Perl Short Course: Seventh Session

Duncan C. White (d.white@imperial.ac.uk)

Dept of Computing
Imperial College London

December 2012

December 2012

Duncan White (CSG) Perl Short Course: Seventh Session

Functional Programming Techniques Most obvious: map and grep

o We've already seen Perl's built-in map and grep operators,
enabling you to transform every element of a list, or select
interesting elements from a list, but we haven't stressed that
these are higher order functions.

o For example, egl:

my Qorig = (1,2,3,4); #1,2,3,4

my @double =map { $_ * 2 } Qorig; # 2,4,6,8

my @twicelong = map { $_, $_ * 2 } Qorig; #1,2,2,4,3,6,4,8

my %doublehash = map { $_ => $_ * 2 } Qorig; # 1=>2, 2=>4, 3=>6, 4=>8

my Qodd grep { $_ % 2 == 1 } Qorig; my $odd=join(’,’,Qodd); # (1,3)
my Q@even = grep { $_ % 2 == 0 } Qorig; my $even=join(’,’,Qeven);# (2,4)
print "odd: $odd, even: $even\n";

my @sq = grep { my $r=int(sqrt($_)); $r*$r == $_ } Qorig; # (1,4)
my $sq = join(’,’,@sq);
print "sq: $sq\n";

@ Recall that map and grep are roughly:
map OP ARRAY is grep OP ARRAY is

my Q@result = ();
foreach (ARRAY)
{

my Qresult = (;
foreach (ARRAY)
{

push @result, OP($.); push @result, $_ if OP($.);

Duncan White (CSG) Perl Short Course: Seventh Session December 2012

1/22

3/22

Duncan White (CSG)

Duncan White (CSG)

@ Most programmers come to Perl from imperative/OO languages
like C and Java, so there's a tendency to use Perl as a Super C.

@ But Perl has many functional programming techniques which we

can use in our own programs:

map and grep

coderefs are closures

currying

@ So in this lecture, I'm going to try to persuade you that Perl is a

code references for higher-order functions
passing functions around as values
data-driven programming: coderefs in data structures

function factories: functions that return functions!
iterators, finite and infinite

lazy evaluation - handling infinite Linked lists

functional language. Well, sort of.

@ I'm using the new Function:

:Parameter syntax

(fun name(args)) throughout, as it's much prettier.

Functional Programming Techniques

Perl Short Course: Seventh Session

December 2012

Functions as First Order Citizens

@ The most fundamental Functional Programming concept is
passing functions around as values.

2/22

@ You can do this in Perl using a coderef, a reference to a function.
Like a pointer to a function in C terms.

@ For example: eg2 and eg3:
fun double_scalar($n)
‘ return $n * 2;
¥
my $coderef = \&double_scalar;
TIME PASSES...

my $scalar = $coderef->(10);

print "scalar: $scalar\n";

fun double_array(0x)

{ return map { $_ * 2 } 0x;
}

my $coderef = \&double‘array;

TIME PASSES...

my Qarray = $coderef->(1, 2, 3);

my $str = join(’,’,Qarray);
print "array: $str\n";

o Will produce 20 and (2,4,6) as output.

@ Note that a considerable amount of time may pass between
taking the reference and calling the referenced function,
symbolised by TIME PASSES above.

Perl Short Course: Seventh Session

December 2012

4/22

Functional Programming Techniques Functions as First Order Citizens Functional Programming Techniques Functions as First Order Citizens

@ You'd be right to wonder! Use anonymous coderefs as in egh:

o Can generalise this to egé:
fun apply($coderef, Qargs)
{

fun double_scalar($n)
return $coderef->(Qargs)

return $n * 2; }
¥
my $scalar = apply(fun ($x) { return $x * 2 }, 10);
fun double_array(@x) print "scalar: $scalar\n";
return map { $_ * 2 } 0Ox; my Qarray = apply(fun (@x) { returnmap { $_ * 2 } ex }, 1, 2, 3);
} my $str = join(’,’,Qarray);

print "array: $str\n";
fun apply($coderef, Qargs)
{

return $coderef->(Qargs); o If we add a prototype to apply Via:

¥
fun apply($coderef,@args) :(&@) # or sub (&@) { my($coderef,@args)=Q_;..

my $scalar = apply(\&double_scalar, 10); H
Pvint msealar: $scalaryar; (Here, & tells Perl the given argument must be a coderef.)
my Qarray = apply(\&double_array, 1, 2, 3); o Then add the f0||0Wing inSide apply
my $str = join(’,’,Qarray);
print "array: $str\n"; local $_ = $args[0];

(1ocal saves the old value of the global $_, before setting it to

. _ the given value, the new value persists until apply returns when
@ You might wonder whether you need to name little helper the old value is restored.)

functions like double_scalar if the only use of them is to make
a coderef via \&double_scalar.

