
Introduction to Perl: Second Lecture

Duncan C. White (d.white@imperial.ac.uk)

Dept of Computing,
Imperial College London

January 2014

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 1 / 22

Contents

In this second session, we’ll start going over Perl in more detail,
following order of material from Learning Perl.

We’ll look at scalar data (numbers, strings, variables),
expressions, control structures and input/output.

A Note on Perl History

Perl 4, 1991-1996: first widely used version of Perl.

Perl 5, 1994-now: complete interpreter rewrite, significant
language extensions. Maintained, patched and extended for
nearly 20 years.

Perl 5.10, 2003-2010: major new version of Perl.

Since 2010: developers do annual releases of Perl 5: Perl 5.12 in
2010, Perl 5.14 in 2011, Perl 5.16 in 2012, Perl 5.18 in
2013. (DoC Linux machines: 5.14; DoC Windows: 5.16).

Perl 6, 2001-????: fundamental redesign of Perl, a new
programming language! BUT: never finished! Will it ever be?

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 2 / 22

Scalar Variables and Values

A scalar variable is declared via my $variablename, the $ is
always present. A variable name starts with a letter, and then
may continue with any number of letters, digits or underscores!
Every character in the name is significant, as is case.

Can write as ${variablename}, just like the Unix shell.

Stores any single scalar value:

An integer.
A real number (floating point).
An arbitrarily long string.
A reference to some other piece of data.

Integer literals may be written in decimal, octal or hexadecimal:
eg. -129, 0377 and 0xffe0.

Real literals may be written in exponential notation, with or without a
decimal point: eg. 6.27, -2.4e30, 7e-5.

A string literal can be either delimited with single-quotes or
double-quotes. Different rules apply inside the two kinds of string:

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 3 / 22

Single-Quoted String Literals

A single-quoted string, eg ’hello there’, is an arbitrarily-long
sequence of characters placed inside single quote marks.

The quotes are not part of the string - rather, they delimit both
ends of the string.

The shortest (empty) single-quoted string is ’’.

Each character inside the quotes is placed into the string exactly
as-is - even a literal newline!

There are only two exceptions to this:

A single-quote on it’s own would terminate the current string - to
embed a single quote in a single-quoted string, write \’.
A backslash may be embedded in a single-quoted string as \\.

Apart from these exceptions, nothing is modified inside a single
quoted string.

In particular, $ symbols are embedded as-is, and C-style escapes
like \n do not function in a single-quoted string.

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 4 / 22

Double-Quoted String Literals

A double-quoted string literal, like "hello $name\n", is much
more powerful. Again, it is an arbitrary sequence of characters
which can be split across lines.

However, the backslash can now specify several important control
or escape operations as follows:

\n Newline
\t Tab
\r Carriage Return
\a Ring bell
\072 Any octal ASCII value

(7*8+2 = 58 = ’:’)
\x6d Any hexadecimal ASCII value

(6*16+13 = 109 = ’m’)
\\ Backslash
\$ Dollar
\" A double-quote
\l Lower-case the next letter
\u Upper-case the next letter
\L Start lower-casing the rest of the string
\U Start upper-casing the rest of the string
\E Stop \L or \U

For example, "hello \Uthere\E how are you" generates
"hello THERE how are you".

Also in a double-quoted string...

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 5 / 22

Double-Quoted String Literals Variable Interpolation

...$ has a special meaning when followed by a variable name: Perl
gathers the longest possible sequence of variable name
characters, and replaces $varname with the value of that
variable: Variable Interpolation.

Example: "hello $name\n" is a string, comprising:

the character sequence ’hello ’,
the current value of the variable $name (if $name is not in use,
then the value is the undefined value, treated as the empty string),
the ASCII newline character (symbolically written as \n).

Suppose we wish to print the value of $n immediately followed by
a sequence of characters that could also form part of the variable
name. If we write:

"you’re the $nth person today..\n"

Perl looks for a variable called $nth, and replaces it with the
empty string - swallowing th!

Fix: use {} around the variable name:

"you’re the ${n}th person today..\n"

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 6 / 22

Double-Quoted String Literals Arbitrarily Delimited Strings

In double-quoted strings, you still need to backslash double
quotes to embed them into a string. Choose your own quote
character:

my $contentslink = qq!

