
ELSEVIER Artificial Intelligence 88 (1996) l-38

Artificial
Intelligence

Using hidden nodes in Bayesian networks

Chee-Keong Kwoh, Duncan Fyfe Gillies”

Department of Computing, Imperial College of Science, Technology and Medicine,
180 Queen’s Gate, London SW7 ZBZ, UK

Received June 1994; revised April 1995

Abstract

In the construction of a Bayesian network, it is always assumed that the variables
starting from the same parent are conditionally independent. In practice, this assumption
may not hold, and will give rise to incorrect inferences. In cases where some dependency is
found between variables, we propose that the creation of a hidden node, which in effect
models the dependency, can solve the problem. In order to determine the conditional
probability matrices for the hidden node, we use a gradient descent method. The objective
function to be minimised is the squared-error between the measured and computed values
of the instantiated nodes. Both forward and backward propagation are used to compute
the node probabilities. The error gradients can be treated as updating messages and can be
propagated in any direction throughout any singly connected network. We used the
simplest node-by-node creation approach for parents with more than two children. We
tested our approach on two different networks in an endoscope guidance system and, in
both cases, demonstrated improved results.

1. Introduction

We will begin with a brief introduction to Bayesian networks, which are also
known as belief networks, probabilistic networks, or causal networks. They are
graphical structures used for the representation of conditionally independent
information which is frequently derived from some subjective knowledge base.
Bayesian networks have two components, the dependency graph and the
knowledge representation. The underlying structure of the dependency graph,
which is sometimes called the inference diagram, fully expresses the dependency
or independency of the variables which are represented as the nodes. The
knowledge representation component, or knowledge map, stores all the beliefs

* Corresponding author. E-mail: dfg@doc.ic.ac.uk.

0004-3702/96/$15.00 Copyright 0 1996 Elsevier Science B.V. All rights reserved
PII SOOO4-3702(95)00119-O

2 C’. K. Kwol~. 0. I-. Grl1k.s : Artijicul Intelligence XX (19%) I -3X

and likelihood information for every possible state of the variables. There are

many alternative names given to the states of a variable: Heckerman [9] calls
them instances, Neapolitan [20] uses the name propositions, and Richard and
Lippmann [26] use classes. In Bayesian networks, all the possible states of the

variables are mutually exclusive and exhaustive.
In the closed world definition. if V is the set of variables {V, , V,, b’,. . .} for a

model, then

P(V) = 11 p(Yipr(Y)) . V,. pr(V,) CV (1)
c;C\’

where pr(V,) is the parent of the variable V,. In other words, the joint probability
of P(V) can be expressed as the product of the conditional probabilities of each
variable given the state of their parents and V is the set which contains all the

possible combinations of r/;. Throughout the text we use boldface to denote a
variable, and the corresponding set of probabilities for each state is a vector which

will be denoted by an underscore.
Pearl [23] pioneered the USC of a graphical representation to express the

causality between variables. He uses Bayes’ rule:

P(A/W) =
P(W/A)P(A) P(W/A)P(A)

P(W) = c,, P(WIA)P(A)
= aP(W/A)P(A) (2)

to derive the parameters for belief updating.
In the Bayesian networks. belief in a variable is defined as the posterior

probability of that variable given all the known evidence, W. In a Bayesian
network, knowing the states of all connected variables will fully determine the
belief in the variable of interest. Knowing all the parents and children of a
variable will give a result which is independent of all other variables. In our
current application. we have found that the tree structure Bayesian network with
only chance nodes is adequate. There arc more complex Bayesian networks, and
for the determination of causality in them the reader is referred to work by Pearl
(231, Geiger et al. [7]. and to the work of Lauritzen and Spiegelhalter [17] who
use propagation in cliques to cope with loops in Bayesian networks.

Pearl pioneered the use of a directed acyclic graph for representing a Bayesian
network. It consists of a set of vertices, V. and edges, E. The variables are
represented by the vertices, and their relationships by directed edges. If A and B
are two variables and the parent of B is A, then A and B will be linked by a
directed edge with the arrow pointing from A to B. Each V, E V represents a set of
mutually exclusive and exhaustive events, along with a joint probability dis-
tribution, P, in the knowledge base. The fundamental assumption in a Bayesian
network is that the value assumed by a node is probabilistically independent of
the value assumed by all other nodes in the network, except its descendants, given
values of all its parents.

Fig. 1 is a very simple chain-like Bayesian network. If we are interested in the

C. K. Kwoh, D.F. Gillies I Artificial Intelligence 88 (1996) l-38 3

P(A) A h(A) N.4)

Q

PC,& d k(B) Y(B)

P(C) c UC) x(C)

Fig. 1. A simple Bayesian network with all notation

belief of the variables B given some observed data (evidence) for the variables A
and C, we will express it as

Bel(B) = P(B/A, C) = aP(C/A, B)P(B/A)

= d’(CIB)P(B/A) = aA((3)

using Eq. (2) and noting that P(C/A, B) = P(CIB), since B blocks the path from A
to C. Eq. (3) expresses the belief of B as the product of the belief based on the
evidence from the child (C) and the belief based on evidence from the parent (A).
A detailed derivation of all other variables and link matrices can be found in
Neapolitan [20] or Pearl [23].

In the computation of posterior probabilities using a Bayesian network, we
assume that the variables are statistically conditionally independent given their
parents. However, in practical applications, this fundamental assumption may not
hold. One easy way to test this requirement is to use the Pearson’s correlation
coefficient for the children’s distribution conditioned over the parent. For
example, if there are three variables {A, B, C} and we want to test whether B and
C are conditionally independent given A, i.e.:

P(A, B, C) = P(A)P(B/A)P(C/A) ,

we use the conditional correlation coefficient p, which is defined for any two
variables B and C given the assumed parent A as:

Cov(B /A, C/A)

p(A) j/Var(B/A) Var(C/A) ’ II
(.4)

where the ((((y b 1 s m o means that correlation coefficient p is the result of summing
over all the states of the variable A, weighted by the probability of A. When using
the correlation coefficient for testing for conditional independence the ordering of
the states in our variables is important and meaningful, and must reflect a
monotonic progression in the measured property. If there is no meaning in the
ordering of the states, we need to use a non-parametric method, such as the

chi-square test. to test the conditional independence of the variables. For an
example, see [15. Chapter 10.4).

A high correlation coefficient between a pair of variables, given their parent(s),

indicates that the conditional independence assumption does not hold. The effect
of not recognising the correlated variable can be easily illustrated by the following

example.

Example. Suppose a root variable. A, has only two statistically independent sons,

B and C. If the prior probability of A is [O. 2,0.8] and the lambda messages from B

and C are [O.8, 0.21 and [0.3. 0.71 respectively, then the desired posterior
probabilities of A, Be/(A) should be [0.3. 0.71. However, if the variable of B is
measured by two different processes and was included in the network as two
independent variables, B and D. then WC: will have three lambda messages
[0.8,0.2], [0.3,0.7] and [0.8.0.2] propagated to A, and the predicted posterior of

Be/(A) is calculated as [0.63.0.37]. It is obvious that the computed posterior
probability is different from the correct value.

From the above example. we see that not recognising conditionally dependent
data will magnify and over-emphasise the influence of a particular piece of
evidence. This will distort the posterior probabilities of the Bayesian network and
may lead to misclassification.

2. Using Bayesian networks for endoscope control

We have used Bayesian networks in the practical application of building an

advisory and control system for colon endoscopy. An endoscope is a medical
instrument that is used for non-invasive observation of the inner surfaces of the
human body. It is employed extensively in the diagnosis of colon and gastroin-
testinal tract diseases. When inserting an endoscope into the colon, the doctor

steers the tip to the centre (which is called the lumen) and inserts it gently. If the
tip is not directed correctly, and is pushed against the wall of the colon. it can be

dangerous and painful for the patient. The difficulties associated with its use have
meant that, to date, only highly skilled specialists are able to perform endoscopic
investigations. We are proposing to rectify this situation by using computer vision
to provide automatic guidance and advice during colonoscopy.

