perl implements single and multiple inheritance as follows:

A Perl class can name one or more parent classes via:
use base qw(PARENT1 PARENT2...);

These relationships are used to determine which package’s
function should be invoked when a method call is made. Here’s
the method search algorithm for a method (say hello):

Start the search in the object’s class (the package the object was
blessed into). If that package has a hello function, use that.
Otherwise, perform a depth-first search of the first parent class.
If not found, depth-first search in the second parent class.
And so on through the remaining parent classes.
If still not found, report an error.

Note that this search algorithm is even used for constructors -
starting at the named class. Unlike many other OO languages,
only one constructor method is called automatically.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 18 / 1

Perl Objects and Classes Inheritance = Method Search

Now let’s see some inheritance, sometimes known as subclassing.
Perl implements single and multiple inheritance as follows:

A Perl class can name one or more parent classes via:
use base qw(PARENT1 PARENT2...);

These relationships are used to determine which package’s
function should be invoked when a method call is made. Here’s
the method search algorithm for a method (say hello):

Start the search in the object’s class (the package the object was
blessed into). If that package has a hello function, use that.

Otherwise, perform a depth-first search of the first parent class.
If not found, depth-first search in the second parent class.
And so on through the remaining parent classes.
If still not found, report an error.

Note that this search algorithm is even used for constructors -
starting at the named class. Unlike many other OO languages,
only one constructor method is called automatically.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 18 / 1

Perl Objects and Classes Inheritance = Method Search

Now let’s see some inheritance, sometimes known as subclassing.
Perl implements single and multiple inheritance as follows:

A Perl class can name one or more parent classes via:
use base qw(PARENT1 PARENT2...);

These relationships are used to determine which package’s
function should be invoked when a method call is made. Here’s
the method search algorithm for a method (say hello):

Start the search in the object’s class (the package the object was
blessed into). If that package has a hello function, use that.
Otherwise, perform a depth-first search of the first parent class.

If not found, depth-first search in the second parent class.
And so on through the remaining parent classes.
If still not found, report an error.

Note that this search algorithm is even used for constructors -
starting at the named class. Unlike many other OO languages,
only one constructor method is called automatically.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 18 / 1

Perl Objects and Classes Inheritance = Method Search

Now let’s see some inheritance, sometimes known as subclassing.
Perl implements single and multiple inheritance as follows:

A Perl class can name one or more parent classes via:
use base qw(PARENT1 PARENT2...);

These relationships are used to determine which package’s
function should be invoked when a method call is made. Here’s
the method search algorithm for a method (say hello):

Start the search in the object’s class (the package the object was
blessed into). If that package has a hello function, use that.
Otherwise, perform a depth-first search of the first parent class.
If not found, depth-first search in the second parent class.

And so on through the remaining parent classes.
If still not found, report an error.

Note that this search algorithm is even used for constructors -
starting at the named class. Unlike many other OO languages,
only one constructor method is called automatically.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 18 / 1

Perl Objects and Classes Inheritance = Method Search

Now let’s see some inheritance, sometimes known as subclassing.
Perl implements single and multiple inheritance as follows:

A Perl class can name one or more parent classes via:
use base qw(PARENT1 PARENT2...);

These relationships are used to determine which package’s
function should be invoked when a method call is made. Here’s
the method search algorithm for a method (say hello):

Start the search in the object’s class (the package the object was
blessed into). If that package has a hello function, use that.
Otherwise, perform a depth-first search of the first parent class.
If not found, depth-first search in the second parent class.
And so on through the remaining parent classes.

If still not found, report an error.

Note that this search algorithm is even used for constructors -
starting at the named class. Unlike many other OO languages,
only one constructor method is called automatically.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 18 / 1

Perl Objects and Classes Inheritance = Method Search

Now let’s see some inheritance, sometimes known as subclassing.
Perl implements single and multiple inheritance as follows:

A Perl class can name one or more parent classes via:
use base qw(PARENT1 PARENT2...);

These relationships are used to determine which package’s
function should be invoked when a method call is made. Here’s
the method search algorithm for a method (say hello):

Start the search in the object’s class (the package the object was
blessed into). If that package has a hello function, use that.
Otherwise, perform a depth-first search of the first parent class.
If not found, depth-first search in the second parent class.
And so on through the remaining parent classes.
If still not found, report an error.

