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Abstract 

In the construction of a Bayesian network, it is always assumed that the variables 
starting from the same parent are conditionally independent. In practice, this assumption 
may not hold, and will give rise to incorrect inferences. In cases where some dependency is 
found between variables, we propose that the creation of a hidden node, which in effect 
models the dependency, can solve the problem. In order to determine the conditional 
probability matrices for the hidden node, we use a gradient descent method. The objective 
function to be minimised is the squared-error between the measured and computed values 
of the instantiated nodes. Both forward and backward propagation are used to compute 
the node probabilities. The error gradients can be treated as updating messages and can be 
propagated in any direction throughout any singly connected network. We used the 
simplest node-by-node creation approach for parents with more than two children. We 
tested our approach on two different networks in an endoscope guidance system and, in 
both cases, demonstrated improved results. 

1. Introduction 

We will begin with a brief introduction to Bayesian networks, which are also 
known as belief networks, probabilistic networks, or causal networks. They are 
graphical structures used for the representation of conditionally independent 
information which is frequently derived from some subjective knowledge base. 
Bayesian networks have two components, the dependency graph and the 
knowledge representation. The underlying structure of the dependency graph, 
which is sometimes called the inference diagram, fully expresses the dependency 
or independency of the variables which are represented as the nodes. The 
knowledge representation component, or knowledge map, stores all the beliefs 
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and likelihood information for every possible state of the variables. There are 

many alternative names given to the states of a variable: Heckerman [9] calls 
them instances, Neapolitan [20] uses the name propositions, and Richard and 
Lippmann [26] use classes. In Bayesian networks, all the possible states of the 

variables are mutually exclusive and exhaustive. 
In the closed world definition. if V is the set of variables {V, , V,, b’,. . .} for a 

model, then 

P(V) = 11 p(Yipr(Y)) . V,. pr(V,) CV (1) 
c;C\’ 

where pr(V,) is the parent of the variable V,. In other words, the joint probability 
of P(V) can be expressed as the product of the conditional probabilities of each 
variable given the state of their parents and V is the set which contains all the 

possible combinations of r/;. Throughout the text we use boldface to denote a 
variable, and the corresponding set of probabilities for each state is a vector which 

will be denoted by an underscore. 
Pearl [23] pioneered the USC of a graphical representation to express the 

causality between variables. He uses Bayes’ rule: 

P(A/W) = 
P( W/A)P(A) P( W/A)P(A) 

P(W) = c,, P(WIA)P(A) 
= aP( W/A)P(A) (2) 

to derive the parameters for belief updating. 
In the Bayesian networks. belief in a variable is defined as the posterior 

probability of that variable given all the known evidence, W. In a Bayesian 
network, knowing the states of all connected variables will fully determine the 
belief in the variable of interest. Knowing all the parents and children of a 
variable will give a result which is independent of all other variables. In our 
current application. we have found that the tree structure Bayesian network with 
only chance nodes is adequate. There arc more complex Bayesian networks, and 
for the determination of causality in them the reader is referred to work by Pearl 
(231, Geiger et al. [7]. and to the work of Lauritzen and Spiegelhalter [17] who 
use propagation in cliques to cope with loops in Bayesian networks. 

Pearl pioneered the use of a directed acyclic graph for representing a Bayesian 
network. It consists of a set of vertices, V. and edges, E. The variables are 
represented by the vertices, and their relationships by directed edges. If A and B 
are two variables and the parent of B is A, then A and B will be linked by a 
directed edge with the arrow pointing from A to B. Each V, E V represents a set of 
mutually exclusive and exhaustive events, along with a joint probability dis- 
tribution, P, in the knowledge base. The fundamental assumption in a Bayesian 
network is that the value assumed by a node is probabilistically independent of 
the value assumed by all other nodes in the network, except its descendants, given 
values of all its parents. 

Fig. 1 is a very simple chain-like Bayesian network. If we are interested in the 
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Fig. 1. A simple Bayesian network with all notation 

belief of the variables B given some observed data (evidence) for the variables A 
and C, we will express it as 

Bel(B) = P(B/A, C) = aP(C/A, B)P(B/A) 

= d’(CIB)P(B/A) = aA( (3) 

using Eq. (2) and noting that P(C/A, B) = P(CIB), since B blocks the path from A 
to C. Eq. (3) expresses the belief of B as the product of the belief based on the 
evidence from the child (C) and the belief based on evidence from the parent (A). 
A detailed derivation of all other variables and link matrices can be found in 
Neapolitan [20] or Pearl [23]. 

In the computation of posterior probabilities using a Bayesian network, we 
assume that the variables are statistically conditionally independent given their 
parents. However, in practical applications, this fundamental assumption may not 
hold. One easy way to test this requirement is to use the Pearson’s correlation 
coefficient for the children’s distribution conditioned over the parent. For 
example, if there are three variables {A, B, C} and we want to test whether B and 
C are conditionally independent given A, i.e.: 

P(A, B, C) = P(A)P(B/A)P(C/A) , 

we use the conditional correlation coefficient p, which is defined for any two 
variables B and C given the assumed parent A as: 

Cov(B /A, C/A) 

p(A) j/Var(B/A) Var(C/A) ’ II 
(.4) 

where the (( (( y b 1 s m o means that correlation coefficient p is the result of summing 
over all the states of the variable A, weighted by the probability of A. When using 
the correlation coefficient for testing for conditional independence the ordering of 
the states in our variables is important and meaningful, and must reflect a 
monotonic progression in the measured property. If there is no meaning in the 
ordering of the states, we need to use a non-parametric method, such as the 



chi-square test. to test the conditional independence of the variables. For an 
example, see [ 15. Chapter 10.4). 

A high correlation coefficient between a pair of variables, given their parent(s), 

indicates that the conditional independence assumption does not hold. The effect 
of not recognising the correlated variable can be easily illustrated by the following 

example. 

Example. Suppose a root variable. A, has only two statistically independent sons, 

B and C. If the prior probability of A is [O. 2,0.8] and the lambda messages from B 

and C are [O.8, 0.21 and [0.3. 0.71 respectively, then the desired posterior 
probabilities of A, Be/(A) should be [0.3. 0.71. However, if the variable of B is 
measured by two different processes and was included in the network as two 
independent variables, B and D. then WC: will have three lambda messages 
[0.8,0.2], [0.3,0.7] and [0.8.0.2] propagated to A, and the predicted posterior of 

Be/(A) is calculated as [0.63.0.37]. It is obvious that the computed posterior 
probability is different from the correct value. 

From the above example. we see that not recognising conditionally dependent 
data will magnify and over-emphasise the influence of a particular piece of 
evidence. This will distort the posterior probabilities of the Bayesian network and 
may lead to misclassification. 

2. Using Bayesian networks for endoscope control 

We have used Bayesian networks in the practical application of building an 

advisory and control system for colon endoscopy. An endoscope is a medical 
instrument that is used for non-invasive observation of the inner surfaces of the 
human body. It is employed extensively in the diagnosis of colon and gastroin- 
testinal tract diseases. When inserting an endoscope into the colon, the doctor 

steers the tip to the centre (which is called the lumen) and inserts it gently. If the 
tip is not directed correctly, and is pushed against the wall of the colon. it can be 

dangerous and painful for the patient. The difficulties associated with its use have 
meant that, to date, only highly skilled specialists are able to perform endoscopic 
investigations. We are proposing to rectify this situation by using computer vision 
to provide automatic guidance and advice during colonoscopy. 

Various methods of extracting information for the navigation and advisory 
system have been investigated. They are represented in Fig. 2. The signal level 
consists of all the processing that will be performed on an image to extract all the 
identifiable features. The control level utilises the information from the signal 
level and possibly other information, such as temporal data, relationships about 
features, etc., in order to draw inferences. The output of this level is high-level 
information including advice and control information. 