Various methods of extracting information for the navigation and advisory
system have been investigated. They are represented in Fig. 2. The signal level
consists of all the processing that will be performed on an image to extract all the
identifiable features. The control level utilises the information from the signal
level and possibly other information, such as temporal data, relationships about
features, etc., in order to draw inferences. The output of this level is high-level
information including advice and control information.

The signal level is made up of three algorithms. First, there is a method of
identifying the lumen, or centre line of the colon, based on region extraction from

C.K. Kwoh, D.F. Gillies / Artificial intelligence 88 (1996) 1-38

Prohahilirtic Nrwork Post Procuring
I ’

I [Advice] [Advice] [Advice] iContrd Leve’
Patern

I l’rohahd,rt,u Prnhrhilislio Pmhrhilistx
I recognition

Nrtwnrk NClWWk Network
I I

Fig. 2. Block diagram of various levels of processing in our endoscopic advisory and control system.

spatial domain data (Khan and Gillies [11,12]). Secondly, there is a shape from
shading algorithm to reconstruct the surface normal (p, q, -1) at a set of points
in the image (Rashid and Burger [25]) and thirdly there is method which uses
correlation in the Fourier domain (Kwoh and Gillies [14]).

Sucar and Gillies [32] utilised both Khan and Rashid’s algorithms to implement
an advisory system (control level) based on Pearl’s [22] Bayesian networks. This
resulted in the construction of a basic, artificial intelligence system for navigation
in the colon. Although this system worked well, there were still circumstances
where it failed to give correct advice. The system was improved by incorporating
the information from the Fourier transform method in the Bayesian network, and
the performance now seems good enough for automatic control.

Sucar observed that the advisory system mis-classified colon images in certain
cases due to the fact that the conditional independence assumption of Bayesian
networks had been violated. To overcome this problem, Sucar and Gillies [31]
suggested the following three strategies to handle correlated data: node deletion,
node combination and node creation. In practice we seldom have 100% corre-
lated data, hence, node deletion will inevitably throw away some information.
Similarly, for node combination, we have a situation where two variables must be
assigned to one object. This type of situation is quite rare. The third strategy,
node creation, appears to be a powerful solution method. Sucar proposed a
methodological solution, namely consultation with experts, to derive a node that
makes the two dependent variables conditional independent. It will in general be
a very difficult process for the expert to define a function which will combine the
information from the two evidence variables into a coherent variable. Hence, our
current research is to devise a way to create a hidden node based on the statistical
distribution of the two evidence variables and an objective function which satisfies
the axiom of conditional independence. Our approach is to use training data,

h C.K. Kwoh. D.F. Gillies i Artificial Intelligence 88 (lYY6) 1-38

without seeking expert opinion, to define a mapping which will fuse the

dependent information.
The sub-module for lumen identification, based on the Fourier domain, is

depicted in Fig. 3. It extracts values of the following feature sets (or variables)

{[X-size], [Y-size], [Energy]} f rom the endoscope image, for the inference of the

qualitative variables [Advice] and [LDR] which indicates the presence of a large
dark region (hypothesised to be the lumen) in the image. This sub-module also

extracts the continuous variables {X-offset, Y-offset}, which do not appear in the
network, for the estimation of the centre of the lumen to which the endoscope tip
should be directed. The two propositions for the variable [Advice] are: (1) Stop,
since the tip is directed at the colon wall, and (2) Advance, since there is a clear
space to push the endoscope tip forward. We denote these propositions as

[Advice] E [Stop. AdvanceIT, where the superscript T represents the transpose. It
is only possible to advance the tip if the lumen has been observed. It is perceived

as a large dark region, and incorporated as an intermediate variable [LDR] under
Sucar’s node creation approach. We define the variable [LDR] to have two

exclusive states: Not Present and Present. denoted as [LDR] E [Not Present,
PresentIT. [Advice] and [LDR] are the only binary-valued variables in our
system, other variables have 8 to 10 states.

Each element in the set of features {X-size, Y-size, Energy} for the inference of
[LDR] and the advisory interpretation of [Advice] is a variable which has various
classes or states. For example, the measured [X-size] is quantised and represented
as a vector of discrete states, with its value taking any one of the eight
possibilities.

[X-size] E [O-S. g-16, 16-24,24-32,32-40,40-48,48-56, 56-6417 .

We say that the variable [X-size] has the possibility of belonging to any one range
of sizes defined above.

The variable [Advice] is sometimes called a proposition variable because it is a
probabilistic collection of propositions. The others are simply called variables,

and the individual probabilistic state for each variable is called its state or class. In

(X-s&] [Y-size]

Fig. 3. The inference diagram for Fourier domain sub-module

C.K. Kwoh, D.F. Gillies I Art@cial Intelligence 88 (1996) l-38 7

Bayesian networks, when a piece of evidence arrives, we will instantiate the
associated variable. By instantiation, we are applying a mapping function, f of the
form:

f([X-size])+ LO, 11 ,

C f([X-size]) = 1 ,

where f is actually a probability of the variable being in a specific state. (Note
that in cases where we have inconclusive evidence that a variable takes a certain
value, we may use virtual evidence (Neapolitan [20]) which does not sum up to
one. It can be normalised and combined with other evidence to obtain the
posterior probability.) In our application, we always normalise our evidence to
satisfy the axioms of probability.

An alternative approach to the above problem is to use neural network
methods. However, we have a number of reasons to prefer Bayesian networks for
our application. First, the output is the posterior probability of the hypothesis,
given the input, which provides a natural mechanism to draw inferences and select
the best advice. Secondly, Bayesian networks can be trained branch by branch.
When additional information is obtained for the model, it can be incorporated
into the existing Bayesian network without retraining, provided it does not break
the fundamental assumption of conditional independence. Thirdly, Bayesian
networks can incorporate both subjective probabilities [24] and objective prob-
abilities. In the subjective approach, probability is regarded as the degree of
belief of a particular individual. In the objective approach, probability has
nothing to do with human beliefs, and manifests itself in the observed statistical
frequency with which a particular event occurs. Neural networks only work with
objective probabilities, whereas Bayesian networks can combine subjective and
objective information. Fourthly, Bayesian networks cope well with partial
information. They have a very strong normative theory to manage ignorance
when compared to other connectionist networks commonly used for classification.
Lastly, the multi-layer neural network is a fully connected network in which a
collection of linear regression models store statistical information within the
connecting weights. A neural network is a chain-like Bayesian network with the
addition of an activation function and a nonlinear squashing function. Hence, for
any problem it will have many more parameters than the equivalent Bayesian
network. For example the hand-written character recognition system of Le Cun et
al. [18] has 2600 parameters. In comparison, Chow and Liu [l], can model the
same domain using a semantic structure similar to a Bayesian network with
considerably fewer parameters. Although there are many ways to reduce the
number of parameters (Le Cun et al. [18], Weigend et al. [33]), we believe that it
is better to use the model which requires fewer parameters.