Note that this search algorithm is even used for constructors -
starting at the named class. Unlike many other OO languages,
only one constructor method is called automatically.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 18 / 1

Perl Objects and Classes Inheritance = Method Search

Now let’s see some inheritance, sometimes known as subclassing.
Perl implements single and multiple inheritance as follows:

A Perl class can name one or more parent classes via:
use base qw(PARENT1 PARENT2...);

These relationships are used to determine which package’s
function should be invoked when a method call is made. Here’s
the method search algorithm for a method (say hello):

Start the search in the object’s class (the package the object was
blessed into). If that package has a hello function, use that.
Otherwise, perform a depth-first search of the first parent class.
If not found, depth-first search in the second parent class.
And so on through the remaining parent classes.
If still not found, report an error.

Note that this search algorithm is even used for constructors -
starting at the named class. Unlike many other OO languages,
only one constructor method is called automatically.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 18 / 1

Perl Objects and Classes Subclassing: Programmers are People too (programmer-v1)

Let’s create a Programmer subclass of Person, with an
additional property - a hashref storing language skills (each skill
is a language name and an associated competence level).

It’s good practice when subclassing to check that an empty
(stub) subclass doesn’t break things, before adding new stuff.

So, here’s our stub subclass version of Programmer:
stub class Programmer - reuse all methods!

package Programmer;

use strict; use warnings;

use base qw(Person);

1;

Let’s make eg3 a copy of our final version of eg2, and then
change both occurrences of Person to Programmer, i.e.:

use Programmer;

my $dunc = Programmer->new(NAME => "Duncan",

AGE => 45,

SEX => ’m’);

What do we expect to happen? It should work just like before,
but the object should know that it’s a Programmer! After syntax
checking, run eg3 to see what happens:

Programmer(name=Duncan, age=45, sex=m)

Programmer(name=Young dunc, age=20, sex=m)

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 19 / 1

Perl Objects and Classes Subclassing: Programmers are People too (programmer-v1)

Let’s create a Programmer subclass of Person, with an
additional property - a hashref storing language skills (each skill
is a language name and an associated competence level).

It’s good practice when subclassing to check that an empty
(stub) subclass doesn’t break things, before adding new stuff.

So, here’s our stub subclass version of Programmer:
stub class Programmer - reuse all methods!

package Programmer;

use strict; use warnings;

use base qw(Person);

1;

Let’s make eg3 a copy of our final version of eg2, and then
change both occurrences of Person to Programmer, i.e.:

use Programmer;

my $dunc = Programmer->new(NAME => "Duncan",

AGE => 45,

SEX => ’m’);

What do we expect to happen? It should work just like before,
but the object should know that it’s a Programmer! After syntax
checking, run eg3 to see what happens:

Programmer(name=Duncan, age=45, sex=m)

Programmer(name=Young dunc, age=20, sex=m)

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 19 / 1

Perl Objects and Classes Subclassing: Programmers are People too (programmer-v1)

Let’s create a Programmer subclass of Person, with an
additional property - a hashref storing language skills (each skill
is a language name and an associated competence level).

It’s good practice when subclassing to check that an empty
(stub) subclass doesn’t break things, before adding new stuff.

So, here’s our stub subclass version of Programmer:
stub class Programmer - reuse all methods!

package Programmer;

use strict; use warnings;

use base qw(Person);

1;

Let’s make eg3 a copy of our final version of eg2, and then
change both occurrences of Person to Programmer, i.e.:

use Programmer;

my $dunc = Programmer->new(NAME => "Duncan",

AGE => 45,

SEX => ’m’);

What do we expect to happen? It should work just like before,
but the object should know that it’s a Programmer! After syntax
checking, run eg3 to see what happens:

Programmer(name=Duncan, age=45, sex=m)

Programmer(name=Young dunc, age=20, sex=m)

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 19 / 1

Perl Objects and Classes Subclassing: Programmers are People too (programmer-v1)

Let’s create a Programmer subclass of Person, with an
additional property - a hashref storing language skills (each skill
is a language name and an associated competence level).