The signal level is made up of three algorithms. First, there is a method of 
identifying the lumen, or centre line of the colon, based on region extraction from 
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Fig. 2. Block diagram of various levels of processing in our endoscopic advisory and control system. 

spatial domain data (Khan and Gillies [11,12]). Secondly, there is a shape from 
shading algorithm to reconstruct the surface normal (p, q, -1) at a set of points 
in the image (Rashid and Burger [25]) and thirdly there is method which uses 
correlation in the Fourier domain (Kwoh and Gillies [14]). 

Sucar and Gillies [32] utilised both Khan and Rashid’s algorithms to implement 
an advisory system (control level) based on Pearl’s [22] Bayesian networks. This 
resulted in the construction of a basic, artificial intelligence system for navigation 
in the colon. Although this system worked well, there were still circumstances 
where it failed to give correct advice. The system was improved by incorporating 
the information from the Fourier transform method in the Bayesian network, and 
the performance now seems good enough for automatic control. 

Sucar observed that the advisory system mis-classified colon images in certain 
cases due to the fact that the conditional independence assumption of Bayesian 
networks had been violated. To overcome this problem, Sucar and Gillies [31] 
suggested the following three strategies to handle correlated data: node deletion, 
node combination and node creation. In practice we seldom have 100% corre- 
lated data, hence, node deletion will inevitably throw away some information. 
Similarly, for node combination, we have a situation where two variables must be 
assigned to one object. This type of situation is quite rare. The third strategy, 
node creation, appears to be a powerful solution method. Sucar proposed a 
methodological solution, namely consultation with experts, to derive a node that 
makes the two dependent variables conditional independent. It will in general be 
a very difficult process for the expert to define a function which will combine the 
information from the two evidence variables into a coherent variable. Hence, our 
current research is to devise a way to create a hidden node based on the statistical 
distribution of the two evidence variables and an objective function which satisfies 
the axiom of conditional independence. Our approach is to use training data, 
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without seeking expert opinion, to define a mapping which will fuse the 

dependent information. 
The sub-module for lumen identification, based on the Fourier domain, is 

depicted in Fig. 3. It extracts values of the following feature sets (or variables) 

{[X-size], [Y-size], [Energy]} f rom the endoscope image, for the inference of the 

qualitative variables [Advice] and [LDR] which indicates the presence of a large 
dark region (hypothesised to be the lumen) in the image. This sub-module also 

extracts the continuous variables {X-offset, Y-offset}, which do not appear in the 
network, for the estimation of the centre of the lumen to which the endoscope tip 
should be directed. The two propositions for the variable [Advice] are: (1) Stop, 
since the tip is directed at the colon wall, and (2) Advance, since there is a clear 
space to push the endoscope tip forward. We denote these propositions as 

[Advice] E [Stop. AdvanceIT, where the superscript T represents the transpose. It 
is only possible to advance the tip if the lumen has been observed. It is perceived 

as a large dark region, and incorporated as an intermediate variable [LDR] under 
Sucar’s node creation approach. We define the variable [LDR] to have two 

exclusive states: Not Present and Present. denoted as [LDR] E [Not Present, 
PresentIT. [Advice] and [LDR] are the only binary-valued variables in our 
system, other variables have 8 to 10 states. 

Each element in the set of features {X-size, Y-size, Energy} for the inference of 
[LDR] and the advisory interpretation of [Advice] is a variable which has various 
classes or states. For example, the measured [X-size] is quantised and represented 
as a vector of discrete states, with its value taking any one of the eight 
possibilities. 

[X-size] E [O-S. g-16, 16-24,24-32,32-40,40-48,48-56, 56-6417 . 

We say that the variable [X-size] has the possibility of belonging to any one range 
of sizes defined above. 

The variable [Advice] is sometimes called a proposition variable because it is a 
probabilistic collection of propositions. The others are simply called variables, 

and the individual probabilistic state for each variable is called its state or class. In 

(X-s&] [Y-size] 

Fig. 3. The inference diagram for Fourier domain sub-module 
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Bayesian networks, when a piece of evidence arrives, we will instantiate the 
associated variable. By instantiation, we are applying a mapping function, f of the 
form: 

f([X-size])+ LO, 11 , 

C f([X-size]) = 1 , 

where f is actually a probability of the variable being in a specific state. (Note 
that in cases where we have inconclusive evidence that a variable takes a certain 
value, we may use virtual evidence (Neapolitan [20]) which does not sum up to 
one. It can be normalised and combined with other evidence to obtain the 
posterior probability.) In our application, we always normalise our evidence to 
satisfy the axioms of probability. 

An alternative approach to the above problem is to use neural network 
methods. However, we have a number of reasons to prefer Bayesian networks for 
our application. First, the output is the posterior probability of the hypothesis, 
given the input, which provides a natural mechanism to draw inferences and select 
the best advice. Secondly, Bayesian networks can be trained branch by branch. 
When additional information is obtained for the model, it can be incorporated 
into the existing Bayesian network without retraining, provided it does not break 
the fundamental assumption of conditional independence. Thirdly, Bayesian 
networks can incorporate both subjective probabilities [24] and objective prob- 
abilities. In the subjective approach, probability is regarded as the degree of 
belief of a particular individual. In the objective approach, probability has 
nothing to do with human beliefs, and manifests itself in the observed statistical 
frequency with which a particular event occurs. Neural networks only work with 
objective probabilities, whereas Bayesian networks can combine subjective and 
objective information. Fourthly, Bayesian networks cope well with partial 
information. They have a very strong normative theory to manage ignorance 
when compared to other connectionist networks commonly used for classification. 
Lastly, the multi-layer neural network is a fully connected network in which a 
collection of linear regression models store statistical information within the 
connecting weights. A neural network is a chain-like Bayesian network with the 
addition of an activation function and a nonlinear squashing function. Hence, for 
any problem it will have many more parameters than the equivalent Bayesian 
network. For example the hand-written character recognition system of Le Cun et 
al. [18] has 2600 parameters. In comparison, Chow and Liu [l], can model the 
same domain using a semantic structure similar to a Bayesian network with 
considerably fewer parameters. Although there are many ways to reduce the 
number of parameters (Le Cun et al. [18], Weigend et al. [33]), we believe that it 
is better to use the model which requires fewer parameters. 

Denker and Le Cun [3] recognised the importance of the classification problem, 
in neural networks, which have mutually exclusive outcomes that satisfy the 
axioms of probability. They satisfied this constraint by treating a trained neural 
network as a pre-processor that produces a feature vector which is further 
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processed by classical statistical estimation techniques. They assumed the output 
vector of the neural network, O,, (which is represented as a variable as O,,), given 
the input vector set of all the training data, {I,, I,, I, .} (represented as a 

variable I), can be approximated by a normal distribution. They derived 
expressions to calculate the first two moments of the probability distribution 
P(O,,/l). and used them to adjust the weights of the neural networks to achieve a 

Bayesian-like output, where the numerical value approximates the posterior 
probability of the output variable given the observed evidence (inputs). This type 
of system will not give a true Bayesian output and will perform badly in regions 

where the inputs have low probability for all states of the desired variable (root 
node) as reported by Richard and Lippmann [26]. This may be due to the 
nonlinear sigmoid mapping function, used in neural networks, which forces the 
output to be effectively bipolar. 

In summary, we believe that, where possible, it is much more efficient and 

economical to build structures rather than use a general connectionist network. If 

there are constraints that cannot be fully satisfied statistically, we then seek some 
strategy to modify the structure to improve the quality of the model. 

