
Perl Short Course: Seventh Session

Duncan C. White (d.white@imperial.ac.uk)

Dept of Computing,
Imperial College London

December 2012

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 1 / 22

Contents

Most programmers come to Perl from imperative/OO languages
like C and Java, so there’s a tendency to use Perl as a Super C.

But Perl has many functional programming techniques which we
can use in our own programs:

map and grep
code references for higher-order functions
passing functions around as values
data-driven programming: coderefs in data structures
coderefs are closures
function factories: functions that return functions!
iterators, finite and infinite
currying
lazy evaluation - handling infinite Linked lists

So in this lecture, I’m going to try to persuade you that Perl is a
functional language. Well, sort of.

I’m using the new Function::Parameter syntax
(fun name(args)) throughout, as it’s much prettier.

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 2 / 22

Functional Programming Techniques Most obvious: map and grep

We’ve already seen Perl’s built-in map and grep operators,
enabling you to transform every element of a list, or select
interesting elements from a list, but we haven’t stressed that
these are higher order functions.

For example, eg1:
my @orig = (1,2,3,4); # 1,2,3,4

my @double = map { $_ * 2 } @orig; # 2,4,6,8

my @twicelong = map { $_, $_ * 2 } @orig; # 1,2,2,4,3,6,4,8

my %doublehash = map { $_ => $_ * 2 } @orig; # 1=>2, 2=>4, 3=>6, 4=>8

my @odd = grep { $_ % 2 == 1 } @orig; my $odd=join(’,’,@odd); # (1,3)

my @even = grep { $_ % 2 == 0 } @orig; my $even=join(’,’,@even);# (2,4)

print "odd: $odd, even: $even\n";

my @sq = grep { my $r=int(sqrt($_)); $r*$r == $_ } @orig; # (1,4)

my $sq = join(’,’,@sq);

print "sq: $sq\n";

Recall that map and grep are roughly:

map OP ARRAY is grep OP ARRAY is

my @result = (); my @result = ();

foreach (ARRAY) foreach (ARRAY)

{ {

push @result, OP($_); push @result, $_ if OP($_);

} }

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 3 / 22

Functional Programming Techniques Functions as First Order Citizens

The most fundamental Functional Programming concept is
passing functions around as values.

You can do this in Perl using a coderef, a reference to a function.
Like a pointer to a function in C terms.

For example: eg2 and eg3:
fun double_scalar($n) fun double_array(@x)

{ {

return $n * 2; return map { $_ * 2 } @x;

} }

my $coderef = \&double_scalar; my $coderef = \&double_array;

TIME PASSES... # TIME PASSES...

my $scalar = $coderef->(10); my @array = $coderef->(1, 2, 3);

print "scalar: $scalar\n"; my $str = join(’,’,@array);

print "array: $str\n";

Will produce 20 and (2,4,6) as output.

Note that a considerable amount of time may pass between
taking the reference and calling the referenced function,
symbolised by TIME PASSES above.

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 4 / 22

Functional Programming Techniques Functions as First Order Citizens

Can generalise this to eg4:
fun double_scalar($n)

{

return $n * 2;

}

fun double_array(@x)

{

return map { $_ * 2 } @x;

}

fun apply($coderef, @args)

{

return $coderef->(@args);

}

my $scalar = apply(\&double_scalar, 10);

print "scalar: $scalar\n";

my @array = apply(\&double_array, 1, 2, 3);

my $str = join(’,’,@array);

print "array: $str\n";

The results are the same as before.

You might wonder whether you need to name little helper
functions like double_scalar if the only use of them is to make
a coderef via \&double_scalar.

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 5 / 22

Functional Programming Techniques Functions as First Order Citizens

You’d be right to wonder! Use anonymous coderefs as in eg5:
fun apply($coderef, @args)

{

return $coderef->(@args);

}

my $scalar = apply(fun ($x) { return $x * 2 }, 10);

print "scalar: $scalar\n";

my @array = apply(fun (@x) { return map { $_ * 2 } @x }, 1, 2, 3);

my $str = join(’,’,@array);

print "array: $str\n";

If we add a prototype to apply via:
fun apply($coderef,@args) :(&@) # or sub (&@) { my($coderef,@args)=@_;..