It’s good practice when subclassing to check that an empty
(stub) subclass doesn’t break things, before adding new stuff.

So, here’s our stub subclass version of Programmer:
stub class Programmer - reuse all methods!

package Programmer;

use strict; use warnings;

use base qw(Person);

1;

Let’s make eg3 a copy of our final version of eg2, and then
change both occurrences of Person to Programmer, i.e.:

use Programmer;

my $dunc = Programmer->new(NAME => "Duncan",

AGE => 45,

SEX => ’m’);

What do we expect to happen? It should work just like before,
but the object should know that it’s a Programmer! After syntax
checking, run eg3 to see what happens:

Programmer(name=Duncan, age=45, sex=m)

Programmer(name=Young dunc, age=20, sex=m)

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 19 / 1

Perl Objects and Classes Subclassing: Programmers are People too (programmer-v1)

Let’s create a Programmer subclass of Person, with an
additional property - a hashref storing language skills (each skill
is a language name and an associated competence level).

It’s good practice when subclassing to check that an empty
(stub) subclass doesn’t break things, before adding new stuff.

So, here’s our stub subclass version of Programmer:
stub class Programmer - reuse all methods!

package Programmer;

use strict; use warnings;

use base qw(Person);

1;

Let’s make eg3 a copy of our final version of eg2, and then
change both occurrences of Person to Programmer, i.e.:

use Programmer;

my $dunc = Programmer->new(NAME => "Duncan",

AGE => 45,

SEX => ’m’);

What do we expect to happen? It should work just like before,
but the object should know that it’s a Programmer! After syntax
checking, run eg3 to see what happens:

Programmer(name=Duncan, age=45, sex=m)

Programmer(name=Young dunc, age=20, sex=m)

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 19 / 1

Perl Objects and Classes Subclassing: Programmers are People too (programmer-v1)

But how did it work? Let’s start by understanding how the
constructor call works:

Constructor call: Programmer->new(args)

Does Programmer::new exist? no! continue search...
Find the first parent class of Programmer Programmer’s first (only!) parent = Person

Does Person::new exist? yes! use that!
Call Person::new as a class method: Person::new("Programmer",args)

Person::new is called with the arguments:
$class = "Programmer";

%arg = ("NAME" => "Duncan", "AGE" => 45, "SEX" => "m");

and then creates a new object, blesses it into package $class

(i.e. “Programmer”), initializes it, and finally returns it.

Now consider an object method call such as $dunc->age(20),
where $dunc is a Programmer:

Method call: $dunc->age(20)

Does Programmer::age exist? no! continue search...
Find the first parent class of Programmer Programmer’s first (only!) parent = Person

Does Person::age exist? yes! use that!
Call Person::age as an object method: Person::age($dunc,20)

Note that stringifying our object for printing still works - so even
the stringification overloading must be inherited properly.

Ok, now let’s start really implementing Programmer.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 20 / 1

Perl Objects and Classes Subclassing: Programmers are People too (programmer-v1)

But how did it work? Let’s start by understanding how the
constructor call works:

Constructor call: Programmer->new(args)

Does Programmer::new exist? no! continue search...
Find the first parent class of Programmer Programmer’s first (only!) parent = Person

Does Person::new exist? yes! use that!
Call Person::new as a class method: Person::new("Programmer",args)

Person::new is called with the arguments:
$class = "Programmer";

%arg = ("NAME" => "Duncan", "AGE" => 45, "SEX" => "m");

and then creates a new object, blesses it into package $class

(i.e. “Programmer”), initializes it, and finally returns it.

Now consider an object method call such as $dunc->age(20),
where $dunc is a Programmer:

Method call: $dunc->age(20)

Does Programmer::age exist? no! continue search...
Find the first parent class of Programmer Programmer’s first (only!) parent = Person

Does Person::age exist? yes! use that!
Call Person::age as an object method: Person::age($dunc,20)

Note that stringifying our object for printing still works - so even
the stringification overloading must be inherited properly.

