
Introduction to Perl: First Lecture

Duncan C. White (d.white@imperial.ac.uk)

Dept of Computing,
Imperial College London

January 2014

Duncan White (CSG) Introduction to Perl: First Lecture January 2014 1 / 18

Course Structure

This short practical course introduces you to Larry Wall’s
immensely flexible Perl programming language.

It consists of a series of 8 one-hour lectures, with slides and
practical examples.

The course materials for the course can be found at:
http://www.doc.ic.ac.uk/~dcw/perl2013/

This first lecture gives a general introduction to Perl, a fast and
shallow scan across most of the important features.
The second, third and fourth lectures goes over Perl in more
detail, introducing most interesting features, including arrays,
hashes, functions, Perl’s standard library and references.
The fifth and sixth lectures describe the CPAN module archive,
using and writing modules, objects and classes.
The seventh and eighth lectures cover some more advanced Perl
topics - higher-order functions, program transformations,
data structures, testing and benchmarking.

There are two good books describing Perl: Randal Schwartz’s excellent
introduction Learning Perl and Larry Wall and Randal Schwartz’s
rather more advanced Programming Perl.

Duncan White (CSG) Introduction to Perl: First Lecture January 2014 2 / 18

Why Perl?

Perl was designed by a busy sysadmin - someone who needs a
powerful language in which programs can be written, tested and
deployed quickly to solve urgent problems.

Such programs range from “Perl one liners” typed direct on the
command line as part of a pipeline, to well-designed and
engineered large modular programs.

Perl, like Python and Ruby, is a “scripting language” which gives
us great leverage in writing programs when compared to
languages like C, C++ or Java. Perl lets you program at a very
high level, with powerful tools and data structures.

Perl borrows features from many other languages - forming a
coherent whole, more powerful than the sum of its parts.

Perl is known as the Swiss Army Chainsaw of programming; it
makes the easy tasks easy, the hard tasks possible.

Duncan White (CSG) Introduction to Perl: First Lecture January 2014 3 / 18

Perl Basics

Control structures: from C and the shell.

Expression syntax: mainly from C, with several operators
brought in from the shell – eg file test operators.

Powerful data types built-in: dynamic arrays, lists, stacks,
queues, tuples and hashes (dictionaries), very easy to use.

Regular expressions built-in: coming from sed and grep, but
significantly extended to make them even more powerful.

Build filters easily: manipulate files, processes and command
line arguments simply.

Storage management: done for us - like most scripting
languages, Java (but very unlike C!).

Plus: threads, portable graphics, OOP, functional programming,
network programming and more modules than you can count.

Duncan White (CSG) Introduction to Perl: First Lecture January 2014 4 / 18

Perl does Storage Management

The main ways Perl does storage management are as follows:

Strings are a basic type - not arrays of characters as they are in
C. Strings grow as needed - and they can be enormous!

Arrays grow as needed - simply assign to an element and the
array extends to include that element automatically.

Arrays also provide unlimited length Prolog/Haskell-style
lists. Many powerful list operators.

Arrays can also act as stacks, queues and tuples.

Perl also provides hashes, ie. arrays where the index is an
arbitrary string - i.e. a collection of (key,value) pairs indexed by
key. Called Dictionaries in Python and Java.

To do multi-dimensional arrays, arrays of hashes, pointers to
functions etc, Perl provides references - an ability for one
variable to refer to another variable; like C pointers.

Duncan White (CSG) Introduction to Perl: First Lecture January 2014 5 / 18

Your First Perl Program (eg1)

Ok, let’s jump in and get started. Following a long tradition, our
first Perl program will be the classic “hello world” program.

Using any editor (vi, pico, nedit, emacs), we create a file called
eg1, containing the following lines:

#

eg1: a first Perl program

#

print "hello world\n";

Then, we syntax check the program:

perl -cw eg1

Finally, we run the program by typing:

perl eg1

What can we see immediately about Perl from this example?

Lines beginning with # are comments, ignored by Perl.
Statement are terminated with semi-colons.
A string is placed in double quotes, and can contain C-style
special characters such as \n.