@ The results are the same as before.

@ Now we can write map like code using $_:

my $scalar = apply { $_ * 2 } 10;

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 5/22 Duncan White (CSG) Perl Short Course: Seventh Session December 2012 6 /22

Functional Programming Techniques Data-Driven Programming: Coderefs in Data Structures Functional Programming Techniques Data-Driven Programming: Coderefs in Data Structures

o Coderefs can be built into data structures such as: _)
ny Yiop = ¢ @ The above RPN evaluator, with some more error checking and

'+ => fun (8x,8y) { $x + 8y 3, :
150 > fan (r.89) { 8x example calls such as:

:;: :z iﬁ': E:i’:g; i :i ; :g ;’ my $n = eval_rpn(qw(l 2 3 * + 4 - 5 %));
)s
. . is egh. Try it out.
@ Then a particular coderef can be invoked as follows:

my $operator = "*"; my $x = 10; my $y = 20;
my $value = $op{$operator}->($x, $y);

@ This technique is often called data-driven or table-driven
programming, very easy to extend by modifying the table.
@ We can use the above technique to build a simple Reverse Polish

@ For example, add the following operators (giving eg7):
Notation (RPN) evaluator: P g op (giving eg?)

my %op = (
fun eval_rpn(@atom) # each atom: operator or number o
{ W => fun ($x,$y) { $x % $y J,
my @stack; # evaluation stack 1~ => fun ($x,8y) { $x ** $y },
foreach my $atom (Q@atom) >0 => fun ($x,$y) { $x > $y },
{ ’swap’ => fun ($x,8y) { 8y, $x) I},
if ($atom =" /"\d+$/) # number?);
{
push @stack, $atom; 0 ~ . .
} else # operator? @ % and ~ are conventional binary operators, but note that swap
{ .
die "eval_rpn: bad atom $atom\n" unless exists $op{$atom}; ta keS 2 InputS and prOd uces 2 OutputS - the same tWO, Swapped!
my $y = pop @stack; my $x = pop @stack; i
| push Ostack, Sop(Saton}>($x, 8y)3 @ This works because whatever the operator returns, whether one
¥ or many results, is pushed onto the stack.

return pop @stack;

}
Duncan White (CSG) Perl Short Course: Seventh Session December 2012 7/22 Duncan White (CSG) Perl Short Course: Seventh Session December 2012 8 /22

Functional Programming Techniques Data-Driven Programming: Coderefs in Data Structures Functional Programming Techniques Data-Driven Programming: Coderefs in Data Structures

@ To vary the number of inputs each operator takes, change the

data structure and code slightly (giving eg8). @ The operator invocation code changes to:

my($nargs, $func) = @{$op{$atom}};

@ First, change the data structure: my $depth = Ostack;
die "eval_rpn: stack depth $depth when $nargs needed\n"
my %op = (if $depth < $nargs;
14 => [2, fun ($x,8y) { $x + $y } 1, my @args = reverse map { pop @stack } 1..$nargs;
- => [2, fun ($x,8y) { $x - $y } 1, push @stack, $func->(Qargs);
%2 => [2, fun ($x,8y) { $x * $y } 1,
' = [2, fun ($x,8y) { $x / 8y } 1, : i
e L2 fum (Sx8) {88y 11, o | rather like the args = reverse map {pop} 1..n line:-)
) @ This now allows a call such as:
@ Here, each hash value is changed from a coderef to a reference to ny $n = evalrpn{ qu(7 6 * 4 8 * > 1 neg 2 nog ifelse));
a 2-element list, i.e. a 2-tuple, of the form: e This is equivalent to the more normal expression:
[no_of_args, code_ref]. if(7*5 > 4%8) -1 else -2
@ So each existing binary operator op => function pair becomes: e Which, because 35 > 32, gives -1.

op => [2, function]

e Change the 5 to a 4, this (because 28 <= 32) gives -2.