Ok, now let’s start really implementing Programmer.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 20 / 1

Perl Objects and Classes Subclassing: Programmers are People too (programmer-v1)

But how did it work? Let’s start by understanding how the
constructor call works:

Constructor call: Programmer->new(args)

Does Programmer::new exist? no! continue search...
Find the first parent class of Programmer Programmer’s first (only!) parent = Person

Does Person::new exist? yes! use that!
Call Person::new as a class method: Person::new("Programmer",args)

Person::new is called with the arguments:
$class = "Programmer";

%arg = ("NAME" => "Duncan", "AGE" => 45, "SEX" => "m");

and then creates a new object, blesses it into package $class

(i.e. “Programmer”), initializes it, and finally returns it.

Now consider an object method call such as $dunc->age(20),
where $dunc is a Programmer:

Method call: $dunc->age(20)

Does Programmer::age exist? no! continue search...
Find the first parent class of Programmer Programmer’s first (only!) parent = Person

Does Person::age exist? yes! use that!
Call Person::age as an object method: Person::age($dunc,20)

Note that stringifying our object for printing still works - so even
the stringification overloading must be inherited properly.

Ok, now let’s start really implementing Programmer.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 20 / 1

Perl Objects and Classes Subclassing: Programmers are People too (programmer-v1)

But how did it work? Let’s start by understanding how the
constructor call works:

Constructor call: Programmer->new(args)

Does Programmer::new exist? no! continue search...
Find the first parent class of Programmer Programmer’s first (only!) parent = Person

Does Person::new exist? yes! use that!
Call Person::new as a class method: Person::new("Programmer",args)

Person::new is called with the arguments:
$class = "Programmer";

%arg = ("NAME" => "Duncan", "AGE" => 45, "SEX" => "m");

and then creates a new object, blesses it into package $class

(i.e. “Programmer”), initializes it, and finally returns it.

Now consider an object method call such as $dunc->age(20),
where $dunc is a Programmer:

Method call: $dunc->age(20)

Does Programmer::age exist? no! continue search...
Find the first parent class of Programmer Programmer’s first (only!) parent = Person

Does Person::age exist? yes! use that!
Call Person::age as an object method: Person::age($dunc,20)

Note that stringifying our object for printing still works - so even
the stringification overloading must be inherited properly.

Ok, now let’s start really implementing Programmer.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 20 / 1

Perl Objects and Classes Subclassing: Programmers are People too (programmer-v1)

But how did it work? Let’s start by understanding how the
constructor call works:

Constructor call: Programmer->new(args)

Does Programmer::new exist? no! continue search...
Find the first parent class of Programmer Programmer’s first (only!) parent = Person

Does Person::new exist? yes! use that!
Call Person::new as a class method: Person::new("Programmer",args)

Person::new is called with the arguments:
$class = "Programmer";

%arg = ("NAME" => "Duncan", "AGE" => 45, "SEX" => "m");

and then creates a new object, blesses it into package $class

(i.e. “Programmer”), initializes it, and finally returns it.

Now consider an object method call such as $dunc->age(20),
where $dunc is a Programmer:

Method call: $dunc->age(20)

Does Programmer::age exist? no! continue search...
Find the first parent class of Programmer Programmer’s first (only!) parent = Person

Does Person::age exist? yes! use that!
Call Person::age as an object method: Person::age($dunc,20)

Note that stringifying our object for printing still works - so even
the stringification overloading must be inherited properly.

Ok, now let’s start really implementing Programmer.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 20 / 1

Perl Objects and Classes Subclassing: Implementing Programmers (programmer-v2)

Add a new skills method and override as_string:
package Programmer;

use strict; use warnings;

use Function::Parameters qw(:strict);

use base qw(Person);

method skills($value = undef) { return $self->_getset("SKILLS", $value); }

method skills_as_string { # additional method

my $sk = $self->skills;

my @str = map { "$_:$sk->{$_}" } sort(keys(%$sk));

return "{" . join(", ", @str) . "}";

}

method as_string { # override method

my $pers = $self->Person::as_string;

$pers =~ s/ \)$//;

my $skills = $self->skills_as_string;

return "$pers, skills=$skills)";

}

1;