(Here, & tells Perl the given argument must be a coderef.)

Then add the following inside apply:
local $_ = $args[0];

(local saves the old value of the global $_, before setting it to
the given value, the new value persists until apply returns when
the old value is restored.)

Now we can write map like code using $_:
my $scalar = apply { $_ * 2 } 10;

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 6 / 22

Functional Programming Techniques Data-Driven Programming: Coderefs in Data Structures

Coderefs can be built into data structures such as:
my %op = (

’+’ => fun ($x,$y) { $x + $y },

’-’ => fun ($x,$y) { $x - $y },

’*’ => fun ($x,$y) { $x * $y },

’/’ => fun ($x,$y) { $x / $y },

);

Then a particular coderef can be invoked as follows:
my $operator = "*"; my $x = 10; my $y = 20;

my $value = $op{$operator}->($x, $y);

We can use the above technique to build a simple Reverse Polish
Notation (RPN) evaluator:

fun eval_rpn(@atom) # each atom: operator or number

{

my @stack; # evaluation stack

foreach my $atom (@atom)

{

if($atom =~ /^\d+$/) # number?

{

push @stack, $atom;

} else # operator?

{

die "eval_rpn: bad atom $atom\n" unless exists $op{$atom};

my $y = pop @stack; my $x = pop @stack;

push @stack, $op{$atom}->($x, $y);

}

}

return pop @stack;

}

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 7 / 22

Functional Programming Techniques Data-Driven Programming: Coderefs in Data Structures

The above RPN evaluator, with some more error checking and
example calls such as:

my $n = eval_rpn(qw(1 2 3 * + 4 - 5 *));

is eg6. Try it out.

This technique is often called data-driven or table-driven
programming, very easy to extend by modifying the table.

For example, add the following operators (giving eg7):
my %op = (

....

’%’ => fun ($x,$y) { $x % $y },

’^’ => fun ($x,$y) { $x ** $y },

’>’ => fun ($x,$y) { $x > $y },

’swap’ => fun ($x,$y) { ($y, $x) },

);

% and ^ are conventional binary operators, but note that swap
takes 2 inputs and produces 2 outputs - the same two, swapped!

This works because whatever the operator returns, whether one
or many results, is pushed onto the stack.

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 8 / 22

Functional Programming Techniques Data-Driven Programming: Coderefs in Data Structures

To vary the number of inputs each operator takes, change the
data structure and code slightly (giving eg8).

First, change the data structure:
my %op = (

’+’ => [2, fun ($x,$y) { $x + $y }],

’-’ => [2, fun ($x,$y) { $x - $y }],

’*’ => [2, fun ($x,$y) { $x * $y }],

’/’ => [2, fun ($x,$y) { $x / $y }],

’%’ => [2, fun ($x,$y) { $x % $y }],

...

);

Here, each hash value is changed from a coderef to a reference to
a 2-element list, i.e. a 2-tuple, of the form:

[no_of_args, code_ref].

So each existing binary operator op => function pair becomes:
op => [2, function]

But now we can add unary and trinary ops as follows:
my %op = (

...

’neg’ => [1, fun ($x) { - $x }],

’sqrt’ => [1, fun ($x) { sqrt($x) }],

’ifelse’ => [3, fun ($x,$y,$z) { $x ? $y : $z }],

);

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 9 / 22

Functional Programming Techniques Data-Driven Programming: Coderefs in Data Structures

The operator invocation code changes to:
my($nargs, $func) = @{$op{$atom}};

my $depth = @stack;

die "eval_rpn: stack depth $depth when $nargs needed\n"

if $depth < $nargs;

my @args = reverse map { pop @stack } 1..$nargs;

push @stack, $func->(@args);

I rather like the args = reverse map {pop} 1..n line:-)

This now allows a call such as:
my $n = eval_rpn(qw(7 5 * 4 8 * > 1 neg 2 neg ifelse));

This is equivalent to the more normal expression:
if(7*5 > 4*8) -1 else -2

Which, because 35 > 32, gives -1.