@ But now we can add unary and trinary ops as follows:)) .
y y op @ One could make further extensions to this RPN calculator, in

my %op = () .))
L e o € - 503 particular variables could be added easily enough (store them in a
‘neg’ => , fun ($x >4 N
‘sqrt’ = [1, fun (800 { sqre($x) } 1, hash, add get and set operators). But we must move on.
’ifelse’ => [3, fun ($x,$y,$2) { $x ? $y : $z } 1,
)5
Perl Short Course: Seventh Session December 2012 9/22 Perl Short Course: Seventh Session December 2012 10 / 22
Functions returning Functions: Closures and lterators Functions returning Functions: Closures and Iterators
@ So far, we've only seen passing coderefs into functions. @ Objection 1: the previous example only used one coderef at a
@ However, you can write a function factory which constructs and time. Replace the calls as follows (egl0):
returns a coderef. For example: my $doubler = timesn(2);

my $tripler = timesn(3);
fun timesn($n)
foreach my $arg (@ARGV)

return fun ($x) { return $n * $x };

} my $f = $arg)2 == 1 ? $doubler : $tripler;
my $x = $£->($arg);
o timesn(N) delivers you a newly minted coderef which, when it is . print "f->($arg)=$x\n";

later called with a single argument, multiplies it by N. . . .
gle arg P ¥ @ Here, we select either the doubler or the tripler based on dynamic

o For example (eg9): input - the doubler if the current command line argument is odd,

my $doubler = timesn(2);

ny $d = $doubler->(10); # 20 else the tripler. So eg10 1 2 3 4 generates 2 6 6 12.
my $tripler = timesn(3); @ Objection 2: $n was a known (constant) value when the coderef
my $t = $tripler->(10); # 30

was built. Did Perl rewrite it as a constant?

print "d=$d, t=$t\n";
@ We can disprove this idea - a coderef can change it's

@ Subtlety: in C, a function pointer is simply a machine address. In environment!

Perl, a coderef is a closure: a machine address plus a private

. . . . fun makecounter ($n)
environment. In this case, each timesn() call has a different {
local variable $n which the coderef must remember. ¥

return fun { return $n++ };

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 11 /22 Duncan White (CSG) Perl Short Course: Seventh Session December 2012 12 / 22

Functional Programming Techniques Functions returning Functions: Closures and lterators

To use makecounter () write (egll):

my $c1 = makecounter(10);

my $v;

$v = $c1->(); print "cil: $v\n";
$v = $c1->(; print "ci: $v\n";
$v = $c1->(; print "ci: $v\n";

Every time $c1 is called, it retrieves the current value of it's
private variable $n, increments it for next time, and returns the
previous value. So egl11l delivers 10 11 12.

This is a special type of closure called an iterator. Calling an
iterator to deliver the next value is called kicking the iterator.

Objection 3: anyone can juggle one ball. Can you have more
than one counter? Yes! egl2 shows this:

my $cl1 = makecounter(10);
my $c2 = makecounter(100);
my $v;
$v = $c1->(); print "cil: $v\n"; # 10
$v = $c1->(); print "ci: $v\n"; # 11
$v = $c2->(); print "c2: $v\n"; # 100
$v = $c1->(; print "ci: $v\n"; # 12
$v = $c2->(); print "c2: $v\n"; # 101
$v = $c1->(); print "cil: $v\n"; # 13
Perl Short Course: Seventh Session December 2012

Functions returning Functions: Closures and lterators
@ It's easy to define map and grep for iterators:

$it2 = map_i($op, $it): Equivalent of map for iterators.
Given two coderefs ($op, an operator, and $it, an iterator),
return a new iterator $it2 which applies $op to each value
returned by the inner iterator $it.

un map_i($op, $it) :(&$)

Ah R H O H

return fun {
my $v = $it->0;
return undef unless defined $v;
local $_ = $v;
return $op->($v);
s
}

e Now, we can write (eglh):

my $lim = shift QARGV || 10;
my $scale = shift QARGV || 2;

my $c = map_i { $_ * $scale } upto(1, $lim);

while(my $n = $c->()) { print "$n,"; }
print "\n";

@ When run with 1in-10, scae=3, this produces:

3,6,9,12,15,18,21,24,27,30,

@ grep_iGsop, $ity IS NOt much more complicated, egl6 shows it

Duncan White (CSG)

(omitted here).