$self->Person::as_string is an example of method chaining, which does a
normal method call to Person::as_string.
Note that we don’t have to override _getset() or even
overload_as_string(). When overload_as_string() is called to stringify a
Programmer it performs a method call to $self->as_string() which
calls Programmer::as_string.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 21 / 1

Perl Objects and Classes Subclassing: Implementing Programmers (programmer-v2)

Add a new skills method and override as_string:
package Programmer;

use strict; use warnings;

use Function::Parameters qw(:strict);

use base qw(Person);

method skills($value = undef) { return $self->_getset("SKILLS", $value); }

method skills_as_string { # additional method

my $sk = $self->skills;

my @str = map { "$_:$sk->{$_}" } sort(keys(%$sk));

return "{" . join(", ", @str) . "}";

}

method as_string { # override method

my $pers = $self->Person::as_string;

$pers =~ s/ \)$//;

my $skills = $self->skills_as_string;

return "$pers, skills=$skills)";

}

1;

$self->Person::as_string is an example of method chaining, which does a
normal method call to Person::as_string.
Note that we don’t have to override _getset() or even
overload_as_string(). When overload_as_string() is called to stringify a
Programmer it performs a method call to $self->as_string() which
calls Programmer::as_string.

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 21 / 1

Perl Objects and Classes Subclassing: Implementing Programmers (programmer-v2)

Here’s our test harness eg3a which uses the new features:
use strict;

use warnings;

use Programmer;

my $dunc = Programmer->new(NAME => "Duncan",

AGE => 45,

SEX => "m",

SKILLS => {

"C" => "godlike",

"perl" => "godlike",

"C++" => "ok",

"java" => "minimal"

});

print "$dunc\n";

$dunc->age(20);

$dunc->name("Young dunc");

$dunc->skills({ "C" => "good", "prolog" => "good" });

print "$dunc\n";

When syntax checked and run, eg3a produces:
Programmer: name=Duncan, age=45, sex=m

skills={}

Programmer: name=Young dunc, age=20, sex=m

skills={C:good, pascal:ok}

But... this is awful! Where have all Duncan’s skills gone?
Answers on a postcard please:-)

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 22 / 1

Perl Objects and Classes Subclassing: Implementing Programmers (programmer-v2)

Here’s our test harness eg3a which uses the new features:
use strict;

use warnings;

use Programmer;

my $dunc = Programmer->new(NAME => "Duncan",

AGE => 45,

SEX => "m",

SKILLS => {

"C" => "godlike",

"perl" => "godlike",

"C++" => "ok",

"java" => "minimal"

});

print "$dunc\n";

$dunc->age(20);

$dunc->name("Young dunc");

$dunc->skills({ "C" => "good", "prolog" => "good" });

print "$dunc\n";

When syntax checked and run, eg3a produces:
Programmer: name=Duncan, age=45, sex=m

skills={}

Programmer: name=Young dunc, age=20, sex=m

skills={C:good, pascal:ok}

But... this is awful! Where have all Duncan’s skills gone?
Answers on a postcard please:-)

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 22 / 1

Perl Objects and Classes Subclassing: Implementing Programmers (programmer-v2)

Here’s our test harness eg3a which uses the new features:
use strict;

use warnings;

use Programmer;

my $dunc = Programmer->new(NAME => "Duncan",

AGE => 45,

SEX => "m",

SKILLS => {

"C" => "godlike",

"perl" => "godlike",

"C++" => "ok",

"java" => "minimal"

});

print "$dunc\n";

$dunc->age(20);

$dunc->name("Young dunc");

$dunc->skills({ "C" => "good", "prolog" => "good" });

print "$dunc\n";

When syntax checked and run, eg3a produces:
Programmer: name=Duncan, age=45, sex=m

skills={}

Programmer: name=Young dunc, age=20, sex=m

skills={C:good, pascal:ok}

But... this is awful! Where have all Duncan’s skills gone?
Answers on a postcard please:-)

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 22 / 1

Perl Objects and Classes Subclassing: Skills for Programmers (programmer-v3)

The problem is that Person::new has no code to initialize a
SKILLS field. And nor should it!