Denker and Le Cun [3] recognised the importance of the classification problem,
in neural networks, which have mutually exclusive outcomes that satisfy the
axioms of probability. They satisfied this constraint by treating a trained neural
network as a pre-processor that produces a feature vector which is further

X C‘.K. Kwoh. L).l-. Gillies i Arrlficiul lr~telligence 88 (lYY6) l-38

processed by classical statistical estimation techniques. They assumed the output
vector of the neural network, O,, (which is represented as a variable as O,,), given
the input vector set of all the training data, {I,, I,, I, .} (represented as a

variable I), can be approximated by a normal distribution. They derived
expressions to calculate the first two moments of the probability distribution
P(O,,/l). and used them to adjust the weights of the neural networks to achieve a

Bayesian-like output, where the numerical value approximates the posterior
probability of the output variable given the observed evidence (inputs). This type
of system will not give a true Bayesian output and will perform badly in regions

where the inputs have low probability for all states of the desired variable (root
node) as reported by Richard and Lippmann [26]. This may be due to the
nonlinear sigmoid mapping function, used in neural networks, which forces the
output to be effectively bipolar.

In summary, we believe that, where possible, it is much more efficient and

economical to build structures rather than use a general connectionist network. If

there are constraints that cannot be fully satisfied statistically, we then seek some
strategy to modify the structure to improve the quality of the model.

Once we have determined the structure, or inference diagram. of the Bayesian
network, we can obtain an initial estimate of the conditional probabilities of the
link matrices for each edge in the Bayesian network by the QUALQUANT
methodology [31]. We then test the assumption of conditional independence. If

the criterion is not satisfied. we create a hidden node to form a star structure and
express the error cost function 5 with respect to the optimal values. If we expand
the expression for those conditional probabilities by Taylor’s series, we can use a
gradient search method, such as the least mean squares algorithm (Widrow and
Stearns [34]) to find solutions by an iterative process:

P(n + 1) = P(n) - 7) M(n)
~ - -

=P(n)-qE & - - i _I -
or in a more complex error correction form such as:

P(n+l)=P(n)-n(l-(Y)dP(n)+cw3P(n-1). (6) - ~ -

In the above equations, n is called the learning rate or the relaxation constant,
which is typically a small value in the range of 0.01 to 0.1. Widrow and Stearns
[34] have worked out an upper bound on the learning rate for linear models. The
second term in Eq. (6) is called the momentum term and cu takes a value within
the range [0, 11. This term is commonly added in neural network training
algorithms. Notice that we are adjusting the parameter values in the negative
gradient direction, because we are searching for the minimum of the error cost
function.

C.K. Kwoh, D.F. Gillies I Artificial Intelligence 88 (1996) 1-38 Y

3. Introducing hidden nodes into Bayesian networks

Pearl [22] proposed the use of a hidden variable to satisfy the axioms of
conditional independence. By adding a hidden variable between correlated
variables and their parent, he created a star-decomposable structure. In his work,
he dealt with star decomposition for binary-valued random variables, say

~V,7V,,V,?~ . .} with a given probability mass function P(V), and obtained a
closed form solution for a variable W that will satisfy the equation

P(V, W) = n P(v,IW)P(W)
v,cv

Xu and Pearl [33] extended the ideas in Pearl [22] to utilise multi-variate Gaussian
variables. However, in our application, most of our variables are not binary
valued nor Gaussian, and so we need to derive an algorithm that can handle
multi-valued variables some of which are unobservable (hidden nodes). A similar
problem of configuring probabilistic models for bi-valued hypotheses with hidden
variables was mentioned by Hinton et al. [lo] as a task that a Boltzmann machine
should be able to solve. Further details on how to do this have been proposed by
Neal [19] who implemented the Boltzmann machine with multiple restarts,
bindary variables and signal propagation in only one direction. Another pre-
cursor of our work is the EM algorithm [3] which consists of the expectation step
(E-step to estimate the complete data from the observed (incomplete) data) and
the maximisation step (M-step to maximise the likelihood). Lauritzen [16] and
Spiegelhalter et al. [29] have experimented the EM algorithm to update the
parameters in the Bayesian networks. They concluded that the likelihood function
has a number of local maxima and straight maximum likelihood gives results with
unsuitably extreme probabilities. Furthermore, the EM algorithm is known to
converge relatively slowly when it is getting close to a maximum. They suggested
that algorithms exploiting the gradient could be preferable. Paass [21] describes a
stochastic version of the EM algorithm which can be considered a modified
version of the Boltzmann machine.

For the network of Fig. 1, if we have the desired posterior probability of the
Bayesian network, given some instantiated evidence, we can define a monotonic
error cost function for the differences between the desired posterior probability
and the estimated posterior probability. We can use this to devise a strategy to
adjust the conditional probability matrices in the links belonging to a hidden
node. If the conditional independence criteria are satisfied, we should expect a
minimum of the error cost function throughout the training set.

Let the variable A have A states and a set of training data be denoted E E 3. If
we are interested in the posterior probability (belief) of A given some evidence E,
denoted as Bel(A), then we express Bel(A) as a nonlinear function of all the
evidence

Bel(A) =f(E) .

10 t‘. K. Kwoh, D.F. Gillies : Artificial Intelligence XII (19%) l-38

The expectation of the squared-error cost function, A, is

,g [WJ,) - Wu,)l’

where E{ .} is the expectation operator. and D(a,) is the desired value of a,.

Using the joint probability of the input and the desired output, Hampshire and

Pearlmutter [8] show that when the network parameters are chosen to minimise a
squared-error cost function, the outputs are the conditional expectations of the
desired outputs which minimise the mean-squared estimation error. In their

paper, they refer to neural networks, but their derivation can be easily general-
ised to any type of network in which the input and output relationship can be

expressed by a mapping function.

,$ [E{D(a,)iE} - (B~/(z,>)]~
1-I

The justification of minimising the mean-squared error cost function is presented
in Appendix A. In Eq. (8). E{ D(a,)lE} is the expected belief of A given the

evidence E, and

E{D(a;)/E} = i: D(a,)P(u,/E) (9)
,=I

is the conditional probability of desired states given the evidence E, weighted by
the instantiated value of the states vector. If only one of the states, i, is assigned
the value one and the rest zeros, Eq. (9) will become:

E{ D(a;)/E} = /‘(q/E)

which is the Bayesian probability. If more than one state is instantiated with value

greater than zero, Eq. (9) will become a dot product of the instantiated value and
the Bayesian probability vector, which satisfies the axioms of virtual evidence.
This provides us with additional insights to the least mean squares algorithm.
Contrary to popular belief that the training data of the desired variable must be

one of N cases, we can provide better training using virtual evidence if we are not
sure in exactly which state the desired output should be instantiated. The only
caution that we must observe is that the sum of all instantiated values must be
equal to unity. For example in our application, for a particular colon image, the
expert’s advice can be a vector of [Stop = 0, Advance = llT or a less definite

advice of [Stop = 0.2, Advance = 0.81’.
Note that 5 is a scalar and it is always positive. 5 is known as the squared-error

cost function which is used to measure the difference between the actual outputs
and the desired output. It is the most widely used cost function of all the
possibilities. Others can have slightly different effects, for example, the cross-
entropy cost function (which is also known as Kullback-Lieber (KL) distortion
[13,28]) weights errors more heavily when the actual outputs are near zero and
one.

C.K. Kwoh, D.F. Gillies I Artificial Intelligence 88 (1996) l-38 11

5 = ,I$ tDCai) l”g(D(ai)lBez(ui))l

Hampshire and Pearlmutter [8] have shown that the objective functions to
minimise the squared-error cost function and cross-entropy cost functions are
asymptotically equal. That means that if we have a large training data set that is a
good representation of the problem, it really does not matter whether we express
our error function as a squared-error cost function, Eq. (7), or as a cross-entropy
cost function.

To obtain the derivation of the gradients for the conditional probabilities of the
hidden node, we start with the most simple star structure shown in Fig. 4.