Once we have determined the structure, or inference diagram. of the Bayesian 
network, we can obtain an initial estimate of the conditional probabilities of the 
link matrices for each edge in the Bayesian network by the QUALQUANT 
methodology [31]. We then test the assumption of conditional independence. If 

the criterion is not satisfied. we create a hidden node to form a star structure and 
express the error cost function 5 with respect to the optimal values. If we expand 
the expression for those conditional probabilities by Taylor’s series, we can use a 
gradient search method, such as the least mean squares algorithm (Widrow and 
Stearns [34]) to find solutions by an iterative process: 

P(n + 1) = P(n) - 7) M(n) 
~ - - 

=P(n)-qE & - - i _I - 
or in a more complex error correction form such as: 

P(n+l)=P(n)-n(l-(Y)dP(n)+cw3P(n-1). (6) - ~ - 

In the above equations, n is called the learning rate or the relaxation constant, 
which is typically a small value in the range of 0.01 to 0.1. Widrow and Stearns 
[34] have worked out an upper bound on the learning rate for linear models. The 
second term in Eq. (6) is called the momentum term and cu takes a value within 
the range [0, 11. This term is commonly added in neural network training 
algorithms. Notice that we are adjusting the parameter values in the negative 
gradient direction, because we are searching for the minimum of the error cost 
function. 



C.K. Kwoh, D.F. Gillies I Artificial Intelligence 88 (1996) 1-38 Y 

3. Introducing hidden nodes into Bayesian networks 

Pearl [22] proposed the use of a hidden variable to satisfy the axioms of 
conditional independence. By adding a hidden variable between correlated 
variables and their parent, he created a star-decomposable structure. In his work, 
he dealt with star decomposition for binary-valued random variables, say 

~V,7V,,V,?~ . .} with a given probability mass function P(V), and obtained a 
closed form solution for a variable W that will satisfy the equation 

P(V, W) = n P(v,IW)P(W) 
v,cv 

Xu and Pearl [33] extended the ideas in Pearl [22] to utilise multi-variate Gaussian 
variables. However, in our application, most of our variables are not binary 
valued nor Gaussian, and so we need to derive an algorithm that can handle 
multi-valued variables some of which are unobservable (hidden nodes). A similar 
problem of configuring probabilistic models for bi-valued hypotheses with hidden 
variables was mentioned by Hinton et al. [lo] as a task that a Boltzmann machine 
should be able to solve. Further details on how to do this have been proposed by 
Neal [19] who implemented the Boltzmann machine with multiple restarts, 
bindary variables and signal propagation in only one direction. Another pre- 
cursor of our work is the EM algorithm [3] which consists of the expectation step 
(E-step to estimate the complete data from the observed (incomplete) data) and 
the maximisation step (M-step to maximise the likelihood). Lauritzen [16] and 
Spiegelhalter et al. [29] have experimented the EM algorithm to update the 
parameters in the Bayesian networks. They concluded that the likelihood function 
has a number of local maxima and straight maximum likelihood gives results with 
unsuitably extreme probabilities. Furthermore, the EM algorithm is known to 
converge relatively slowly when it is getting close to a maximum. They suggested 
that algorithms exploiting the gradient could be preferable. Paass [21] describes a 
stochastic version of the EM algorithm which can be considered a modified 
version of the Boltzmann machine. 

For the network of Fig. 1, if we have the desired posterior probability of the 
Bayesian network, given some instantiated evidence, we can define a monotonic 
error cost function for the differences between the desired posterior probability 
and the estimated posterior probability. We can use this to devise a strategy to 
adjust the conditional probability matrices in the links belonging to a hidden 
node. If the conditional independence criteria are satisfied, we should expect a 
minimum of the error cost function throughout the training set. 

Let the variable A have A states and a set of training data be denoted E E 3. If 
we are interested in the posterior probability (belief) of A given some evidence E, 
denoted as Bel(A), then we express Bel(A) as a nonlinear function of all the 
evidence 

Bel(A) =f(E) . 
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The expectation of the squared-error cost function, A, is 

,g [WJ,) - Wu,)l’ 

where E{ .} is the expectation operator. and D(a,) is the desired value of a,. 

Using the joint probability of the input and the desired output, Hampshire and 

Pearlmutter [8] show that when the network parameters are chosen to minimise a 
squared-error cost function, the outputs are the conditional expectations of the 
desired outputs which minimise the mean-squared estimation error. In their 

paper, they refer to neural networks, but their derivation can be easily general- 
ised to any type of network in which the input and output relationship can be 

expressed by a mapping function. 

,$ [E{D(a,)iE} - (B~/(z,>)]~ 
1-I 

The justification of minimising the mean-squared error cost function is presented 
in Appendix A. In Eq. (8). E{ D(a,)lE} is the expected belief of A given the 

evidence E, and 

E{D(a;)/E} = i: D(a,)P(u,/E) (9) 
,=I 

is the conditional probability of desired states given the evidence E, weighted by 
the instantiated value of the states vector. If only one of the states, i, is assigned 
the value one and the rest zeros, Eq. (9) will become: 

E{ D(a;)/E} = /‘(q/E) 

which is the Bayesian probability. If more than one state is instantiated with value 

greater than zero, Eq. (9) will become a dot product of the instantiated value and 
the Bayesian probability vector, which satisfies the axioms of virtual evidence. 
This provides us with additional insights to the least mean squares algorithm. 
Contrary to popular belief that the training data of the desired variable must be 

one of N cases, we can provide better training using virtual evidence if we are not 
sure in exactly which state the desired output should be instantiated. The only 
caution that we must observe is that the sum of all instantiated values must be 
equal to unity. For example in our application, for a particular colon image, the 
expert’s advice can be a vector of [Stop = 0, Advance = llT or a less definite 

advice of [Stop = 0.2, Advance = 0.81’. 
Note that 5 is a scalar and it is always positive. 5 is known as the squared-error 

cost function which is used to measure the difference between the actual outputs 
and the desired output. It is the most widely used cost function of all the 
possibilities. Others can have slightly different effects, for example, the cross- 
entropy cost function (which is also known as Kullback-Lieber (KL) distortion 
[13,28]) weights errors more heavily when the actual outputs are near zero and 
one. 
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5 = ,I$ tDCai) l”g(D(ai)lBez(ui))l 

Hampshire and Pearlmutter [8] have shown that the objective functions to 
minimise the squared-error cost function and cross-entropy cost functions are 
asymptotically equal. That means that if we have a large training data set that is a 
good representation of the problem, it really does not matter whether we express 
our error function as a squared-error cost function, Eq. (7), or as a cross-entropy 
cost function. 

To obtain the derivation of the gradients for the conditional probabilities of the 
hidden node, we start with the most simple star structure shown in Fig. 4. 

We first write the operating equations [20] from the leaf nodes to the root node. 
Given that: 
l ~(a,) is the prior probability distribution of the variable, P(A), which can be 

obtained from the domain of training data, 
l D(a,), is the desired value for the root variable (A) for each set of training 

data, 
l h(ck) is the evidence of the instantiated leaf node C, and 
l A(d,) is the evidence of the instantiated node D, 

we have: 

Ac(hj) = 5 P(cklh,)A(ck) 3 

k=l 

AD(hj) = Ii P(d[lhj)A(dl) ? 

I=1 

A(‘j) = Ac(‘j)A,(hj) > 

A,(u,) = I? P(hjlui)A(hj) 3 

j=l 

G;) = h&i) > 
beZ(u,) = A(u,)r(u,) , 

A P 
H -A C D 

(10) 

(11) 

(12) 

(13) 

(14) 

Fig. 4. H is the hidden node 
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Bel(a, ) = 
Wu, 1 

E f, _ , Ma,,, 1 . 

e(u,) = D(a,) - Be/(q). 

(15) 

( 16) 

5 = i e(u,)’ 
,=-I 

(17) 

The objective function to be minimised is the expectation of (17). To do that we 

must obtain the gradients of (17) with respect to all the conditional probabilities 
in the link matrix. Choosing a general element P(h,lu,) from the link matrix 
between node A and H, we expand the gradient using the chain rule for partial 

derivatives to get. 

a#_$ at de(u,,, ) dBef(a,,,) dbef(u,) 
=- 

dh(a,) 

dP(h, /a;) de(u,,) dBel(u,n) dbel(u,) dA(a,) dP(h,lu,) 

where the individual terms in the expansion arc 

where 

4,,, = 
1, i=m, 

0, ifm. 

dbel(u,) 

W,) 
= %-(a,) . 