So we must define our own Programmer constructor. The
following works, but repeats Person::new’s initializations:

my %default = (NAME=>"Shirley", SEX=>"f", AGE=>26, SKILLS=>{java=>"ok"});

sub new { # the object constructor

my($class, %arg) = @_;

my $self = bless({}, $class);

$self->{NAME} = $arg{NAME} // $default{NAME};

$self->{SEX} = $arg{SEX} // $default{SEX};

$self->{AGE} = $arg{AGE} // $default{AGE};

$self->{SKILLS} = $arg{SKILLS} // $default{SKILLS};

return $self;

}

Here we’re breaking a cardinal rule of programmers: Don’t
Repeat Yourself - this is very prone to errors.

What we need is constructor chaining - create a Person, change
it to an instance of $class (by a second bless) and add skills:

my %default = (SKILLS => { java => "ok" });

fun new($class, %arg) {

my $obj = Person->new(%arg); # create a person

$obj = bless($obj, $class); # now a $class

$obj->{SKILLS} = $arg{SKILLS} // $default{SKILLS}; # add skills

return $obj;

}

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 23 / 1

Perl Objects and Classes Subclassing: Skills for Programmers (programmer-v3)

The problem is that Person::new has no code to initialize a
SKILLS field. And nor should it!

So we must define our own Programmer constructor. The
following works, but repeats Person::new’s initializations:

my %default = (NAME=>"Shirley", SEX=>"f", AGE=>26, SKILLS=>{java=>"ok"});

sub new { # the object constructor

my($class, %arg) = @_;

my $self = bless({}, $class);

$self->{NAME} = $arg{NAME} // $default{NAME};

$self->{SEX} = $arg{SEX} // $default{SEX};

$self->{AGE} = $arg{AGE} // $default{AGE};

$self->{SKILLS} = $arg{SKILLS} // $default{SKILLS};

return $self;

}

Here we’re breaking a cardinal rule of programmers: Don’t
Repeat Yourself - this is very prone to errors.

What we need is constructor chaining - create a Person, change
it to an instance of $class (by a second bless) and add skills:

my %default = (SKILLS => { java => "ok" });

fun new($class, %arg) {

my $obj = Person->new(%arg); # create a person

$obj = bless($obj, $class); # now a $class

$obj->{SKILLS} = $arg{SKILLS} // $default{SKILLS}; # add skills

return $obj;

}

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 23 / 1

Perl Objects and Classes Subclassing: Skills for Programmers (programmer-v3)

The problem is that Person::new has no code to initialize a
SKILLS field. And nor should it!

So we must define our own Programmer constructor. The
following works, but repeats Person::new’s initializations:

my %default = (NAME=>"Shirley", SEX=>"f", AGE=>26, SKILLS=>{java=>"ok"});

sub new { # the object constructor

my($class, %arg) = @_;

my $self = bless({}, $class);

$self->{NAME} = $arg{NAME} // $default{NAME};

$self->{SEX} = $arg{SEX} // $default{SEX};

$self->{AGE} = $arg{AGE} // $default{AGE};

$self->{SKILLS} = $arg{SKILLS} // $default{SKILLS};

return $self;

}

Here we’re breaking a cardinal rule of programmers: Don’t
Repeat Yourself - this is very prone to errors.

What we need is constructor chaining - create a Person, change
it to an instance of $class (by a second bless) and add skills:

my %default = (SKILLS => { java => "ok" });

fun new($class, %arg) {

my $obj = Person->new(%arg); # create a person

$obj = bless($obj, $class); # now a $class

$obj->{SKILLS} = $arg{SKILLS} // $default{SKILLS}; # add skills

return $obj;

}

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 23 / 1

Perl Objects and Classes Subclassing: Skills for Programmers (programmer-v3)

The problem is that Person::new has no code to initialize a
SKILLS field. And nor should it!

So we must define our own Programmer constructor. The
following works, but repeats Person::new’s initializations:

my %default = (NAME=>"Shirley", SEX=>"f", AGE=>26, SKILLS=>{java=>"ok"});

sub new { # the object constructor

my($class, %arg) = @_;

my $self = bless({}, $class);

$self->{NAME} = $arg{NAME} // $default{NAME};

$self->{SEX} = $arg{SEX} // $default{SEX};

$self->{AGE} = $arg{AGE} // $default{AGE};

$self->{SKILLS} = $arg{SKILLS} // $default{SKILLS};

return $self;

}

Here we’re breaking a cardinal rule of programmers: Don’t
Repeat Yourself - this is very prone to errors.