Duncan White (CSG) Introduction to Perl: First Lecture January 2014 6 / 18

Personalising the Message (eg2)

Suppose we now create eg2 containing the following:

print "Please enter your name: ";

my $name = <STDIN>;

print "\nhello $name!\n";

What’s going on here?

my $name declares a scalar variable. It can hold a number (integer
or real), or an arbitrary length string.
<STDIN> means read one line from stdin.
The line read is then assigned to $name.
The second print statement prints the result of the string
"\nhello $name!\n" after variable interpolation: the current
value of $name is interpolated into the string in place of the
character sequence $name.
For instance, if $name = "duncan" then the string would be
"\nhello duncan!\n".

Once again, we syntax check eg2 and then run it.

Was there anything that surprised you when the program ran?

Duncan White (CSG) Introduction to Perl: First Lecture January 2014 7 / 18

Why was the ! on a separate line?

Because the <> operator reads a line and returns it including the
newline at the end (for a good reason, explained later).

To fix this, add:

chomp $name;

immediately after reading $name. This deletes a trailing newline.

Rerun and check that the ! is now on the same line as the name.

Suppose we now wish to lowercase the whole name, and then
capitalise the first letter:

We simply add (after the chomp):

$name = ucfirst(lc($name));

Recheck it and rerun it now.

How long would that have taken to write in C and know it’s
bug-free?

Duncan White (CSG) Introduction to Perl: First Lecture January 2014 8 / 18

Adding Special Cases (eg4)

Suppose we now want a special-case - if the name is your first
name, print out a special message:

Embed the final print inside the else part of the following new if
statement:

if($name eq "Duncan")

{

print "\nwotcha Dunc mate!\n";

} else

{

print "\nhello $name!\n";

}

Syntax check, run it again a few times. Check it works.

You may wish to try this with your own name instead..

Duncan White (CSG) Introduction to Perl: First Lecture January 2014 9 / 18

Adding Special Cases (eg4)

Let’s just refresh our memories - the complete program is now:

#

eg4: special case greeting

#

print "Please enter your name: ";

my $name = <STDIN>;

chomp $name;

$name = ucfirst(lc($name));

if($name eq "Duncan")

{

print "\nwotcha Dunc mate!\n";

} else

{

print "\nhello $name!\n";

}

Duncan White (CSG) Introduction to Perl: First Lecture January 2014 10 / 18

Adding some Fuzziness (eg5)

So far, the name entered (after capitalization changes) must be
your first name exactly for the special case to apply.

For example, duncan, DUNCAN, Duncan, DunCAn are accepted,
but Dunc, Dunk and the regrettable Dunky Babe are not.

Replace the if line with:

if($name =~ /^Dun[ck]/)

What on earth does this mean?

This is an example of matching a string against a regular
expression - known as a regex - as found in the Unix filters sed,
grep and awk.

regexes are explained in more detail later, so for now let’s just
say that it succeeds if $name starts with the string "Dun",
immediately followed by either "c" or "k". Graphically:

u n

c

k

STOP

STOP

START
D

Duncan White (CSG) Introduction to Perl: First Lecture January 2014 11 / 18

Adding a Secret Word (eg6)

Now, suppose that we require a secret word from anyone other
than "Dunc". Right at the top, below the comment lines, add:

my $secretword = "Davros";

In the else part, add the following:

print "What is the secret word: ";

while(1)

{

my $guess = <STDIN>;

chomp $guess;

last if $guess eq $secretword;

print "Wrong - guess again: ";

}

This is an infinite while loop. Inside, we obtain a line of input,
store it in $guess and chomp it as usual.

We break out of the loop (last) if the guess is exactly the same
as the secret word. If the guess is wrong, we continue round the
loop. (Notice the last if alternative syntax).

Duncan White (CSG) Introduction to Perl: First Lecture January 2014 12 / 18

More than One Secret Word (eg7)

Suppose we now want several secret words. We want a list:

my @secretword = ("Davros", "Zygon", "Cyberman");

Replace the last if line with:

my $correct = 0;

foreach my $i (@secretword)

{

$correct = 1 if $i eq $guess;

}

last if $correct;

Now any of the secret words will be accepted.

But there’s something slightly strange about what we just did:
We stored the words in an ordered list and sequenced through it.

But we didn’t want to sequence through a list: We wanted a set
of secret words and to test set membership.