We first write the operating equations [20] from the leaf nodes to the root node.
Given that:
l ~(a,) is the prior probability distribution of the variable, P(A), which can be

obtained from the domain of training data,
l D(a,), is the desired value for the root variable (A) for each set of training

data,
l h(ck) is the evidence of the instantiated leaf node C, and
l A(d,) is the evidence of the instantiated node D,

we have:

Ac(hj) = 5 P(cklh,)A(ck) 3

k=l

AD(hj) = Ii P(d[lhj)A(dl) ?

I=1

A(‘j) = Ac(‘j)A,(hj) >

A,(u,) = I? P(hjlui)A(hj) 3

j=l

G;) = h&i) >
beZ(u,) = A(u,)r(u,) ,

A P
H -A C D

(10)

(11)

(12)

(13)

(14)

Fig. 4. H is the hidden node

12 C’. K. Kwoh. 0. I:. Gillies : Arttjiciul Intelligence 88 (19%) l-38

Bel(a,) =
Wu, 1

E f, _ , Ma,,, 1 .

e(u,) = D(a,) - Be/(q).

(15)

(16)

5 = i e(u,)’
,=-I

(17)

The objective function to be minimised is the expectation of (17). To do that we

must obtain the gradients of (17) with respect to all the conditional probabilities
in the link matrix. Choosing a general element P(h,lu,) from the link matrix
between node A and H, we expand the gradient using the chain rule for partial

derivatives to get.

a#_$ at de(u,,,) dBef(a,,,) dbef(u,)
=-

dh(a,)

dP(h, /a;) de(u,,) dBel(u,n) dbel(u,) dA(a,) dP(h,lu,)

where the individual terms in the expansion arc

where

4,,, =
1, i=m,

0, ifm.

dbel(u,)

W,)
= %-(a,) .

Na, >
&y/z, /a,) = A(hj)

(18)

Notice that all the elements of dBel(u,)/dbel(u,) form a matrix, hence when we
put all the partial derivatives together, we must sum over all the values indexed
by the subscript m. This is because the value of Be1 is dependent on all other
values of bef before normalisation.

Substituting into Eq. (18) we get

C.K. Kwoh, D.F. Gillies I Artificial Intelligence 88 (1996) l-38 13

ag =sl [-2e(uJ(sim be@,)
aP(hj la;) CA,=1 bel(a,) - (CA,,, bel(u,))* T(“‘)A(hi)

-2
Ii [4%)(4, - Bel(ui))lT(ui)A(hj) .

= CA,+ be@,) m=~
(19)

If we do the partial derivative for each conditional probability in the links
between node A and node H and form them into a matrix, we will have the
gradient matrix which is required to adjust the conditional probabilities of the
link.

Similarly for an element in (~3g)l(aP(c,lh~)), we have

at _ a(Mhj) a*&j)

aP(c,lhj) aA ah,(h,) aP(Cklhj) . (20)

When we expand the (&$)l(aA(hj)), we must do so under a summation for all
states of ai, because the change in the conditional probabilities will effect the
result in every state of belief in A.

at ae(u,) aBe@,) abel(u,) aA ah&,)
aP(c, /hi) i=, ae(u,) aBel(u,) abe/ aA ah,(q) ah@,) 1

x aA a*&j)

ah&,) alp, /hi)

Wj) %@j)

’ aA, aP(c,/hj)

-2

= CA,,r be@,,,)

’ AD(. (21)

Similarly,

at ae(u,) aBe@,) abel(q) aA aA,

aP(d,lhj) i=l ae(u,) aBeZ(u,) abe@,) aA aA, ah@,) 1
Whj) %Ahj)

’ ah,0 aP(d,lhj)

-2
{Z? (Z? [e(u,)(%,, - Bel(a,))l)Po,ioi)}

= CA,,1 beZ(u,) i=l m=l

x *,(hj)*(d,) * (22)

Note that, from Eqs. (19), (21) and (22), it is not difficult to show that the

14 C‘. K. Kwoh. 11.15 ~;illir.s ! Arrificiul Inrelligence 88 (1996) l-38

elements of the Hessian (the second derivatives of all the conditional prob-
abilities) are semi-positive definite. Hence, we will move towards the minimum of

the performance surface of the error function defined over the conditional

probabilities.

4. Matrix representation of the gradient for the squared-error cost function for
backward propagation

The derivation in Section 3 for individual elements of the link matrices results
in a rather cumbersome formulation in which it is difficult to visualise the process.

Furthermore, the multiple summations in the expressions make programming and

representation a rather tedious task. A better formulation can be obtained by
exploiting the elegant representation and implicit summation of matrix multiplica-
tion in the derivation of the gradient matrices.

Notation

In all our equation derivations, we are using column vectors, such as

du, 1

n(A) = :- [1 4u-)

‘IT@;? >

For ease of notation. WC: will use 4 to indicate a column vector with states

[a,,a,, . ,aA]‘r, and A without the underscore, to indicate the dimension of A.
The superscript T, as usual. denotes the transpose.

For a matrix, we use the notation

P(h,/u,) P(h,IN,) ..’ P(h,,/u,)

P
P(h, la,) P(h2ioZ) . P(h,,la?) : .’ : f(hJ./cr,,) : W$a,) 1

where A is dimension(d) and H is dimension(U). The two variable underscore
indicates a matrix of dimension A times H.

We introduce the operator C3 to indicate element-by-element multiplication.
The two operand matrices (or vectors) must be of the same size. The result is a
matrix (or vector) of the original dimension, where each element is the product of
the elements in the corresponding positions in the operands. This operator is
useful when expressing the fusion of lambda messages and the fusion of pi and
lambda values.

We use the following rules, which the reader may verify for himself, for
matrix/vector differentiation:

(1)

(2)

(3)

(4)

C.K. Kwoh, D.F. Gillies I Artijkial Intelligence 88 (1996) l-38 15

If we differentiate a scalar by a vector, the resultant is a vector of the same
dimension as the vector.
If we differentiate a vector by a vector of same dimension we would
normally obtain a matrix. However, in the case where two vectors are
combined by the term-by-term multiplication operator @‘, and the differen-
tiation is taken with respect to one of the vectors, the result is a vector.
If a vector A, which is obtained by post-multiplying a matrix M (dimension
A times H) with a vector H, is differentiated with respect to the second
vector H, we will obtain the matrix M. If A is combined with a vector C
(dimension A) using the operator @ in the original equation, then we will
get the same result by pre-multiplying the matrix M with the transpose of
vector C.
If a vector A, which is obtained by post-multiplying a matrix M (dimension
A times H) with a vector H, is differentiated by the matrix M, the result is
a matrix N where each row is the transpose of H. If A is to be combined
with a vector I: (dimension A) using the operator @ in the original
equation, then we can obtain the result taking the outer product of vector
C and the transpose of vector H to produce a matrix of dimension A times
H.

Before we express all the operating equations for the Bayesian network using
matrices and vectors, we require, as previously, the following data in vector
notation:
l n(A) is the prior probability distribution of 4, P(A), which can be obtained

from the domain of training data,
l D(A) is the desired state for the root node (A) for each set of training data,
l h(C) is the evidence of the instantiated node C, and
l A(D) is the evidence of the instantiated node D.
The operating equations are,

h,(H) = P,,,W) 3 (23)

A,(H) f’,,,ND) > (24)

A(H) = A,(H)@&(H),

WH) = A(H) @ r(H) ,
(25)

%,(A > = f’,,,[WH)\4H)l= P,,,A(H) . (35)

In Eq. (26), the lambda message to the parent is the belief value excluding the
contribution from the parent itself. It is the same as the lambda value in the case
where there is only a single parent.