What we need is constructor chaining - create a Person, change
it to an instance of $class (by a second bless) and add skills:

my %default = (SKILLS => { java => "ok" });

fun new($class, %arg) {

my $obj = Person->new(%arg); # create a person

$obj = bless($obj, $class); # now a $class

$obj->{SKILLS} = $arg{SKILLS} // $default{SKILLS}; # add skills

return $obj;

}

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 23 / 1

Perl Objects and Classes Lists of People and Programmers (list-of-programmers)

Give this version (inside the tarball programmer-v3/ dir) a try.
Isn’t there a better way? The extra notes document on the
website has some more ideas. But this’ll do us for now!

Our final thought is that we have List, Person and Programmer
classes. Do they work together? Yes! Here’s eg4:

use strict; use warnings;

use Programmer; use List;

my $dunc = Programmer->new(NAME => "Duncan",

AGE => 45,

SEX => "m",

SKILLS => {

"C" => "godlike",

"perl" => "godlike",

"C++" => "ok",

"java" => "minimal"

});

my $bob = Person->new(NAME => "Bob", SEX => ’m’);

my $shirley = Person->new;

my $list = List->cons($shirley, List->cons($dunc, List->cons($bob, List->nil)));

print "$list\n";

When run, in the list-of-programmers/ tarball directory, this
produces (very slightly reformatted for clarity):

[

Person(name=Shirley, age=26, sex=f),

Programmer(name=Duncan, age=45, sex=m, skills={C:godlike, perl:godlike}),

Person(name=Bob, age=26, sex=m)

]

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 24 / 1

Perl Objects and Classes Lists of People and Programmers (list-of-programmers)

Give this version (inside the tarball programmer-v3/ dir) a try.
Isn’t there a better way? The extra notes document on the
website has some more ideas. But this’ll do us for now!
Our final thought is that we have List, Person and Programmer
classes. Do they work together? Yes! Here’s eg4:

use strict; use warnings;

use Programmer; use List;

my $dunc = Programmer->new(NAME => "Duncan",

AGE => 45,

SEX => "m",

SKILLS => {

"C" => "godlike",

"perl" => "godlike",

"C++" => "ok",

"java" => "minimal"

});

my $bob = Person->new(NAME => "Bob", SEX => ’m’);

my $shirley = Person->new;

my $list = List->cons($shirley, List->cons($dunc, List->cons($bob, List->nil)));

print "$list\n";

When run, in the list-of-programmers/ tarball directory, this
produces (very slightly reformatted for clarity):

[

Person(name=Shirley, age=26, sex=f),

Programmer(name=Duncan, age=45, sex=m, skills={C:godlike, perl:godlike}),

Person(name=Bob, age=26, sex=m)

]

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 24 / 1

Perl Objects and Classes Lists of People and Programmers (list-of-programmers)

Give this version (inside the tarball programmer-v3/ dir) a try.
Isn’t there a better way? The extra notes document on the
website has some more ideas. But this’ll do us for now!
Our final thought is that we have List, Person and Programmer
classes. Do they work together? Yes! Here’s eg4:

use strict; use warnings;

use Programmer; use List;

my $dunc = Programmer->new(NAME => "Duncan",

AGE => 45,

SEX => "m",

SKILLS => {

"C" => "godlike",

"perl" => "godlike",

"C++" => "ok",

"java" => "minimal"

});

my $bob = Person->new(NAME => "Bob", SEX => ’m’);

my $shirley = Person->new;

my $list = List->cons($shirley, List->cons($dunc, List->cons($bob, List->nil)));

print "$list\n";

When run, in the list-of-programmers/ tarball directory, this
produces (very slightly reformatted for clarity):

[

Person(name=Shirley, age=26, sex=f),

Programmer(name=Duncan, age=45, sex=m, skills={C:godlike, perl:godlike}),

Person(name=Bob, age=26, sex=m)

]

Duncan White (CSG) Perl Short Course: Sixth Session December 2012 24 / 1