Na, > 
&y/z, /a,) = A(hj ) 

(18) 

Notice that all the elements of dBel(u,)/dbel(u,) form a matrix, hence when we 
put all the partial derivatives together, we must sum over all the values indexed 
by the subscript m. This is because the value of Be1 is dependent on all other 
values of bef before normalisation. 

Substituting into Eq. (18) we get 
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ag =sl [ -2e(uJ( sim be@,) 
aP(hj la;) CA,=1 bel(a,) - (CA,,, bel(u,))* T(“‘)A(hi) 

-2 
Ii [4%)(4, - Bel(ui))lT(ui)A(hj) . 

= CA,+ be@,) m=~ 
(19) 

If we do the partial derivative for each conditional probability in the links 
between node A and node H and form them into a matrix, we will have the 
gradient matrix which is required to adjust the conditional probabilities of the 
link. 

Similarly for an element in (~3g)l(aP(c,lh~)), we have 

at _ a( Mhj) a*&j) 

aP(c,lhj) aA ah,(h,) aP(Cklhj) . (20) 

When we expand the (&$)l(aA(hj)), we must do so under a summation for all 
states of ai, because the change in the conditional probabilities will effect the 
result in every state of belief in A. 

at ae(u,) aBe@,) abel(u,) aA ah&,) 
aP(c, /hi) i=, ae(u,) aBel(u,) abe/ aA ah,(q) ah@,) 1 

x aA a*&j) 

ah&,) alp, /hi) 

Wj) %@j) 

’ aA, aP(c,/hj) 

-2 

= CA,,r be@,,,) 

’ AD( . (21) 

Similarly, 

at ae(u,) aBe@,) abel(q) aA aA, 

aP(d,lhj) i=l ae(u,) aBeZ(u,) abe@,) aA aA, ah@,) 1 
Whj) %Ahj) 

’ ah,0 aP(d,lhj) 

-2 
{Z? ( Z? [e(u,)(%,, - Bel(a,))l)Po,ioi)} 

= CA,,1 beZ(u,) i=l m=l 

x *,(hj)*(d,) * (22) 

Note that, from Eqs. (19), (21) and (22), it is not difficult to show that the 
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elements of the Hessian (the second derivatives of all the conditional prob- 
abilities) are semi-positive definite. Hence, we will move towards the minimum of 

the performance surface of the error function defined over the conditional 

probabilities. 

4. Matrix representation of the gradient for the squared-error cost function for 
backward propagation 

The derivation in Section 3 for individual elements of the link matrices results 
in a rather cumbersome formulation in which it is difficult to visualise the process. 

Furthermore, the multiple summations in the expressions make programming and 

representation a rather tedious task. A better formulation can be obtained by 
exploiting the elegant representation and implicit summation of matrix multiplica- 
tion in the derivation of the gradient matrices. 

Notation 

In all our equation derivations, we are using column vectors, such as 

du, 1 

n(A) = :- [1 4u-) 

‘IT@;? > 

For ease of notation. WC: will use 4 to indicate a column vector with states 

[a,,a,, . ,aA]‘r, and A without the underscore, to indicate the dimension of A. 
The superscript T, as usual. denotes the transpose. 

For a matrix, we use the notation 

P(h,/u,) P(h,IN,) ..’ P(h,,/u,) 

P 
P(h, la,) P(h2ioZ) . P(h,,la?) : .’ : f(hJ./cr,, ) : W$a, ) 1 

where A is dimension(d ) and H is dimension(U). The two variable underscore 
indicates a matrix of dimension A times H. 

We introduce the operator C3 to indicate element-by-element multiplication. 
The two operand matrices (or vectors) must be of the same size. The result is a 
matrix (or vector) of the original dimension, where each element is the product of 
the elements in the corresponding positions in the operands. This operator is 
useful when expressing the fusion of lambda messages and the fusion of pi and 
lambda values. 

We use the following rules, which the reader may verify for himself, for 
matrix/vector differentiation: 



(1) 

(2) 

(3) 

(4) 
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If we differentiate a scalar by a vector, the resultant is a vector of the same 
dimension as the vector. 
If we differentiate a vector by a vector of same dimension we would 
normally obtain a matrix. However, in the case where two vectors are 
combined by the term-by-term multiplication operator @‘, and the differen- 
tiation is taken with respect to one of the vectors, the result is a vector. 
If a vector A, which is obtained by post-multiplying a matrix M (dimension 
A times H) with a vector H, is differentiated with respect to the second 
vector H, we will obtain the matrix M. If A is combined with a vector C 
(dimension A) using the operator @ in the original equation, then we will 
get the same result by pre-multiplying the matrix M with the transpose of 
vector C. 
If a vector A, which is obtained by post-multiplying a matrix M (dimension 
A times H) with a vector H, is differentiated by the matrix M, the result is 
a matrix N where each row is the transpose of H. If A is to be combined 
with a vector I: (dimension A) using the operator @ in the original 
equation, then we can obtain the result taking the outer product of vector 
C and the transpose of vector H to produce a matrix of dimension A times 
H. 

Before we express all the operating equations for the Bayesian network using 
matrices and vectors, we require, as previously, the following data in vector 
notation: 

l n(A ) is the prior probability distribution of 4, P(A), which can be obtained 
from the domain of training data, 

l D(A) is the desired state for the root node (A) for each set of training data, 
l h(C) is the evidence of the instantiated node C, and 
l A(D ) is the evidence of the instantiated node D. 
The operating equations are, 

h,(H) = P,,,W) 3 (23) 

A,(H) f’,,,ND) > (24) 

A(H) = A,(H)@&(H), 

WH) = A(H) @ r(H) , 
(25) 

%,(A > = f’,,,[WH)\4H)l= P,,,A(H) . (35) 

In Eq. (26), the lambda message to the parent is the belief value excluding the 
contribution from the parent itself. It is the same as the lambda value in the case 
where there is only a single parent. 

A(A)=&(A), 

b&3) =A(A)@&A), 
(27) 

be@ ) 
Be1(A)= Ibel( ’ 
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e(A)=D(A)-Be/(A). (29) 

where bef() is the un-normalised form of the belief function and Ibel( is the 
norm of beZ(A ). D(A ) is the desired result of node A. 

t=e(A)‘e(A). (30) 

Note that 5 is a scalar and it is always positive. 
Now, to do the partial differentiation, we again make use of the chain rule 

8‘5 at de(A) dBel(A ) &e/(A) dh(A ) dh,(A ) 
apHi, = ae(A dBeZ(A ) dbel(A ) &i(A ) ah,(A ) aPHiA 

at &(A ) al?el(A ) dbef(A) ah(A) ah,(A) 
= 

de(A ) dBel(A ) abeZ(A ) I_ ah(A) %,(A) ap,,, (31) 

Care should be taken with the matrix operators used between the matrices when 
substituting for the partial derivatives in Eq. (31). To clarify the meaning we use Z 
to mean an identity matrix of dimension A, and the notation ones(A )’ to be a 
row vector of dimension A, with each entry equal to 1. Making the substitutions 
equivalent to those defined in Section 3 we obtain: 

~=i[(-2e(~))‘(,6e~lA)l jr-Ber(a)ones(a)ll)11’~17(A)~A(H)’ 

= lbel(i), {[e(A)‘(Z- Bel(A)ones(A)‘r)]T~~(A))A(H)” . (32) 

Notice that the summation of (32) is implemented by matrix multiplication of 
[e(A )T(Z - BeZ(A ) ones(A)T)] to produce a row vector of size A times 1. From 
Eq. (32), it is easy to see that (&$)/(aA,(A)) b e h aves like the pi message from A 
to H and has dimension A. 