!;

After the qq, the next character (‘!’) is taken as the quote character.
All characters after this are placed into the string (with interpolations
and backslashes working exactly as in a double-quoted string) until the
next ‘!’ is encountered.

But now - you don’t need to backslash double-quotes.

If the opening quote is an open bracket of some kind (round, curly or
square), Perl uses the appropriate closing bracket as the closing quote -
We could write the above as:

my $contentslink = qq(

);

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 7 / 22

Expressions

Expressions in Perl are very like those of C, but without the
pointer operators.

Some operators expect numbers, others expect strings. Perl
converts one to the other when needed. Thus the string
"17.3e7" converts to the number 17.3e7 when needed, and the
number 31.53 converts to the string "31.53" when needed.

Perl provides all the obvious +, -, *, / arithmetic operators.
Unlike C, all operators operate in floating point.

Plus, the exponentation operator (written **). For example:
3.25 ** 4 (ie. 3.254).

The modulus operator: 10%3 gives the remainder when 10 is
divided by 3. Both values are truncated to integers before this
operator is applied.

A set of numeric comparison operators just like C:
<, <=, ==, >=, > and != (not equals).

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 8 / 22

Expressions String Operators

Strings may be compared alphabetically via a separate set of
comparison operators: lt, le, eq, ge, gt and ne.

A common mistake is comparing numbers with eq or strings with
==, allowed because strings and numbers are converted back
and forth freely.

For example, "0" == "000" is true, but 0 eq "000" is false.
(The string "0" which is not the same as "000"!)

Concatenate strings with the fullstop operator (.), eg:

"hello " . $name . "\n"

(Warning: No space is added automatically between the strings!)

Concatenation is not used as much as you would expect -
interpolation is often used instead. Write the above as:

"hello $name\n"

Useful string repetition operator:
"fred" x 3 gives "fredfredfred"

(RHS truncated to an integer first).

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 9 / 22

Assignment

The most vital operator of all is assignment (=). For example:
$x = 37;

$y = $x * 7 + 5;

$z = $z * 3;

The first simply sets $x to 37.
The second calculates $x * 7 + 5 (using the current value of
$x) and then stores the result in $y.
The last example takes the current value of $z, multiplies it by
three, and stores the result back in $z.

An assignment also has a value, which means you can nest or chain
assignments:

$x = $y = 17;

$y = 5 * ($a = 7 + $x);

The first example sets both $x and $y to 17.
The second example means: evaluate 7+$x and store the result in
$a, then multiply $a by 5 and store the final result in $y.

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 10 / 22

Assignment Binary Assignment Operators

Any binary operator can have an = sign appended. For instance:
$z *= 3; $sum += $element; $z .= $a;

Read these as: multiply z by 3, add element to sum and append $a’s
value onto the end of $z.

All binary assignment operators return a value too. So can do:

$a = 3;

$b = ($a += 4) * 7;

Some avoid such nesting, viewing it as hard to understand. Personally,
I’m fine with modest amounts of nesting: Your choice.

Autoincrement and Autodecrement

To increment or decrement $a, write:
$a++; $a--;

Prefix and postfix form of these operators: ++$a, $a++, --$a and
$a--, work exactly like C and Java.

Probably a bad idea to embed these in much larger expressions.

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 11 / 22

Boolean Expressions

Expressions used in a boolean context are first evaluated as
numbers or strings.

When the result has been calculated: zero, the empty string or
the undefined value are false, anything else is true!

There are a few extra boolean operators:

! is a unary operator meaning not.

|| and && come straight from C – these can be written as ‘or’

and ‘and’ in modern Perl.

Just like C and Java, they short-circuit:

Consider:
$a < 7 || $b > 6

If $a is less than 7, then the whole expression is bound to be true.
No point in evaluating the rest of the expression - so Perl doesn’t!
Similarly, consider:

$s eq "hello" && $t ne "bonjour"

If $s is not "hello" then the whole expression must be false.
Again, no point in evaluating the second half.

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 12 / 22

Statements and Control Structures

Any expression can become a statement by appending ‘;’.

So 3+4; means evaluate expression (result: 7) and discard the
result. A pointless statement!

Usually, expression-statements have side-effects:

Assignments (the basic =, binary assignment operators like *=,
and ++ and -- operators).
Function/procedure calls (eg. print - or your own functions).