A(A)=&(A),

b&3) =A(A)@&A),
(27)

be@)
Be1(A)= Ibel(’

16 C.K. Kwoh. D.F. Gillies I Artificial Intelligence 88 (19%) l-38

e(A)=D(A)-Be/(A). (29)

where bef() is the un-normalised form of the belief function and Ibel(is the
norm of beZ(A). D(A) is the desired result of node A.

t=e(A)‘e(A). (30)

Note that 5 is a scalar and it is always positive.
Now, to do the partial differentiation, we again make use of the chain rule

8‘5 at de(A) dBel(A) &e/(A) dh(A) dh,(A)
apHi, = ae(A dBeZ(A) dbel(A) &i(A) ah,(A) aPHiA

at &(A) al?el(A) dbef(A) ah(A) ah,(A)
=

de(A) dBel(A) abeZ(A) I_ ah(A) %,(A) ap,,, (31)

Care should be taken with the matrix operators used between the matrices when
substituting for the partial derivatives in Eq. (31). To clarify the meaning we use Z
to mean an identity matrix of dimension A, and the notation ones(A)’ to be a
row vector of dimension A, with each entry equal to 1. Making the substitutions
equivalent to those defined in Section 3 we obtain:

~=i[(-2e(~))‘(,6e~lA)l jr-Ber(a)ones(a)ll)11’~17(A)~A(H)’

= lbel(i), {[e(A)‘(Z- Bel(A)ones(A)‘r)]T~~(A))A(H)” . (32)

Notice that the summation of (32) is implemented by matrix multiplication of
[e(A)T(Z - BeZ(A) ones(A)T)] to produce a row vector of size A times 1. From
Eq. (32), it is easy to see that (&$)/(aA,(A)) b e h aves like the pi message from A
to H and has dimension A.

For the link matrix between node H and C. we have

at at de(A) aBeI &e/(,4) ah(A) ah,(A)
aP<.lH = ~ de(A) dBel(A) dbel(A) aA(A) aA,(A) ah(H)

ah(H) a&(H)
’ &.(H> ap,.,,

dA,(A) ah(H) ah,(H)
={[dA$)] ---}-,’ aA aA,

From Eq. (33), we have

&AA > ah(H)
ah(H) = ‘cfi and ah,.(H)= AD(H)

(33)

which is analogous to the way that the pi message from H to C will be derived, by
“resizing” the evidential information from the parent node and including all the

C.K. Kwoh, D.F. Gillies I Artijkial Intelligence 88 (1996) l-38 17

evidential information from the other siblings. Thus, (&$)/(&.(H)) should be
thought of as a gradient message from H to C.

(34)

and the corresponding pi message from H to C if A and D are instantiated will be

%(H) = P%,%(A)I @hm) * (35)

The reader will now probably recognise that gradient updating through gradient
propagation is analogous to belief updating when using the network; each
gradient message replacing the corresponding pi message or lambda message in
the link. Hence,

at -=
a PClH -

Iheii), WLJk(A lT(Z - Bel(A)oMA >‘)I’@ 44)>I>

and similarly,

@A,(H)]A(C)T (36)

C&(H)]A(D)T (37)

Comparing the result that we have just obtained with the equations of Section 3,
it is easy to see that they are the same. The matrix formulation is very clear,
elegant and easy to program. The expected gradient for each epoch is

(38)

5. Derivation of the gradient for forward propagation

In Section 4 we derived the equations for the case where the change in the
conditional probabilities is propagated from the evidence nodes to the root node.
In Bayesian networks, there is no strict direction of signal flow, and so queries can
be made at any node in the network. Thus the training data set X is an unordered
collective {X, , X,, X, , . . . , X,,,}. Since Bayesian networks must be able to handle
partial evidence, where some nodes remain un-instantiated, we can define the cost
function to encompass all situations as follows:

1x1 IX,I

rnjn A = 2 C E
i=l zs;x\x,

C [D(X;j) - Bd(XijIZ)]’
j=l

In our experiments we found that, if we define our cost error function to
encompass both back propagation, where we instantiate the leaf nodes, and

18 C.K. Kwoh. D.I? Gillies i Art$cial Intelligence XX (1996) 1-3X

forward propagation. where we instantiate the root node, we can achieve very

good results. We will now give the derivation for propagating the delta change to
the conditional probabiiities in the forward direction.

For forward propagation, we have the following known data:
n(P) which is the instantiated value for root node A, designated D(A) in
Section 3;
D(C) is the expected partial belief of node C. which was A(C) in Section 4;

D(D) is the expected partial belief of node D, which was A(D) in Section 4.

and
A(C) and A(Q) are unit vectors of dimensions C and D respectively.

.
The partial derivatives for forward propagation can be found in a similar

manner to the backward propagation derivatives given in Section 4.

dA) = D(A) .

n,(A)=r(A).

A, (ill = P,. AC) .

A,,(H) = f’,, ,,A(D 1

(39)

However. since both A(c) and h(Q) arc not instantiated, A,.(H) and A,(H) can
be shown to be unit vectors of dimension H.

-ir(H) = C.;,q,(A) .
A(H) =A,.(lj)@AJH) ,

gel(H) =
r(H)@‘/\(H)
n(H)A(H)

.1‘ -v(H).

WH >
dH) = A,.(H) -=7T(H).

WH)
%w)=h,,(H)=w.

n-(C) = P (&T(.((_(H) .

7r(D)=P h!HQ(li) ,
Be](C) = 55-(C),

Bel(D) = 7r(Q).

(40)

(41)

(42)

(43)

(44)

Since we are not instantiating all the leaf nodes their A values are all unity. Thus
we have the expressions

e(C) = D(C) -&d(C) = D(C) - r(C),

e(D)=D(L>)-Bel(D)=D(Q)-?r(D).
(45)

We define the error function (which is a scalar) as the sum of the total errors for
all states in all leaf nodes.

C. K. Kwoh, D.F. Gillies I Artificial Intelligence 88 (1996) l-38

5 = e(C)Te(C) + e(l?JTe(D)
and perform the partial differentiation as before

a&- a6 se(c) aBel(C) a7f(c> -=-
a& se(C) aBd(C) a77(c) aPCiH

at se(C) aBel(ar(C>
= de(C) aBe/ ar(c> 1 ap9

= -2rc(H)e(C 1’
= -2[PT,,,n(A)le(C)’ T

at at k(D) aBeZ(Q)

--= tie(D) aBeZ(Q) a7f(Q) apLH.Y

= -2[PT,,,74A)le(D)’ ,

19

(46)

(47)

(48)

=..g[&]~]~} -_ _ a6 WC) adc) adH) ar(ti)
de(C) ar(c> an,(H) a742) ap,,,

at de(D) ar(o) adH) am(H)
+aeOW arD(fl) ar(H) ah,,

= -WA >[e(C)‘P’,,, + e(D)TP&H] . (49)

Note that we do not have to normalise BeZ(C) and Bel(D) since, providing that
D(A) was normalised before propagation, they are already normalised.

6. The algorithm for adjusting the conditional probabilities in the link matrices

Once we have found the gradients for the link matrices, we can proceed to
obtain solutions using the objective function (8). From the equations in Sections 4
and 5, it is obvious that a closed-form solution is very difficult to obtain since it
requires us to invert all the matrices. Hence, we choose to obtain the solutions by
numerical iteration, using a method similar to the least mean-squared algorithm
[34]. We avoided the established Newton-Raphson method [27], since, for each
equation, the Hessian of the objective function must be obtained, and if we use
the secant approximation method, we need to have two initial values. By
comparison, if we use the least mean-squared algorithm, we only need the
Jacobian of the objective function and one set of initial values.