Change the 5 to a 4, this (because 28 <= 32) gives -2.

One could make further extensions to this RPN calculator, in
particular variables could be added easily enough (store them in a
hash, add get and set operators). But we must move on.

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 10 / 22

Functional Programming Techniques Functions returning Functions: Closures and Iterators

So far, we’ve only seen passing coderefs into functions.

However, you can write a function factory which constructs and
returns a coderef. For example:

fun timesn($n)

{

return fun ($x) { return $n * $x };

}

timesn(N) delivers you a newly minted coderef which, when it is
later called with a single argument, multiplies it by N.

For example (eg9):
my $doubler = timesn(2);

my $d = $doubler->(10); # 20

my $tripler = timesn(3);

my $t = $tripler->(10); # 30

print "d=$d, t=$t\n";

Subtlety: in C, a function pointer is simply a machine address. In
Perl, a coderef is a closure: a machine address plus a private
environment. In this case, each timesn() call has a different
local variable $n which the coderef must remember.

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 11 / 22

Functional Programming Techniques Functions returning Functions: Closures and Iterators

Objection 1: the previous example only used one coderef at a
time. Replace the calls as follows (eg10):

my $doubler = timesn(2);

my $tripler = timesn(3);

foreach my $arg (@ARGV)

{

my $f = $arg%2 == 1 ? $doubler : $tripler;

my $x = $f->($arg);

print "f->($arg)=$x\n";

}

Here, we select either the doubler or the tripler based on dynamic
input - the doubler if the current command line argument is odd,
else the tripler. So eg10 1 2 3 4 generates 2 6 6 12.

Objection 2: $n was a known (constant) value when the coderef
was built. Did Perl rewrite it as a constant?

We can disprove this idea - a coderef can change it’s
environment!

fun makecounter($n)

{

return fun { return $n++ };

}

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 12 / 22

Functional Programming Techniques Functions returning Functions: Closures and Iterators

To use makecounter() write (eg11):
my $c1 = makecounter(10);

my $v;

$v = $c1->(); print "c1: $v\n";

$v = $c1->(); print "c1: $v\n";

$v = $c1->(); print "c1: $v\n";

Every time $c1 is called, it retrieves the current value of it’s
private variable $n, increments it for next time, and returns the
previous value. So eg11 delivers 10 11 12.

This is a special type of closure called an iterator. Calling an
iterator to deliver the next value is called kicking the iterator.

Objection 3: anyone can juggle one ball. Can you have more
than one counter? Yes! eg12 shows this:

my $c1 = makecounter(10);

my $c2 = makecounter(100);

my $v;

$v = $c1->(); print "c1: $v\n"; # 10

$v = $c1->(); print "c1: $v\n"; # 11

$v = $c2->(); print "c2: $v\n"; # 100

$v = $c1->(); print "c1: $v\n"; # 12

$v = $c2->(); print "c2: $v\n"; # 101

$v = $c1->(); print "c1: $v\n"; # 13

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 13 / 22

Functional Programming Techniques Functions returning Functions: Closures and Iterators

So far, our iterators have generated infinite sequences. But an
iterator can terminate when it finishes iterating (like each).

Easy to do, return a sentinel value to inform us that the iterator
has finished. Most obvious value: undef. For example:

fun upto($n, $max)

{

return fun {

return undef if $n > $max;

return $n++;

};

}

You might call this with code like (eg13):
my $counter = upto(1, 10);

while(my $n = $counter->())

{

print "counter: $n\n";

}

When run, this counts from 1 to 10 and then stops. Multiple
counters work fine (because n and $max form the closure
environment), eg14 shows an example (omitted here).