Perl also provides modifiers for single statements:
<statement> if <expr> ;

<statement> unless <expr> ;

<statement> while <expr> ;

<statement> until <expr> ;

‘unless’ is a synonym for ‘if !’ and ‘until’ synonym for ‘while !’.

A sequence of statements may be enclosed inside {} braces
forming a block. NB: no ‘;’ after the ‘}’ of a block.

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 13 / 22

Statements and Control Structures

Perl provides a conventional if.. elsif.. elsif.... else statement,
to choose between two or more alternatives:

if($i < 20 || $j > 7.4)

{

print "case one\n";

} elsif($i > 40 && $j > 0)

{

print "case two\n";

} else

{

print "case three\n";

}

Note that the brackets – both round and curly – are compulsory on an
if - and the loop below.

Historically, Perl did NOT provide a special case/switch statement for
multi-way comparisons. Perl 5.10 added ‘given/when’, but you have
to ask for 5.10 features to be enabled:

use v5.10; # at the top of the program, enable 5.10 features

....

given($x)

{

when("hello") { print "hello\n"; }

when(/^Dun[ck]/) { print "dunc\n"; }

default { print "unknown\n"; }

}

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 14 / 22

Statements and Control Structures

Perl also provides a conventional test at the top while loop:
my $w = $x; my $h = 1;

while (abs($w-$h) > 0.001)

{

$w = ($w+$h)/2;

$h = $x/$w;

}

The above algorithm happens to find the square root of $x!

Perl provides a test at the bottom loop, two forms:
do { do {

$y *= $x; $y *= $x;

$x += 2; $x += 2;

} while($x < 15); } until($x >= 15);

A C-style counting loop:
for(my $sum = 0, my $i = 1; $i <= 10; $i++)

{

$sum += $i;

}

A very useful for each element in a list/array loop:
foreach my $x (1, 3, 7, 5, 4, 54)

{

$total += $x;

}

(We’ll see more about arrays and lists next session).

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 15 / 22

Some Simple I/O Reading a line of input

Lets consider getting input from the keyboard, and reporting results
to the screen.

The <> operator (pronounced diamond or readline) fetches a line
of input from a filehandle - STDIN is a filehandle, which
represents the standard input (normally the keyboard). So:

$name = <STDIN>;

reads an entire line of input, up to and including a newline, and
then stores the input in the variable (including the newline).

After reading a line, you usually want to get rid of the trailing
newline. Two operators:

Perl 4 provided chop($name) which removes the last character from
the named variable and returns the character removed.
Perl 5 added chomp($name) which deletes a trailing newline or does
nothing.

Use chomp everywhere; it’s safer and more portable (it will remove
the newline from the string even if the newline convention on the
OS you’re using is not a single character!).

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 16 / 22

Some Simple I/O Printing the results

print(), combined with the variable interpolation in double-quoted
strings, gives us a lot of formatting control - although Perl also
has a C-style printf() function (see perldoc -f printf) to give you even
better control such as 3 decimal places for $z:

print "debug: x=$x, y=$y, z=$z\n";

printf "debug: x=$x, y=$y, z=%.3f\n", $z;

Here’s an example (eg1), allowing you to investigate different
expressions:

print "Please enter x: "; my $x = <STDIN>; chomp $x;

print "Please enter y: "; my $y = <STDIN>; chomp $y;

my $z = $x + $y;

print "\n$x + $y = $z\n";

You may like to spend some time trying some examples of string,
numeric and boolean expressions.

Perl 5.10 added a new function ‘say’ - basically ’print’ with a newline
added - again, you have to ask for it:

use v5.10; # at the top of the program, enable 5.10 features

....

say "debug: x=$x, y=$y, z=$z";

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 17 / 22

Some Simple I/O End of File

We’ve seen that $line = <STDIN> reads a whole line of input from stdin.

But what if there’s no more input? Files have a concept of end
of file (eof) - after you have read the last line of data!

So does the keyboard: On Unix systems, end-of-input is signalled
by the user typing CTRL-D on a line on its own.

No CTRL-D character (ASCII code 4) is delivered; CTRL-D is a
terminal control signal that input has ended.

When eof occurs, <> returns the empty string. This never
otherwise occurs - why? Because <> leaves the newline in!