Perl Short Course: Seventh Session December 2012

13/ 22

15/ 22

Duncan White (CSG) Perl Short Course: Seventh Session

Duncan White (CSG) Perl Short Course: Seventh Session

Functional Programming Techniques Functions returning Functions: Closures and lterators

@ So far, our iterators have generated infinite sequences. But an

iterator can terminate when it finishes iterating (like each).

@ Easy to do, return a sentinel value to inform us that the iterator

has finished. Most obvious value: undef. For example:
fun upto($n, $max)

return fun {
return undef if $n > $max;
return $n++;
s
}

@ You might call this with code like (egl3):

my $counter = upto(1, 10);
while(my $n = $counter->())
{

print "counter: $n\n";

}

@ When run, this counts from 1 to 10 and then stops. Multiple

counters work fine (because n and $max form the closure
environment), egl4 shows an example (omitted here).

December 2012

Functional Programming Techniques Functions returning Functions: Currying

@ A hard-core functional programming feature is Currying: the

14 /22

ability to partially call a function - to provide (say) a 3-argument

function with it's first argument and deliver a 2-argument
function.

@ Simple to do:

fun curry($func, $firstarg)

return fun {
return $func->($firstarg, @_);
};
}

@ You might call this with code like (egl7):

fun add($a,$b) { return $a + $b };

my $plusé = curry(\&add, 4);
my $x = $plus4->(10);
print "x=$x\n";

an "add 4 to my arg" func
x=10+4 i.e. 14

single argument function, delivering 14 as the result.

December 2012

@ As expected, the $plus4 function acts exactly as an add 4 to my

16 / 22

Functional Programming Techniques Lazy Evaluation Functional Programming Techniques Lazy Evaluation

@ Concern: a lazy list might be finite, or infinite. Given an infinite
list sinf1:s, we have a fundamental problem: sinfiist->1en, $inflist->rev
and sinf1ist->append(ssecond_1isty Will never terminate. This can't be
solved - it's inevitable!

@ One of the coolest features of functional programming languages
is lazy evaluation - the ability to handle very large or even
infinite data structures, evaluating only on demand.

@ It's surprisingly easy to add laziness in Perl: . "
prisingly easy o Fortunately, we have already engineered the concept of “show

o Let's extend last lecture’s linked List module to work with lazy only the first N elements” into sinf1ist->as_string0 SO that's ok.

linked lists (sometimes known as streams). @ Perhaps we should set the system-wide limit to a reasonably large

4] Only one design change is needed: allow a list tail to either be an value, rather than |eaving it zero (meaning un|imited):

ordinary nil-or-cons list or a coderef - a promise to deliver the our $as_string limit = 40;

next part of the list (whether empty or nonempty) on demand. @ Having modified and syntax checked List.pm, check that it still
@ When siist-sneaatair splits a node into head s and tail s, we'll need works with lists with no promises - i.e. non lazy lists (egl8):
to detect whether s: is a promise (a coderef), via rezest) eq "cover. oo LIS g tinit -
If s« is a promise, we must force the promise - invoking the
promise function, which will deliver a real list (empty or
nonempty) which is the real tail:
my($h, $t) = @$self; }

$t = $t->() if ref($t) eq "CODE"; # FORCE A PROMISE
return ($h, $t);

list_upto: return a non-lazy list of numbers between $min and $max
fun list_upto($min, $max)
{

return List->nil() if $min > $max;

return List->cons($min, list_upto($min+1, $max));

my $list = list_upto(100, 200);
print "first few elements of upto(100,200) List: $list\n";

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 17 / 22 Duncan White (CSG) Perl Short Course: Seventh Session December 2012 18 / 22

Lazy Evaluation
@ Then, give it a proper lazy list (egl9) by adding a tw o (or sw o

Functional Programming Techniques Lazy Evaluation

on older Perls) coderef wrapper on the 1isc_upto(smintt,sman call:

return List->cons($min, fun { list_upto($min+l, $max) });