For the link matrix between node H and C. we have 

at at de(A) aBeI &e/(,4) ah(A) ah,(A) 
aP<.lH = ~ de(A ) dBel(A ) dbel(A ) aA(A ) aA,(A ) ah(H) 

ah(H) a&(H) 
’ &.(H> ap,.,, 

dA,(A) ah(H) ah,(H) 
={[ dA$)] ---}-,’ aA aA, 

From Eq. (33), we have 

&AA > ah(H) 
ah(H) = ‘cfi and ah,.(H)= AD(H) 

(33) 

which is analogous to the way that the pi message from H to C will be derived, by 
“resizing” the evidential information from the parent node and including all the 
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evidential information from the other siblings. Thus, (&$)/(&.(H)) should be 
thought of as a gradient message from H to C. 

(34) 

and the corresponding pi message from H to C if A and D are instantiated will be 

%(H) = P%,%(A )I @hm) * (35) 

The reader will now probably recognise that gradient updating through gradient 
propagation is analogous to belief updating when using the network; each 
gradient message replacing the corresponding pi message or lambda message in 
the link. Hence, 

at -= 
a PClH - 

Iheii ), WLJk(A lT(Z - Bel(A )oMA >‘)I’@ 44 )>I> 

and similarly, 

@A,(H)]A(C)T (36) 

C&(H)]A(D)T (37) 

Comparing the result that we have just obtained with the equations of Section 3, 
it is easy to see that they are the same. The matrix formulation is very clear, 
elegant and easy to program. The expected gradient for each epoch is 

(38) 

5. Derivation of the gradient for forward propagation 

In Section 4 we derived the equations for the case where the change in the 
conditional probabilities is propagated from the evidence nodes to the root node. 
In Bayesian networks, there is no strict direction of signal flow, and so queries can 
be made at any node in the network. Thus the training data set X is an unordered 
collective {X, , X,, X, , . . . , X,,,}. Since Bayesian networks must be able to handle 
partial evidence, where some nodes remain un-instantiated, we can define the cost 
function to encompass all situations as follows: 

1x1 IX,I 

rnjn A = 2 C E 
i=l zs;x\x, 

C [D(X;j) - Bd(XijIZ)]’ 
j=l 

In our experiments we found that, if we define our cost error function to 
encompass both back propagation, where we instantiate the leaf nodes, and 
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forward propagation. where we instantiate the root node, we can achieve very 

good results. We will now give the derivation for propagating the delta change to 
the conditional probabiiities in the forward direction. 

For forward propagation, we have the following known data: 
n(P) which is the instantiated value for root node A, designated D(A) in 
Section 3; 
D(C) is the expected partial belief of node C. which was A(C) in Section 4; 

D(D) is the expected partial belief of node D, which was A(D ) in Section 4. 

and 
A(C) and A(Q) are unit vectors of dimensions C and D respectively. 

. 
The partial derivatives for forward propagation can be found in a similar 

manner to the backward propagation derivatives given in Section 4. 

dA ) = D(A ) . 

n,(A)=r(A). 

A, (ill = P,. AC) . 

A,,(H) = f’,, ,,A(D 1 

(39) 

However. since both A(c) and h(Q) arc not instantiated, A,.(H) and A,(H) can 
be shown to be unit vectors of dimension H. 

-ir(H) = C.;,q,(A ) . 
A(H) =A,.(lj)@AJH) , 

gel(H) = 
r(H)@‘/\(H) 
n(H)A(H) 

.1‘ -v(H). 

WH > 
dH) = A,.(H) -=7T(H). 

WH) 
%w)=h,,(H)=w. 

n-(C) = P (&T(.((_(H) . 

7r(D)=P h!HQ(li) , 
Be](C) = 55-(C), 

Bel(D) = 7r(Q). 

(40) 

(41) 

(42) 

(43) 

(44) 

Since we are not instantiating all the leaf nodes their A values are all unity. Thus 
we have the expressions 

e(C) = D(C) -&d(C) = D(C) - r(C), 

e(D)=D(L>)-Bel(D)=D(Q)-?r(D). 
(45) 

We define the error function (which is a scalar) as the sum of the total errors for 
all states in all leaf nodes. 
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5 = e(C)Te(C) + e(l?JTe(D) 
and perform the partial differentiation as before 

a&- a6 se(c) aBel(C) a7f(c> -=- 
a& se(C) aBd(C) a77(c) aPCiH 

at se(C) aBel( ar(C> 
= de(C) aBe/ ar(c> 1 ap9 

= -2rc(H)e( C 1’ 
= -2[PT,,,n(A )le(C)’ T 

at at k(D) aBeZ(Q) 

--= tie(D) aBeZ(Q) a7f(Q) apLH.Y 

= -2[PT,,,74A )le(D)’ , 

19 

(46) 

(47) 

(48) 

*=..g[&]~]~}* -_ _ a6 WC) adc) adH) ar(ti) 
de(C) ar(c> an,(H) a742) ap,,, 

at de(D) ar(o) adH) am(H) 
+aeOW arD(fl) ar(H) ah,, 

= -WA >[e(C)‘P’,,, + e(D)TP&H] . (49) 

Note that we do not have to normalise BeZ(C) and Bel(D) since, providing that 
D(A) was normalised before propagation, they are already normalised. 

6. The algorithm for adjusting the conditional probabilities in the link matrices 

Once we have found the gradients for the link matrices, we can proceed to 
obtain solutions using the objective function (8). From the equations in Sections 4 
and 5, it is obvious that a closed-form solution is very difficult to obtain since it 
requires us to invert all the matrices. Hence, we choose to obtain the solutions by 
numerical iteration, using a method similar to the least mean-squared algorithm 
[34]. We avoided the established Newton-Raphson method [27], since, for each 
equation, the Hessian of the objective function must be obtained, and if we use 
the secant approximation method, we need to have two initial values. By 
comparison, if we use the least mean-squared algorithm, we only need the 
Jacobian of the objective function and one set of initial values. 

Bayesian networks are subject to more constraints than other connectionist 
networks, such as neural networks, and we will now look at these. First, all the 
conditional probabilities of the link matrices must be positive definite. In the least 
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mean-squared algorithm, if the learning rate is too large, then there is a danger 
that some of the elements of the link matrix may become negative. At first sight, 
we may infer that during training the learning rate must be chosen as small as 
possible. However, an alternate strategy is to choose a learning rate that is large 
and impose a check to make sure that the differential matrix will not cause any 
element of the link matrix to become negative. More loosely, we can allow the 
elements to become negative and reset their values to zero after each iteration. If 
the data in the delta matrix is too large, we can scale the whole matrix until the 
constraint is satisfied. This in effect is to dynamically adjust the learning rate. 
From experience, this strategy helps the model to converge faster. However, it 
introduces a further problem which occurs in cases where the gradient is negative, 
and the corresponding element in the matrix is 0. Any further adjustment to the 
matrix will not satisfy the axioms of probability, and the process cannot continue 
even though a minimum has not been reached. To get round this, we add a small 
constant value perturbation to each of the conditional probabilities and continue 
with the training algorithm. 

The second constraint in a Bayesian network is that all the conditional 
probabilities must sum to one for any given causal variable. That is 

To satisfy this constraint, we always normalise the conditional probability after 
each propagation. This added constraint reduces the number of possible solutions, 
when we compare it with similar connectionist networks. The constraint is not 
sufficient to ensure that we obtain a unique solution for different initial 
conditions, but it apparently does not affect the performance. 

Given P(X), for the added hidden node we define P(X, H) where H is the 
virtual evidence for the hidden node. Since we do not have any information about 
the distribution of H, we choose a random number for each state of h,, and 
normalise the result to 1. Hence, the initial expectation is well-distributed white 
noise in the hidden node. 