So test for eof by comparing the result against the empty string:
if($line eq "")...

More typically, test for not eof: if($line ne "")

Or simply if($line).

Or combine line reading, assignment, and test for not eof into one:
if($line = <STDIN>) # if we’ve read a line..

Can even declare $line at the same time:
if(my $line = <STDIN>) # if we’ve read a line..

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 18 / 22

For Each Line Idiom

Replacing ‘if’ with ‘while’ gives us the for each line in a file
idiom:

while(my $line = <STDIN>) # for each line from stdin

{

chomp $line;

now process $line

}

Let’s see an simple example of that (eg2):

Write a program that reads a list of numbers (one per line)
from STDIN, adds all these numbers up, and prints the total.

Above the while loop, we initialize: my $sum = 0;

Processing is: $sum += $line;

At the end, add print "total: $sum\n" .

Giving us:
my $sum = 0;

while(my $line = <STDIN>) # for each line from stdin

{

chomp $line;

$sum += $line;

}

print "total: $sum\n";

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 19 / 22

File Input/Output Reading a File

Perl can read the contents of named files (or Unix pipelines),
create/overwrite a named file with new contents, and append
new output on the end of a file.

Suppose we wish to read a file called fred. The first step is to
create a filehandle like STDIN but connected to the file "fred":

open(my $in, ’<’, "fred");

If the file "fred" doesn’t already exist in the current directory, open()

fails, setting $in to undefined (boolean false) and returning 0 (another
boolean false). So you might handle an error by:

open(my $in, ’<’, "fred"); or unless(open(my $in, ’<’, "fred"))

unless($in)

{ {

... handle error... # ... handle error...

} }

A common way of handling the error is to print an error message (on
STDERR) and exit - use die:

unless(open(my $in, ’<’, "fred"))

{

die "can’t open fred\n";

}

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 20 / 22

File Input/Output Reading a File

Better still, use Die unless Happy idiom:
die "can’t open fred\n" unless open(my $in, ’<’, "fred");

Best of all, we can use the common Do or die idiom. This wouldn’t
work without short-circuit evaluation:

open(my $in, ’<’, "fred") || die "can’t open fred!\n";

Whichever variant we use, after a successful open(), $in is a filehandle,
just like STDIN, from which we can read data.

my $line = <$in> reads the next line of input from fred. When there is no
more input, $line will contain the empty string.

A typical read every line program looks like eg3:

opne(my $in, ’<’, "fred") || die "can’t open fred\n";

while(my $line = <$in>)

{

chomp $line;

print "read ’$line’\n";

}

close($in);

Aside: As well as die there’s a function warn which prints a message
to STDERR but doesn’t exit.

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 21 / 22

File Input/Output Writing a File

To open a file for writing (overwriting the old contents):
open(my $out, ’>’, "bob") || die "sob.. can’t create bob\n";

Now write new data into bob by any number of:
print $out "...some data...\n"; or $out->print("...some data...\n");

As with reading, don’t forget close($out) when you finish writing data.

We can append data to bob, instead of overwriting:

open(my $out, ’>>’, "bob") || die "sob.. can’t append to bob\n";

You can also open a pipe to/from a Unix pipeline for reading/writing:

open(my $in, ’-|’, "ls | sort -r");

We can read data from the pipeline: Any output that ls | sort -r

prints onto its STDOUT will be available for us to read via <$in>.
open(my $out, ’|-’, "expand");

We can write data to the pipeline: expand will see a stream of data
coming from its STDIN, but it’ll be whatever we write to $out.

You can also do more advanced things like open files for random access
I/O, open pipelines feeding data in and receiving data back etc. See
perldoc -f open and perldoc IPC::Open2 for more details.

Duncan White (CSG) Introduction to Perl: Second Lecture January 2014 22 / 22

	Contents
	Scalar Variables and Values
	Single-Quoted String Literals
	Double-Quoted String Literals
	Variable Interpolation
	Arbitrarily Delimited Strings

	Expressions
	String Operators

	Assignment
	Binary Assignment Operators

	Boolean Expressions
	Statements and Control Structures
	Some Simple I/O
	Reading a line of input
	Printing the results
	End of File

	For Each Line Idiom
	 File Input/Output
	 Reading a File
	 Writing a File