@ grep_1($op, $list) is:

while(! $list->isnil)
{
my($h, $t) = $list->headtail;

local $_ = $h; # set localised copy of $_

@ Without this, it was a conventional recursive function to generate 1£($op->($h)) # for the filter operation call
. . . ey {
a list. By delaying the recursive call until it's actually needed, we return List->cons($h, fun { grep.1($op, §t) });
make it lazy. tist - 6,
. }
@ In this case, despite producing identical output, the lazy version Teturn List->nil;
never computes or stores elements 108..200. . .
@ Using map_1(sop, $115t) and grep_1(s0p, s11st), We can write rather pretty
o We can easily define map-like and grep-like operators taking and mathematical-style code. For example, start with an infinite list
delivering lists. Here’s nap_1(sop, s11st: of odd numbers (eg20):
return List->nil() if $list->isnil; e
my($h, $t) = $list->headtail; ;S(_a L:_L?t’ . imit = 8
local $_ = $h; # set localised $_ for op List::as_string limit = 8;
return List->cons($op=>($h), fun { map_1($op, $t); }); # $list = stepup($n, $step) - return an infinite list n, n+step, n+2*step...
, . fun stepup($n, $step)
@ Note that we've not made this a method, as we prefer to keep {

Duncan White (CSG)

the map-like syntax rather than swap the arguments around in
order to have the list (object) as the first argument. Instead
we've given it a non clashing name and exported it.

Perl Short Course: Seventh Session December 2012 19 / 22

return List->cons($n, fun { stepup($n+$step,$step); });
}

my $odds = stepup(1, 2);
print "first few odds: $odds\n";

Duncan White (CSG) Perl Short Course: Seventh Session December 2012

20 /22

Functional Programming Techniques Lazy Evaluation Functional Programming Techniques Lazy Evaluation

@ Which produces: @ We can even provide a merge_1¢ scup, s11st1, s11st2) list operator to
first few odds: [1,3,5,7,9,11,13,15,17,19...] merge two sorted lists using a sort-like comparator, and using it
@ Then generate an infinite list of even numbers by: (eg21):

my $odds = stepup(1, 2);

my $evens = map_l {$_ + 1} $odds; my $evens = stepup(2, 2);

print "first few evens: $evens\n"; my $all = merge_1 { $a <=> $b } $odds, $evens;
Unsurprisingly, this produces: What do you get it by merging odd and even integers? All
first few evens: [2,4,6,8,10,12,14,16,18,20...] integers!
@ Then select only even numbers greater than 7: @ A better example might be (eg22):
my $evengt? = grep_l {$_ > 7} $evens; :u:]-;z:]e:(l’;:r;p$;h $p) - return an infinite list n, n¥p, n¥p~2..
. {
WhICh prOduceS: return List->cons($n, fun { power($n*$p,$p); });
first few even gt7: [8,10,12,14,16,18,20,22,24,26...] ¥
. my $twos = power(1, 2); # powers of 2
@ Finally, we can select the subset that are exact squares: my $threes = power(1, 3); # powers of 3
my $fives = power(1, 5); # powers of 5
my $squares = grep_l { my $r = int(sqrt($_)); $r*$r == $_ } $evengt7;
my $m23 = merge_1 { $a <=> $b } $twos, $threes;
Wh|ch produces my $m235 = merge_1 { $a <=> $b} $m23, $fives;
' my $all = grep_ 1 { $_ > 1 } $m235;
first few even perfect squares > 7: [16,36,64,100,144,196,256,324,400,484...] print "first few merged values: $all\n";
e Of course, this sequence of calls could be written as (eg20a): @ Here's a use for currying the comparator into nerge 1 (€g22a):

my $merge_numeric = curry(\&merge_1l, sub { $a <=> $b });
my $m235 = $merge_numeric->($merge_numeric->($twos, $threes), $fives);
my $all = grep_1 { $_ > 1 } $m235;

Duncan White (CSG) Perl Short Course: Seventh Session December 2012 21 /22 Duncan White (CSG) Perl Short Course: Seventh Session December 2012 22 /22

my $evensgt7? = stepup(8, 2);
my $squares = grep_l { my $r = int(sqrt($_)); $r*$r == $_ } $evensgt7;

	Contents
	Functional Programming Techniques
	Most obvious: map and grep
	Functions as First Order Citizens
	Data-Driven Programming: Coderefs in Data Structures
	Functions returning Functions: Closures and Iterators
	Functions returning Functions: Currying
	Lazy Evaluation