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 14 / 22

Functional Programming Techniques Functions returning Functions: Closures and Iterators

It’s easy to define map and grep for iterators:
#

$it2 = map_i($op, $it): Equivalent of map for iterators.

Given two coderefs ($op, an operator, and $it, an iterator),

return a new iterator $it2 which applies $op to each value

returned by the inner iterator $it.

#

fun map_i($op, $it) :(&$)

{

return fun {

my $v = $it->();

return undef unless defined $v;

local $_ = $v;

return $op->($v);

};

}

Now, we can write (eg15):
my $lim = shift @ARGV || 10;

my $scale = shift @ARGV || 2;

my $c = map_i { $_ * $scale } upto(1, $lim);

while(my $n = $c->()) { print "$n,"; }

print "\n";

When run with lim=10, scale=3, this produces:
3,6,9,12,15,18,21,24,27,30,

grep_i($op, $it) is not much more complicated, eg16 shows it
(omitted here).

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 15 / 22

Functional Programming Techniques Functions returning Functions: Currying

A hard-core functional programming feature is Currying: the
ability to partially call a function - to provide (say) a 3-argument
function with it’s first argument and deliver a 2-argument
function.

Simple to do:
fun curry($func, $firstarg)

{

return fun {

return $func->($firstarg, @_);

};

}

You might call this with code like (eg17):
fun add($a,$b) { return $a + $b };

my $plus4 = curry(\&add, 4); # an "add 4 to my arg" func

my $x = $plus4->(10); # x=10+4 i.e. 14

print "x=$x\n";

As expected, the $plus4 function acts exactly as an add 4 to my
single argument function, delivering 14 as the result.

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 16 / 22

Functional Programming Techniques Lazy Evaluation

One of the coolest features of functional programming languages
is lazy evaluation - the ability to handle very large or even
infinite data structures, evaluating only on demand.

It’s surprisingly easy to add laziness in Perl:

Let’s extend last lecture’s linked List module to work with lazy
linked lists (sometimes known as streams).

Only one design change is needed: allow a list tail to either be an
ordinary nil-or-cons list or a coderef - a promise to deliver the
next part of the list (whether empty or nonempty) on demand.

When $list->headtail splits a node into head $h and tail $t, we’ll need
to detect whether $t is a promise (a coderef), via ref($t) eq "CODE".
If $t is a promise, we must force the promise - invoking the
promise function, which will deliver a real list (empty or
nonempty) which is the real tail:

my($h, $t) = @$self;

$t = $t->() if ref($t) eq "CODE"; # FORCE A PROMISE

return ($h, $t);

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 17 / 22

Functional Programming Techniques Lazy Evaluation

Concern: a lazy list might be finite, or infinite. Given an infinite
list $inflist, we have a fundamental problem: $inflist->len, $inflist->rev

and $inflist->append($second_list) will never terminate. This can’t be
solved - it’s inevitable!

Fortunately, we have already engineered the concept of “show
only the first N elements” into $inflist->as_string() so that’s ok.

Perhaps we should set the system-wide limit to a reasonably large
value, rather than leaving it zero (meaning unlimited):
our $as_string_limit = 40;

Having modified and syntax checked List.pm, check that it still
works with lists with no promises - i.e. non lazy lists (eg18):

use List;

$List::as_string_limit = 8;

list_upto: return a non-lazy list of numbers between $min and $max

fun list_upto($min, $max)

{

return List->nil() if $min > $max;

return List->cons($min, list_upto($min+1, $max));

}

my $list = list_upto(100, 200);

print "first few elements of upto(100,200) List: $list\n";

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 18 / 22

Functional Programming Techniques Lazy Evaluation

Then, give it a proper lazy list (eg19) by adding a fun {} (or sub {}

on older Perls) coderef wrapper on the list_upto($min+1,$max) call:
return List->cons($min, fun { list_upto($min+1, $max) });

Without this, it was a conventional recursive function to generate
a list. By delaying the recursive call until it’s actually needed, we
make it lazy.