Bayesian networks are subject to more constraints than other connectionist
networks, such as neural networks, and we will now look at these. First, all the
conditional probabilities of the link matrices must be positive definite. In the least

20 C.K. Kwoh. D.F. Gillies I Artificial Intelligence 88 (1996) l-38

mean-squared algorithm, if the learning rate is too large, then there is a danger
that some of the elements of the link matrix may become negative. At first sight,
we may infer that during training the learning rate must be chosen as small as
possible. However, an alternate strategy is to choose a learning rate that is large
and impose a check to make sure that the differential matrix will not cause any
element of the link matrix to become negative. More loosely, we can allow the
elements to become negative and reset their values to zero after each iteration. If
the data in the delta matrix is too large, we can scale the whole matrix until the
constraint is satisfied. This in effect is to dynamically adjust the learning rate.
From experience, this strategy helps the model to converge faster. However, it
introduces a further problem which occurs in cases where the gradient is negative,
and the corresponding element in the matrix is 0. Any further adjustment to the
matrix will not satisfy the axioms of probability, and the process cannot continue
even though a minimum has not been reached. To get round this, we add a small
constant value perturbation to each of the conditional probabilities and continue
with the training algorithm.

The second constraint in a Bayesian network is that all the conditional
probabilities must sum to one for any given causal variable. That is

To satisfy this constraint, we always normalise the conditional probability after
each propagation. This added constraint reduces the number of possible solutions,
when we compare it with similar connectionist networks. The constraint is not
sufficient to ensure that we obtain a unique solution for different initial
conditions, but it apparently does not affect the performance.

Given P(X), for the added hidden node we define P(X, H) where H is the
virtual evidence for the hidden node. Since we do not have any information about
the distribution of H, we choose a random number for each state of h,, and
normalise the result to 1. Hence, the initial expectation is well-distributed white
noise in the hidden node.

The algorithmic steps are summarised as follows:

Creating hidden nodes.
Build an initial Bayesian network using subjective assessment or the maximum

weighted spanning tree algorithm.
Calculate the conditional correlation coefficient by Eq. (4) andlor mutual

information by Eq. (51) between all nodes in the network.
For each pair of nodes with significant common information:

Create a hidden node as their unobservable parent.
Monitor the performance using the testing data set, and train the star structure

as shown below.
Save the new graph and the conditional probabilities of all the links.

C. K. Kwoh, D.F. Gillies I Artificial Intelligence 88 (1996) 1-38 21

Training a star structure.
Call Initialisation.
Initialise the learning-rate (the relaxation constant)
While (the mean-squared error improves in each epoch)

Use Back propagation to obtain the backward gradients.
Adjust the conditional probabilities based on the gradients using the operating

equation (5).
Normalise all the link matrices to satisfy the axioms of probability.
Use Forward propagation to obtain the forward gradients.
Adjust the conditional probabilities based on the gradients using the operating

equation (5).
Normalise all the link matrices to satisfy the axioms of probabilities.
Zf the error does not reduce further due to some elements being OS.

Add some perturbation to the whole matrix before the next iteration.
Save the conditional probabilities of the link matrices.

Initialisation.
Determine the size of the link matrices that satisfy the data dimensions.

Either: obtain the initial link matrices from expert knowledge
or: generate random initial values for the hidden variables.

Normalise the conditional probabilities of the link matrices.

Back propagation (for one epoch).
For each set of training data:

Assign the data for the leaf nodes as their lambda values.
Assign the data for the root as the expected result.
Propagate the lambda messages up to the root node using the operating

equations (23)-(30).
Calculate the gradients for each of the conditional probabilities in the link

matrices using the operating equations (32), (36) and (37).
Sum up all the gradients for each set of training data to obtain the expected

gradients for each of the link matrices using Eq. (38).

Forward propagation (for one epoch).
For each set of training data:

Assign the data for the root nodes as the pi values.
Assign the data for the leaf nodes as the expected values for the leaf nodes.
Propagate the pi messages down to the leaf nodes using the operating

equations (39)-(46).
Calculate the gradients for each of the conditional probabilities in the link

matrices using the operating equations (47)-(49).
Sum up all the gradients for each set of training data to obtain the expected

gradients for each link matrix using Eq. (38).

22 C’. K. Kwoh, D.F. Gillies / Artificial Intelligence 88 (1996) l-38

7. Extension to a general singly connected Bayesian network

The gradient equations in Sections 4 and 5 can be easily extended to a
star-decomposition with multiple evidence nodes, such as those mentioned in [22].

Fig. 5 shows the general case of a star-decomposable multiple evidence node,
where H is the hidden node, and h(C,) is the partial belief of the mth child of the
hidden node, which takes into account all the effects of its children. Note that the
hidden node H has other children as indicated by the ellipsis in Fig. 5.

Most of the operating equations are similar to Section 4, except that the A value

of the hidden node, A(II), is defined as

,,,

A(H) = n A,.,(H).
,=I

(50)

The 11 symbol represents the term-by-term product of all A messages from the
children of the hidden node, i.e., a combination of all the beliefs from all the
descendants of the hidden node. The expressions for the gradient &J/dPH,A
remain the same as in Eq. (32) because the partial derivatives are computed from
the root node and chain back to the link between A and the hidden node.

For d[ldPc. ,,, the terms in the partial derivative are the same, except that

““) = ,c A,.,(H).
dA,.JH)

I 7‘ I,

The rest of the derivation is obvious. We have also verified that the gradient

Children ol C, Children of C m

Fig. 5. Extension of Fig. 4 to a general tree

C.K. Kwoh, D.F. Gillies I Artificial Intelligence 88 (1996) l-38 23

updating scheme can be easily extended to multiple parents and multiple children
networks by simply replacing the corresponding pi message or lambda message
with the partial derivative. We will not show the details in this paper as they are
not required for our current implementation.

8. Experimental results

In our application, we construct our Bayesian network by acquisition of
subjective knowledge from the expert. For example, the sub-module of our
system based on the discrete Fourier domain consists of three evidence nodes
{[X-size], [Y-size], [Energy]} and two inference nodes {[Advice], [LDR]}.
[Advice] is the root node and is the decision node of our system. [LDR] is an
intermediate node, which is introduced to make the network more coherent. It
serves a similar purpose to the hidden nodes in our current research. There is a
distinction in our usage between the terms intermediate node and hidden node. In
the topology of the directed acyclic graph, they are identical and serve the same
purpose. However, when we call a node intermediate, we mean that its probability
parameters are obtained from an expert by subjective means. When we call a
node hidden, we mean that it is transparent only during data collection and the
expert is unaware of its existence. Its probability parameters are found from the
world of feasible values which satisfy some loss criteria. In our approach, the
identifiable features themselves can be virtual, which means they can be the
posterior belief of a probabilistic network.

Without investigating the dependency of the data, we derived the inference
diagram shown in Fig. 6 from subjective intuition.

The [LDR] node, which represents a qualitative interpretation of the image,
independent of the detection of the lumen, is caused by the amount of room
available to advance the endoscope tip. There can be other causes for it, such as
temporal data represented by the state of the node at the previous time step.
However, in the closed world approach, we do not include all possible causes to
the variables in order to make the problem manageable. From the inference

A [Advice] P

Fig. 6. Inference diagram for the Fourier domain sub-module.

24 C.K. Kwoh, D.F. Gillies I Artijicial Intelligence 88 (1996) l-38

diagram, if we have an interpretation of [LDR] from expert knowledge, the
causes to [LDR] (‘ i.e., the value of [Advice]) will not change the likelihood from
the node [LDR] to its children. We say that the node [LDR] d-separates {[X-size],
[Y-size], [Energy]} f rom their other predecessors [23]. Making [LDR] the direct
cause of the other variables [X-size], [Y-size] and [Energy] looks reasonable. If
there is an LDR in the colon image, then it is likely to have a characteristic size
detected in the x and y directions and the overall image intensity will be low, thus
creating a characteristic energy measured in the image.