Duncan White (CSG) Introduction to Perl: First Lecture January 2014 13 / 18

Using a Hash to Model a Set (eg8)

A Perl hash stores an arbitrary number of (key, value) pairs,
indexing the keys.

We can use a hash (where all the values are 1) as a set.

Replace the @secretword initialization with:

my %issecretword = ();

$issecretword{"Davros"} = 1;

$issecretword{"Zygon"} = 1;

$issecretword{"Cyberman"} = 1;

Now replace the entire $correct loop we just added with:

last if $issecretword{$guess};

Hashes take quite a bit of getting used to, but are very powerful!
Without them (eg in C), you’d probably have used an array and
linear search. Ruby has them, Java and Python have them but
call them dictionaries.

Many data structures you would build using pointers etc in C can
be done with the combination of lists and hashes.

Duncan White (CSG) Introduction to Perl: First Lecture January 2014 14 / 18

Permanent Storage (eg9)

Stupid to store the secret words in plain view inside the Perl
script. Let’s store them in plain view in a text file instead:-)

Replace the initialisation of the %issecretword elements with:

open(my $in, ’<’, "secretwords") || die;

while(my $line = <$in>)

{

chomp $line;

$issecretword{$line} = 1;

}

close($in);

This shows us Perl’s classic idiom foreach line in a file:

Open a text file called secretwords, exiting if the open fails.
While the file contains another line of text, read it.
Then process the line - in this case, add the line to the sethash.
When the last line has been dealt with, quit the while loop and
close the file.

Duncan White (CSG) Introduction to Perl: First Lecture January 2014 15 / 18

Better Storage (eg10)

There is an even better way of storing the secret words on disk
and retrieving them: Unix provides a highly efficient storage
system called DBM that stores arbitrary (key,value) string pairs.

The concepts of DBM map perfectly onto a Perl hash.

Need two programs: one to initialise the DBM file, and our
existing program (modified) to read the DBM file:

First, the creation program mksecret is as follows:

#

mksecret: create the secret words DBM file

#

dbmopen(my %secret, "secretwords", 0666) || die;

$secret{"Davros"} = 1;

$secret{"Zygon"} = 1;

$secret{"Cyberman"} = 1;

dbmclose %secret ;

Duncan White (CSG) Introduction to Perl: First Lecture January 2014 16 / 18

Better Storage (eg10)

Back in the main program - now called eg10 - replace all the file
reading code with:

dbmopen(my %issecretword, "secretwords", 0666) || die;

At the end, add:

dbmclose(%issecretword);

Now, the I/O is done entirely automatically for you.

More efficiently too: the DBM file is not a plain text file. In a
large DBM file containing millions of (key, value) pairs,
retrieving the value corresponding to a specific key is usually
done using only two disk accesses!

By using this highly efficient system, we get persistent storage for
Perl programs, for free!

This is an example of what I meant by leverage.

Duncan White (CSG) Introduction to Perl: First Lecture January 2014 17 / 18

Better Storage (eg10)

Let’s close by showing the final version eg10:
#

eg10: secret words from a dbm file

#

dbmopen(my %issecretword, "secretwords", 0666) || die;

print "Please enter your name: ";

my $name = <STDIN>;

chomp $name;

$name = ucfirst(lc($name));

if($name =~ /^Dun[ck]/)

{

print "\nwotcha Dunc mate!\n";

} else

{

print "\nhello $name!\n";

print "Please enter one of the secret words: ";

while(1)

{

my $guess = <STDIN>;

chomp $guess;

last if $issecretword{$guess};

print "Wrong - guess again: ";

}

}

dbmclose(%issecretword);

Duncan White (CSG) Introduction to Perl: First Lecture January 2014 18 / 18

	Course Structure
	Why Perl?
	Perl Basics
	Perl does Storage Management
	Your First Perl Program (eg1)
	Personalising the Message (eg2)
	Why was the ! on a separate line?
	Adding Special Cases (eg4)
	Adding some Fuzziness (eg5)
	Adding a Secret Word (eg6)
	More than One Secret Word (eg7)
	Using a Hash to Model a Set (eg8)
	Permanent Storage (eg9)
	Better Storage (eg10)