In this case, despite producing identical output, the lazy version
never computes or stores elements 108..200.

We can easily define map-like and grep-like operators taking and
delivering lists. Here’s map_l($op, $list):

return List->nil() if $list->isnil;

my($h, $t) = $list->headtail;

local $_ = $h; # set localised $_ for op

return List->cons($op->($h), fun { map_l($op, $t); });

Note that we’ve not made this a method, as we prefer to keep
the map-like syntax rather than swap the arguments around in
order to have the list (object) as the first argument. Instead
we’ve given it a non clashing name and exported it.

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 19 / 22

Functional Programming Techniques Lazy Evaluation

grep_l($op, $list) is:
while(! $list->isnil)

{

my($h, $t) = $list->headtail;

local $_ = $h; # set localised copy of $_

if($op->($h)) # for the filter operation call

{

return List->cons($h, fun { grep_l($op, $t) });

}

$list = $t;

}

return List->nil;

Using map_l($op, $list) and grep_l($op, $list), we can write rather pretty
mathematical-style code. For example, start with an infinite list
of odd numbers (eg20):

use List;

$List::as_string_limit = 8;

$list = stepup($n, $step) - return an infinite list n, n+step, n+2*step...

fun stepup($n, $step)

{

return List->cons($n, fun { stepup($n+$step,$step); });

}

my $odds = stepup(1, 2);

print "first few odds: $odds\n";

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 20 / 22

Functional Programming Techniques Lazy Evaluation

Which produces:
first few odds: [1,3,5,7,9,11,13,15,17,19...]

Then generate an infinite list of even numbers by:
my $evens = map_l {$_ + 1} $odds;

print "first few evens: $evens\n";

Unsurprisingly, this produces:
first few evens: [2,4,6,8,10,12,14,16,18,20...]

Then select only even numbers greater than 7:
my $evengt7 = grep_l {$_ > 7} $evens;

Which produces:
first few even gt7: [8,10,12,14,16,18,20,22,24,26...]

Finally, we can select the subset that are exact squares:
my $squares = grep_l { my $r = int(sqrt($_)); $r*$r == $_ } $evengt7;

Which produces:
first few even perfect squares > 7: [16,36,64,100,144,196,256,324,400,484...]

Of course, this sequence of calls could be written as (eg20a):
my $evensgt7 = stepup(8, 2);

my $squares = grep_l { my $r = int(sqrt($_)); $r*$r == $_ } $evensgt7;

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 21 / 22

Functional Programming Techniques Lazy Evaluation

We can even provide a merge_l($cmp, $list1, $list2) list operator to
merge two sorted lists using a sort-like comparator, and using it
(eg21):

my $odds = stepup(1, 2);

my $evens = stepup(2, 2);

my $all = merge_l { $a <=> $b } $odds, $evens;

What do you get it by merging odd and even integers? All
integers!
A better example might be (eg22):

$list = power($n, $p) - return an infinite list n, n*p, n*p^2..

fun power($n, $p)

{

return List->cons($n, fun { power($n*$p,$p); });

}

my $twos = power(1, 2); # powers of 2

my $threes = power(1, 3); # powers of 3

my $fives = power(1, 5); # powers of 5

my $m23 = merge_l { $a <=> $b } $twos, $threes;

my $m235 = merge_l { $a <=> $b} $m23, $fives;

my $all = grep_l { $_ > 1 } $m235;

print "first few merged values: $all\n";

Here’s a use for currying the comparator into merge_l (eg22a):
my $merge_numeric = curry(\&merge_l, sub { $a <=> $b });

my $m235 = $merge_numeric->($merge_numeric->($twos, $threes), $fives);

my $all = grep_l { $_ > 1 } $m235;

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 22 / 22

	Contents
	Functional Programming Techniques
	Most obvious: map and grep
	Functions as First Order Citizens
	Data-Driven Programming: Coderefs in Data Structures
	Functions returning Functions: Closures and Iterators
	Functions returning Functions: Currying
	Lazy Evaluation