However, with some further subjective assessment of the structure, we
observed that there are cases where there is no visible large dark region that can
be detected as lumen, but the overall colon image is dark. These types of images
occur where the colon bends and we can move the endoscope forward. Hence we
modified the structure to Fig. 3, where the parent of [Energy] is the proposition
variable [Advice] instead of [LDR].

We have chosen to construct the tree initially from subjective data since we
think this will reduce the possibility of spurious dependencies in the network.
However, other approaches are possible. Cooper and Herskovits [2] suggested an
alternative Bayesian method which searches through the possible structures for a
network which best satisfies the data.

Chow and Liu [l] have shown that to maximise the maximum likelihood
estimate of independent observations (X’, X2, X”. . . . ,_I’“) E X is equivalent to
maximising the mutual information between each link. The network which does
this is known as the maximum weighted spanning tree. In probabilistic terms,
mutual information [5] defined as

r(a, 7 b,) = log
0,/b,) P(a,, 6,)

f@) = log P@)P(b,)

Summing over all the states for variables A and B, weighted by their joint
probability, we have

(51)

which is a measure of the information provided about the event A given the
occurrence of event B. The likelihood of X is defined as the product of individual
probabilities.

L(X’,X2,X3,. ,XK)= i’l P(X").
h- I

(52)

In our application, our observations may not be statistically independent. Hence
the correct likelihood definition for our observations should be

L(X1, x’, x”, . .X”) = n P(Xk/X’ . .a-‘)
k=l

(53)

We seek to strike a balance between the subjective and objective approach in

C.K. Kwoh, OF. Gillies I Artificial Intelligence 88 (1996) 1-38 25

Table 1
Mutual information for {[LDR], [X-size], [Y-size]}

Mutual information between Result

LDR
LDR
X-size

X-size 0.1863
Y-size 0.1900
Y-size 1.2276

constructing our inference diagram. After initial subjective construction, we use
statistical analysis to find the correlation and mutual information for the data in
each branch. If there are variables with the same cause that are highly correlated
and have high mutual information, then it is most likely that we can improve the
network performance by the creation of hidden nodes to remove the over-
emphasis of their common information.

The mutual information for the variables {[LDR], [X-size], [Y-size]} is
summarised in Table 1. If we were to use the maximum weighted spanning tree
algorithm [l, 61 to build a tree from this information we would obtain the
structure of Fig. 7.

Since we have a measurement for Y-size in our application, we treat this as
virtual evidence for the node [Y-size], denoted as an additional child node, which
propagates a lambda message to the node [Y-size].

The tree obtained using our hidden node approach is shown in Fig. 8.
When we evaluated the performance of the maximum weighted spanning tree

for the estimate of [LDR] in Fig. 7 we found that the performance, measured by
the probability of a correct deduction, improved from 0.6139 to 0.6436 compared
to the original subjective structure. However, when we used the hidden node
structure as in Fig. 8, using 100 sets of training data and 202 test sets, following

Y [Y-size] ;,:d 0 P x _ _
[virtuul Y-sim] [X-size]

Fig. 7. The inference diagram by MWST.

26 C‘.K. Kwoh. D.F. tidies i Artificial Intelligence 88 (19Y6) 1-38

Fig. X. The inference diagram with hidden node

the training algorithms outlined in the previous sections, we found a much greater

improvement to 0.84, for the detection of [LDR].
Fig. 9 summarises some of the statistics obtained during training. Fig. 9(a)

shows the sum of squared-error for the prediction of [LDR] given [X-size] and
[Y-size], after each iteration of back propagation and forward propagation. The
epoch axis shows the number of iterations. Notice that our initial guess is not too
bad, because we are using the actual statistical data P(LDR, X-size, Y-size) with a
random number initial estimate of the joint probability of P(LDR, X-size, Y-size,
Hidden). Fig. 9(b) shows the sum of squared-error for the prediction of [X-size]

0.1 0.14:
0 20 40

(3
60 80 0 20

epoch 4o @) 6o ,,8,;

@ormance hlrtory for erumat-ion of Be](A)

1

I
o.75o-- - --~ I

20 40 (L-j 60 80 epoch

Fig. 9. Training history for {[LDR]. [Hidden]. [X-size], [Y-size]}. (a) and (b) are the expected sum of

squared-errors during training and (c) is the performance of the test data set.

C. K. Kwoh, D.F. Gillies I Artificial Intelligence 88 (1996) l-38 21

and [Y-size] given [LDR]. Fig. 9(c) shows the performance of the prediction of
[LDR]. Notice that there is a small drop in the performance. This is due to the
fact that many of the posterior probabilities are near the decision threshold. Our
strategy is to minimise the sum of squared-error, which associates a high penalty
cost for those cases where the predictions are at the opposite extreme. This
phenomenon only occurs in the training of the Fourier domain sub-module. When
we tested it with the other modules, the minimised sum of squares algorithm gives
the best performance. In general, the minimised sum of squared-error is higher
than in a corresponding neural network. This is due to the absence of a squashing
function in the Bayesian network.

Fig. 10 plots the conditional probabilities of the link matrices for (a) [LDR] to
the hidden node [HI, (b) the hidden node [H] to [X-size], (c) the hidden node [H]
to [Y-size].

After training the first hidden node, and carrying out further statistical tests, we
introduced a second hidden node separating [LDR] and [Energy] from [Advice].
The new configuration of our Bayesian network is shown in Fig. 11. Notice that
the sub-network is a single chain, if we express the lambda and pi messages for
[G] and [HI, we have

(54)

If we define PHic = P,,,P,,,, we see that we can remove the internal node
[LDR] in our advisory system since we never needed to know the belief of [LDR]
in the application. By adjusting the weights of the links to hidden node [G] we
can combine the contribution of [LDR] into [G]. Thus the structure of Fig. 11 can
be simplified to the structure shown in Fig. 12.

‘ITI ,/ ‘.’ \\\\ ., ‘\
‘. ;’

;.;
‘,

0.5 P(Y-size/H)

0
0 2 4 6 8
Cc) state number of Y-size

0 2 4 6 8
W state number ofX-sue

Fig. 10. The conditional probabilities of the link matrices.

2x C.K. Kwoh, D.F. Gillies I Artificial Intelligence 88 (1996) l-38

Fig. Il. Fourier domain sub-module with second hidden node G

Fig. 13 summarises some of the statistics during training. Fig. 13(a) shows the
sum of squared-error for the prediction of [Advice] given [X-size], [Y-size] and
[Energy], after each iteration of back propagation and forward propagation. Fig.
13(b) shows the sum of squared-error in the forward prediction of [H] and
[Energy] given [Advice]. Fig. 13(c) shows the performance of the prediction of
[Advice] in the testing data set. A small perturbation at iteration 164 was added
to all conditional probabilities when the system reached a minimum point. This
approach is similar to the well-known relaxation techniques employed in the
Boltzmann machine [lo]. We added the perturbation to allow the system to search
for an alternative minimum point which may better model the training data.
Although there was no improvement in the number of correct classifications in the

[Adwe] A

P

Fig. 12. Fourier domain sub-module with hidden nodes G. H.

C.K. Kwoh, D.F. Gillies I Artificial Intelligence 88 (1996) l-38 29

150 200 0 50 100 150 200
epoch IN epoch

(f&ormance hlrtor for ertlmat ton of Be](A)

--
_

08

c-

-

0 15
0 50 100 150 200

ICI
epoch

Fig. 13. Training history for {[Advice], [G], [HI, [Energy]}. (a) and (b) are the expected sum of

squared-errors during training and (c) is the performance of the test data set.

test data, the lower sum of squared-errors implies that we managed to find a
better fit than the first minimum.

Table 2 summarises the results of the different configurations of the Fourier
domain sub-modules shown in Figs. 6, 7 and 12.

From Fig. 8, if we ignore the estimation of intermediate node [LDR] and define
the link matrix I’,,, = P,,,P,,,, we can train the hidden node [H] with only _-
observed data.