The algorithmic steps are summarised as follows: 

Creating hidden nodes. 
Build an initial Bayesian network using subjective assessment or the maximum 

weighted spanning tree algorithm. 
Calculate the conditional correlation coefficient by Eq. (4) andlor mutual 

information by Eq. (51) between all nodes in the network. 
For each pair of nodes with significant common information: 

Create a hidden node as their unobservable parent. 
Monitor the performance using the testing data set, and train the star structure 

as shown below. 
Save the new graph and the conditional probabilities of all the links. 
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Training a star structure. 
Call Initialisation. 
Initialise the learning-rate (the relaxation constant) 
While (the mean-squared error improves in each epoch) 

Use Back propagation to obtain the backward gradients. 
Adjust the conditional probabilities based on the gradients using the operating 

equation (5). 
Normalise all the link matrices to satisfy the axioms of probability. 
Use Forward propagation to obtain the forward gradients. 
Adjust the conditional probabilities based on the gradients using the operating 

equation (5). 
Normalise all the link matrices to satisfy the axioms of probabilities. 
Zf the error does not reduce further due to some elements being OS. 

Add some perturbation to the whole matrix before the next iteration. 
Save the conditional probabilities of the link matrices. 

Initialisation. 
Determine the size of the link matrices that satisfy the data dimensions. 

Either: obtain the initial link matrices from expert knowledge 
or: generate random initial values for the hidden variables. 

Normalise the conditional probabilities of the link matrices. 

Back propagation (for one epoch). 
For each set of training data: 

Assign the data for the leaf nodes as their lambda values. 
Assign the data for the root as the expected result. 
Propagate the lambda messages up to the root node using the operating 

equations (23)-( 30). 
Calculate the gradients for each of the conditional probabilities in the link 

matrices using the operating equations (32), (36) and (37). 
Sum up all the gradients for each set of training data to obtain the expected 

gradients for each of the link matrices using Eq. (38). 

Forward propagation (for one epoch). 
For each set of training data: 

Assign the data for the root nodes as the pi values. 
Assign the data for the leaf nodes as the expected values for the leaf nodes. 
Propagate the pi messages down to the leaf nodes using the operating 

equations (39)-(46). 
Calculate the gradients for each of the conditional probabilities in the link 

matrices using the operating equations (47)-(49). 
Sum up all the gradients for each set of training data to obtain the expected 

gradients for each link matrix using Eq. (38). 
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7. Extension to a general singly connected Bayesian network 

The gradient equations in Sections 4 and 5 can be easily extended to a 
star-decomposition with multiple evidence nodes, such as those mentioned in [22]. 

Fig. 5 shows the general case of a star-decomposable multiple evidence node, 
where H is the hidden node, and h(C,) is the partial belief of the mth child of the 
hidden node, which takes into account all the effects of its children. Note that the 
hidden node H has other children as indicated by the ellipsis in Fig. 5. 

Most of the operating equations are similar to Section 4, except that the A value 

of the hidden node, A( II), is defined as 

,,, 

A(H) = n A,.,(H). 
,=I 

(50) 

The 11 symbol represents the term-by-term product of all A messages from the 
children of the hidden node, i.e., a combination of all the beliefs from all the 
descendants of the hidden node. The expressions for the gradient &J/dPH,A 
remain the same as in Eq. (32) because the partial derivatives are computed from 
the root node and chain back to the link between A and the hidden node. 

For d[ldPc. ,,, the terms in the partial derivative are the same, except that 

““) = ,c A,.,(H). 
dA,.JH) 

I 7‘ I, 

The rest of the derivation is obvious. We have also verified that the gradient 

Children ol C, Children of C m 

Fig. 5. Extension of Fig. 4 to a general tree 
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updating scheme can be easily extended to multiple parents and multiple children 
networks by simply replacing the corresponding pi message or lambda message 
with the partial derivative. We will not show the details in this paper as they are 
not required for our current implementation. 

8. Experimental results 

In our application, we construct our Bayesian network by acquisition of 
subjective knowledge from the expert. For example, the sub-module of our 
system based on the discrete Fourier domain consists of three evidence nodes 
{[X-size], [Y-size], [Energy]} and two inference nodes {[Advice], [LDR]}. 
[Advice] is the root node and is the decision node of our system. [LDR] is an 
intermediate node, which is introduced to make the network more coherent. It 
serves a similar purpose to the hidden nodes in our current research. There is a 
distinction in our usage between the terms intermediate node and hidden node. In 
the topology of the directed acyclic graph, they are identical and serve the same 
purpose. However, when we call a node intermediate, we mean that its probability 
parameters are obtained from an expert by subjective means. When we call a 
node hidden, we mean that it is transparent only during data collection and the 
expert is unaware of its existence. Its probability parameters are found from the 
world of feasible values which satisfy some loss criteria. In our approach, the 
identifiable features themselves can be virtual, which means they can be the 
posterior belief of a probabilistic network. 

Without investigating the dependency of the data, we derived the inference 
diagram shown in Fig. 6 from subjective intuition. 

The [LDR] node, which represents a qualitative interpretation of the image, 
independent of the detection of the lumen, is caused by the amount of room 
available to advance the endoscope tip. There can be other causes for it, such as 
temporal data represented by the state of the node at the previous time step. 
However, in the closed world approach, we do not include all possible causes to 
the variables in order to make the problem manageable. From the inference 

A [Advice] P 

Fig. 6. Inference diagram for the Fourier domain sub-module. 
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diagram, if we have an interpretation of [LDR] from expert knowledge, the 
causes to [LDR] (‘ i.e., the value of [Advice]) will not change the likelihood from 
the node [LDR] to its children. We say that the node [LDR] d-separates {[X-size], 
[Y-size], [Energy]} f rom their other predecessors [23]. Making [LDR] the direct 
cause of the other variables [X-size], [Y-size] and [Energy] looks reasonable. If 
there is an LDR in the colon image, then it is likely to have a characteristic size 
detected in the x and y directions and the overall image intensity will be low, thus 
creating a characteristic energy measured in the image. 

However, with some further subjective assessment of the structure, we 
observed that there are cases where there is no visible large dark region that can 
be detected as lumen, but the overall colon image is dark. These types of images 
occur where the colon bends and we can move the endoscope forward. Hence we 
modified the structure to Fig. 3, where the parent of [Energy] is the proposition 
variable [Advice] instead of [LDR]. 

We have chosen to construct the tree initially from subjective data since we 
think this will reduce the possibility of spurious dependencies in the network. 
However, other approaches are possible. Cooper and Herskovits [2] suggested an 
alternative Bayesian method which searches through the possible structures for a 
network which best satisfies the data. 

Chow and Liu [l] have shown that to maximise the maximum likelihood 
estimate of independent observations (X’, X2, X”. . . . ,_I’“) E X is equivalent to 
maximising the mutual information between each link. The network which does 
this is known as the maximum weighted spanning tree. In probabilistic terms, 
mutual information [5] defined as 

r(a, 7 b,) = log 
0,/b,) P(a,, 6,) 

f@) = log P@)P(b,) 

Summing over all the states for variables A and B, weighted by their joint 
probability, we have 

(51) 

which is a measure of the information provided about the event A given the 
occurrence of event B. The likelihood of X is defined as the product of individual 
probabilities. 

L(X’,X2,X3,. ,XK)= i’l P(X"). 
h- I 

(52) 

In our application, our observations may not be statistically independent. Hence 
the correct likelihood definition for our observations should be 

L(X1, x’, x”, . .X”) = n P(Xk/X’ . .a-‘) 
k=l 

(53) 

We seek to strike a balance between the subjective and objective approach in 
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Table 1 
Mutual information for {[LDR], [X-size], [Y-size]} 

Mutual information between Result 

LDR 
LDR 
X-size 

X-size 0.1863 
Y-size 0.1900 
Y-size 1.2276 

constructing our inference diagram. After initial subjective construction, we use 
statistical analysis to find the correlation and mutual information for the data in 
each branch. If there are variables with the same cause that are highly correlated 
and have high mutual information, then it is most likely that we can improve the 
network performance by the creation of hidden nodes to remove the over- 
emphasis of their common information. 

The mutual information for the variables {[LDR], [X-size], [Y-size]} is 
summarised in Table 1. If we were to use the maximum weighted spanning tree 
algorithm [l, 61 to build a tree from this information we would obtain the 
structure of Fig. 7. 

Since we have a measurement for Y-size in our application, we treat this as 
virtual evidence for the node [Y-size], denoted as an additional child node, which 
propagates a lambda message to the node [Y-size]. 

The tree obtained using our hidden node approach is shown in Fig. 8. 
When we evaluated the performance of the maximum weighted spanning tree 

for the estimate of [LDR] in Fig. 7 we found that the performance, measured by 
the probability of a correct deduction, improved from 0.6139 to 0.6436 compared 
to the original subjective structure. However, when we used the hidden node 
structure as in Fig. 8, using 100 sets of training data and 202 test sets, following 

Y [Y-size] ;,:d 0 P x _ _ 
[virtuul Y-sim] [X-size] 

Fig. 7. The inference diagram by MWST. 
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Fig. X. The inference diagram with hidden node 

the training algorithms outlined in the previous sections, we found a much greater 

improvement to 0.84, for the detection of [LDR]. 
Fig. 9 summarises some of the statistics obtained during training. Fig. 9(a) 

shows the sum of squared-error for the prediction of [LDR] given [X-size] and 
[Y-size], after each iteration of back propagation and forward propagation. The 
epoch axis shows the number of iterations. Notice that our initial guess is not too 
bad, because we are using the actual statistical data P(LDR, X-size, Y-size) with a 
random number initial estimate of the joint probability of P(LDR, X-size, Y-size, 
Hidden). Fig. 9(b) shows the sum of squared-error for the prediction of [X-size] 

0.1 0.14: 
0 20 40 

(3 
60 80 0 20 

epoch 4o @) 6o ,,8,; 

@ormance hlrtory for erumat-ion of Be](A) 

1 

I 
o.75o-- - --~ I 

20 40 (L-j 60 80 epoch 

Fig. 9. Training history for {[LDR]. [Hidden]. [X-size], [Y-size]}. (a) and (b) are the expected sum of 

squared-errors during training and (c) is the performance of the test data set. 
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and [Y-size] given [LDR]. Fig. 9(c) shows the performance of the prediction of 
[LDR]. Notice that there is a small drop in the performance. This is due to the 
fact that many of the posterior probabilities are near the decision threshold. Our 
strategy is to minimise the sum of squared-error, which associates a high penalty 
cost for those cases where the predictions are at the opposite extreme. This 
phenomenon only occurs in the training of the Fourier domain sub-module. When 
we tested it with the other modules, the minimised sum of squares algorithm gives 
the best performance. In general, the minimised sum of squared-error is higher 
than in a corresponding neural network. This is due to the absence of a squashing 
function in the Bayesian network. 

Fig. 10 plots the conditional probabilities of the link matrices for (a) [LDR] to 
the hidden node [HI, (b) the hidden node [H] to [X-size], (c) the hidden node [H] 
to [Y-size]. 

After training the first hidden node, and carrying out further statistical tests, we 
introduced a second hidden node separating [LDR] and [Energy] from [Advice]. 
The new configuration of our Bayesian network is shown in Fig. 11. Notice that 
the sub-network is a single chain, if we express the lambda and pi messages for 
[G] and [HI, we have 

(54) 

If we define PHic = P,,,P,,,, we see that we can remove the internal node 
[LDR] in our advisory system since we never needed to know the belief of [LDR] 
in the application. By adjusting the weights of the links to hidden node [G] we 
can combine the contribution of [LDR] into [G]. Thus the structure of Fig. 11 can 
be simplified to the structure shown in Fig. 12. 

‘ITI ,/ ‘.’ \\\\ ., ‘\ 
‘. ;’ 

;.; 
‘, 

0.5 P(Y-size/H) 

0 
0 2 4 6 8 
Cc) state number of Y-size 

0 2 4 6 8 
W state number ofX-sue 

Fig. 10. The conditional probabilities of the link matrices. 
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Fig. Il. Fourier domain sub-module with second hidden node G 

Fig. 13 summarises some of the statistics during training. Fig. 13(a) shows the 
sum of squared-error for the prediction of [Advice] given [X-size], [Y-size] and 
[Energy], after each iteration of back propagation and forward propagation. Fig. 
13(b) shows the sum of squared-error in the forward prediction of [H] and 
[Energy] given [Advice]. Fig. 13(c) shows the performance of the prediction of 
[Advice] in the testing data set. A small perturbation at iteration 164 was added 
to all conditional probabilities when the system reached a minimum point. This 
approach is similar to the well-known relaxation techniques employed in the 
Boltzmann machine [lo]. We added the perturbation to allow the system to search 
for an alternative minimum point which may better model the training data. 
Although there was no improvement in the number of correct classifications in the 

[Adwe] A 

P 

Fig. 12. Fourier domain sub-module with hidden nodes G. H. 
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Fig. 13. Training history for {[Advice], [G], [HI, [Energy]}. (a) and (b) are the expected sum of 

squared-errors during training and (c) is the performance of the test data set. 

test data, the lower sum of squared-errors implies that we managed to find a 
better fit than the first minimum. 

Table 2 summarises the results of the different configurations of the Fourier 
domain sub-modules shown in Figs. 6, 7 and 12. 

From Fig. 8, if we ignore the estimation of intermediate node [LDR] and define 
the link matrix I’,,, = P,,,P,,,, we can train the hidden node [H] with only _- 
observed data. 

We tried the same approach on a second sub-module of our system which uses 
region-based segmentation to estimate the lumen [12]. The network consisted of 
five nodes {[Advice], [LDR], [Size], [Mean], [Variance]} and was used ex- 
perimentally by Sucar and Gillies [32] to investigate the effect of correlated data 
in Bayesian networks. Sucar investigated the configurations for the model as 
shown in Fig. 14. 

Fig. 14(a) is the original model derived from expert knowledge, Fig. 14(b) is a 
modified structure with the [Mean] node deleted, since it was found to be 
correlated with the [Variance] node. The unconditional correlation coefficient, 
originally employed by Sucar [30] to test dependency, is 0.4947. However, since 
we are investigating the conditional independence assumption, it is more correct 
to use the conditional correlation coefficient of Eq. (4). The conditional 
correlation over [LDR] is 0.5880. 

Table 2 

Performance of various configurations for Fourier domain sub-module 

Configuration Performance 

Fig. 6 (direct) 0.6733 
Fig. 7 (MWST) 0.6832 

Fig. 12 (hidden node) 0.8366 
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(J) ch) 

Fig. 13. Conligurations ot the region-based segmentation model. 

The mutual information for the variables {[LDRJ, [Size], [Mean], [Variance]} is 
summarised in Table 3. which further supports the claim that there is information 
within the [Mean] and [Variance] nodes that should be neutralised. 

We combined the contribution from [Mean] and [Variance] using a first hidden 

node [H] (Fig. 15(a)), g i noring the internal node [LDR], and then with [Size] 
linked through the second hidden node [G] (Fig. 15(b)). 

Fig. 16 shows some statistics during the training of the hidden node [HI. Fig. 

16(a) shows the history of the sum of squared-error for the back propagation 
prediction of [Advice], Fig. 16(b) shows the history of the sum of squared-error 
for the forward propagation prediction of {[Mean], [Variance]}, and Fig. 16(c) 
shows the performance of the prediction of [Advice]. After about forty iterations 
it was found that the process was not converging due to some of the probabilities 
in the link matrices falling to zero. Hence a perturbation of 0.2 was added to all 
conditional probabilities, and the convergence continued as shown in Fig. 17. 

The program terminates when further adjustment of the link matrices does not 

improve the sum of squared-error. Note the increase in the sum of squared-errors 
and the deterioration of the prediction performance immediately after the 
perturbation. 

Fig. 18 is a snapshot of the link matrix between [H] and [Mean], Fig. 18(a) is 
the initial estimate, Fig. 18(b) shows the state after 25 iterations, Fig. 18(c) after 

Table 3 

Mutual information for { [LDR]. [Size], [Mean]. [Variance]} 

Mutual information between Result 

LDR Size 0.2827 
LDR Mean 0.2223 
LDR Variance 0.1149 
Size Mean 0.4098 

Size Variance 0.2999 

Mean Variance 0.4841 
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Fig. 
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’ 
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[Six] 

A [Advice] 

P , 

[Mem][Variance] 

(0) 

15. Hidden node creation for the 

A [Advice] 9 

[Mran][Variance] 

(h) 

region-based segmentation model. 

110 iterations and Fig. 18(d) the total changes to the conditional probabilities of 
the link matrix. 

Fig. 19 shows statistics collected during the training of the hidden node [G]. In 
Fig. 15(b) a perturbation of 0.5 was added to all the link matrices to remove the 
zero elements. Fig. 19(a) shows the history of the sum of squared-error for the 
forward propagation prediction of {[Size], [HI}, and Fig. 19(c) the performance 
of the prediction of [Advice] which finishes at 0.9010. 

In creating the nodes [H] and [G], we ignored the requirement to collect data 

50 (a) 100 150 
epoch 

0 50 @) 100 150 
epoch 

1 performance hutory for Bel(A) 

Fig. 16. Training of hidden node [H] for the region-based segmentation model. (a) and (b) are the 

expected sum of squared-errors during training and (c) is the performance of the test data set. 
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0.3 

5 10 
state number of Mean 

5 10 
state munbcr of Mean 

Fig. 17. Training history of hidden node [H] after perturbation. (a) and (b) are the expected sum of 

squared-errors during training and (c) is the performance of the test data set. 

for the [LDR] node in our model, which, as noted previously is an internal node 
whose value is not required. In effect, Figs. 15(a) and 15(b) represent the same 
structure, with the exception that [G] has more states than [LDR]. The predictive 
performance turns out to be the same, which gives further justification to the 
validity of the training algorithm. 

Fig. 20 depicts the link matrices between the nodes: Fig. 20(a) shows [Advice] 
to [G]; Fig. 20(b) [G] to [Size] and Fig. 20(c) [G] to [Hidden]. We notice that a 
characteristic for the hidden nodes is that the link matrices exhibit little prediction 

0,2error hutory plot for backpropaRaQon 
I 

50 
epoch 

oo,~ I performance hutory for Be](A) , 

o,116 emr hutor for forward IO a ahon 

I==---l 

0 (0 50 epoch 

Fig. 18. Snapshot of the link matrix between [H] and [Mean] 
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Fig. 19. Creation of hidden node [G] for the region-based segmentation model. (a) and (b) are the 
expected sum of squared-errors during training and (c) is the performance of the test data set. 

of prior probability. From the link matrices in Figs. 20(a) and 20(c), the sum of all 
the conditional probabilities is almost a constant value, which gives no estimate of 
the prior probability. However, summing the conditional probabilities for each 
value of [Size] and normalising the result to satisfy the axioms of probability, we 
can obtain a close estimate of the prior probability of [Size] from the training 
data. 

Table 4 summarises the result of the different configurations of the region- 
based segmentation model as shown in Figs. 14 and 15(b). 

o,lE/ O’;m 
1 1.5 2 2.5 3 2 4 6 
(a) state number of G 

i 
state number of S&c 

-1 
(9 

2 3 
state nmber40fH 

Fig. 20. The link matrices after the creation of node [G]. 
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Table 3 

Performance ot various configurations for the region-based 

segmentation model 

Configuration Performance 

Fig. 14(a) (direct) 

Fig. 14(b) (node deletion) 

Fig. 15(b) (hidden node) 

0.7376 

0.7475 

0.9010 

9. Conclusions and suggestions for future work 

From the experimental results it is clear that the creation of the hidden node as 

an unobservable variable can be a powerful tool to handle conditionally depen- 
dent data in Bayesian networks. By creating hidden nodes, and training them 

using Bayesian operating equations according to the criterion of minimising the 
squared-error cost function, we have improved the performance of two different 

networks. Our method utilises the objective probabilities of the training data, 
constrained by the axioms of probability, and performance is maximised without 
expert intervention during training of internal nodes. We have also demonstrated 
that there is no additional data to be collected for the creation of hidden nodes. 

At present we create the hidden nodes sequentially starting from the most 
dependent data. Future research should be undertaken to compare this approach 
with direct minimisation of the cost function with all hidden nodes created before 
training. Further investigation is also required to determine how many states are 
necessary for the hidden nodes, how to select a dynamic learning rate, how to 
estimate initial values for the hidden variable(s) and how to trim the size of the 
network when a column and row of conditional probabilities fall to zero during 
training. 

Appendix A 

If the variable A has A elements and the training data E E 3, the full set of 
training data, and we are interested in the posterior probabilities (belief) of A 

given some evidence E, denoted as &l(A). then we express Be/(A) as a function 
of all the evidence 

Be&A) = f(E ) 

If we have the expectation of the squared error cost function, A, as 

5 = ,$, [&a, 1 - Wa, 11’ . 

J=E{,$}=E 5 [D(a,)-Bel(a,)J’ 
1-I 
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then, following the method used by Hampshire and Pearlmutter [8], using the 
joint probability density function of P(E, D(A)) of the training data and the 
desired output, we have 

The second summation is applied to each element of the desired value, so we can 
change the representation to 

which is the expectation of the squared-error average over the likelihood of each 
state of the desired output given the evidence. Expanding the squared-error 
expression we get 

A = E i $ [(D(u,))~ + (Bel(u,))2 - 2D(u,)Bel(ui)]P(ujlE) 
1 j=l i=l 

= E 1$1 

{ [ 

,$ (D(a,)>*f’(aj”) + If? (Bel(ai))*J’(ajlE) 

I=1 

- 2,tl D(u,)Bel(ui)P(ujlE) . 

Bel(ui) only depends on the evidence and hence it can be moved outside the 
summation, and further Cf= 1 P(ujlE) = 1, so the equation can be simplified to 

5 (D(u,))*P(u,/E) + (Bel(u,))* - 2Bel(u,) $ D(u,)P(Ujl’) 
j=l j=l 

i [E((D(u~))~IE) + (Bel(u,))* - 2Bel(ui)E(D(ai)lE)] . 
i=l 

Now, 

A 
x (D(u,))~P(u~/E) = E{(D(u~))~IE} 
j=l 

and 
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,* D(u,)P(a,lE) = E{D(a,)lEJ 

are the conditional expectations of (D(u,)).’ and @a,) over specific evidence E. 

Adding and subtracting a term 

,$ E’{D(a,)iE) 

and using the identity 

var{D(a,)/E} = E{(D(u,))‘/E) -- E'[fl(u,)iEJ . 

we have 

:\ 

2 [E.‘{D(u,)lEJ t (Bd(u,))’ ~- 3Hel(u,)E{D(u,)iE} 
/_I 

t E{(D(u,))‘/E) -- E’{D(u,):E)J) 

= E ,$, [E{D(u,)/E} - (Bel(u,))J’ + E{var{D(u,)/E}} 
{ i 

Since the second term is independent of the network outputs, minimisation of the 

mean-squared-error cost function will be 

i [E{D(a,)iE) -- (Brf(u,))]’ 
1-I 

and E{D(u,)/E} is the expected belief of A given the evidence E. 
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