We tried the same approach on a second sub-module of our system which uses
region-based segmentation to estimate the lumen [12]. The network consisted of
five nodes {[Advice], [LDR], [Size], [Mean], [Variance]} and was used ex-
perimentally by Sucar and Gillies [32] to investigate the effect of correlated data
in Bayesian networks. Sucar investigated the configurations for the model as
shown in Fig. 14.

Fig. 14(a) is the original model derived from expert knowledge, Fig. 14(b) is a
modified structure with the [Mean] node deleted, since it was found to be
correlated with the [Variance] node. The unconditional correlation coefficient,
originally employed by Sucar [30] to test dependency, is 0.4947. However, since
we are investigating the conditional independence assumption, it is more correct
to use the conditional correlation coefficient of Eq. (4). The conditional
correlation over [LDR] is 0.5880.

Table 2

Performance of various configurations for Fourier domain sub-module

Configuration Performance

Fig. 6 (direct) 0.6733
Fig. 7 (MWST) 0.6832

Fig. 12 (hidden node) 0.8366

30 c‘. K. Kwoh. D.F. Gillies I Artificial Intelligence 88 (1996) l-38

(J) ch)

Fig. 13. Conligurations ot the region-based segmentation model.

The mutual information for the variables {[LDRJ, [Size], [Mean], [Variance]} is
summarised in Table 3. which further supports the claim that there is information
within the [Mean] and [Variance] nodes that should be neutralised.

We combined the contribution from [Mean] and [Variance] using a first hidden

node [H] (Fig. 15(a)), g i noring the internal node [LDR], and then with [Size]
linked through the second hidden node [G] (Fig. 15(b)).

Fig. 16 shows some statistics during the training of the hidden node [HI. Fig.

16(a) shows the history of the sum of squared-error for the back propagation
prediction of [Advice], Fig. 16(b) shows the history of the sum of squared-error
for the forward propagation prediction of {[Mean], [Variance]}, and Fig. 16(c)
shows the performance of the prediction of [Advice]. After about forty iterations
it was found that the process was not converging due to some of the probabilities
in the link matrices falling to zero. Hence a perturbation of 0.2 was added to all
conditional probabilities, and the convergence continued as shown in Fig. 17.

The program terminates when further adjustment of the link matrices does not

improve the sum of squared-error. Note the increase in the sum of squared-errors
and the deterioration of the prediction performance immediately after the
perturbation.

Fig. 18 is a snapshot of the link matrix between [H] and [Mean], Fig. 18(a) is
the initial estimate, Fig. 18(b) shows the state after 25 iterations, Fig. 18(c) after

Table 3

Mutual information for { [LDR]. [Size], [Mean]. [Variance]}

Mutual information between Result

LDR Size 0.2827
LDR Mean 0.2223
LDR Variance 0.1149
Size Mean 0.4098

Size Variance 0.2999

Mean Variance 0.4841

C.K. Kwoh, D.F. Gillies I Artificial Intelligence 88 (1996) 1-38 31

Fig.

:‘:
’

.s .:
[Six]

A [Advice]

P ,

[Mem][Variance]

(0)

15. Hidden node creation for the

A [Advice] 9

[Mran][Variance]

(h)

region-based segmentation model.

110 iterations and Fig. 18(d) the total changes to the conditional probabilities of
the link matrix.

Fig. 19 shows statistics collected during the training of the hidden node [G]. In
Fig. 15(b) a perturbation of 0.5 was added to all the link matrices to remove the
zero elements. Fig. 19(a) shows the history of the sum of squared-error for the
forward propagation prediction of {[Size], [HI}, and Fig. 19(c) the performance
of the prediction of [Advice] which finishes at 0.9010.

In creating the nodes [H] and [G], we ignored the requirement to collect data

50 (a) 100 150
epoch

0 50 @) 100 150
epoch

1 performance hutory for Bel(A)

Fig. 16. Training of hidden node [H] for the region-based segmentation model. (a) and (b) are the

expected sum of squared-errors during training and (c) is the performance of the test data set.

32 C.K. Kwoh, D.F. Gillies i Artificial intelligence 88 (1996) l-38

0.3

5 10
state number of Mean

5 10
state munbcr of Mean

Fig. 17. Training history of hidden node [H] after perturbation. (a) and (b) are the expected sum of

squared-errors during training and (c) is the performance of the test data set.

for the [LDR] node in our model, which, as noted previously is an internal node
whose value is not required. In effect, Figs. 15(a) and 15(b) represent the same
structure, with the exception that [G] has more states than [LDR]. The predictive
performance turns out to be the same, which gives further justification to the
validity of the training algorithm.

Fig. 20 depicts the link matrices between the nodes: Fig. 20(a) shows [Advice]
to [G]; Fig. 20(b) [G] to [Size] and Fig. 20(c) [G] to [Hidden]. We notice that a
characteristic for the hidden nodes is that the link matrices exhibit little prediction

0,2error hutory plot for backpropaRaQon
I

50
epoch

oo,~ I performance hutory for Be](A) ,

o,116 emr hutor for forward IO a ahon

I==---l

0 (0 50 epoch

Fig. 18. Snapshot of the link matrix between [H] and [Mean]

C. K. Kwoh, D.F. Gillies I Artificial Intelligence 88 (1996) l-38 33

0.05’ 0.121
0 50 100 150 0 50 100 1s

(0 epoch W R cpoc

1
erfonnance hlrtor for Bid(A)

0.9 - ‘1 --,.,

08

0.7
0 50 100 150

(0 epoch

Fig. 19. Creation of hidden node [G] for the region-based segmentation model. (a) and (b) are the
expected sum of squared-errors during training and (c) is the performance of the test data set.

of prior probability. From the link matrices in Figs. 20(a) and 20(c), the sum of all
the conditional probabilities is almost a constant value, which gives no estimate of
the prior probability. However, summing the conditional probabilities for each
value of [Size] and normalising the result to satisfy the axioms of probability, we
can obtain a close estimate of the prior probability of [Size] from the training
data.

Table 4 summarises the result of the different configurations of the region-
based segmentation model as shown in Figs. 14 and 15(b).

o,lE/ O’;m
1 1.5 2 2.5 3 2 4 6
(a) state number of G

i
state number of S&c

-1
(9

2 3
state nmber40fH

Fig. 20. The link matrices after the creation of node [G].

34 C. K. Kwoh, D.F. tiillies I Artificial Intelligence 88 (1996) l-38

Table 3

Performance ot various configurations for the region-based

segmentation model

Configuration Performance

Fig. 14(a) (direct)

Fig. 14(b) (node deletion)

Fig. 15(b) (hidden node)

0.7376

0.7475

0.9010

9. Conclusions and suggestions for future work

From the experimental results it is clear that the creation of the hidden node as

an unobservable variable can be a powerful tool to handle conditionally depen-
dent data in Bayesian networks. By creating hidden nodes, and training them

using Bayesian operating equations according to the criterion of minimising the
squared-error cost function, we have improved the performance of two different

networks. Our method utilises the objective probabilities of the training data,
constrained by the axioms of probability, and performance is maximised without
expert intervention during training of internal nodes. We have also demonstrated
that there is no additional data to be collected for the creation of hidden nodes.

At present we create the hidden nodes sequentially starting from the most
dependent data. Future research should be undertaken to compare this approach
with direct minimisation of the cost function with all hidden nodes created before
training. Further investigation is also required to determine how many states are
necessary for the hidden nodes, how to select a dynamic learning rate, how to
estimate initial values for the hidden variable(s) and how to trim the size of the
network when a column and row of conditional probabilities fall to zero during
training.

Appendix A

If the variable A has A elements and the training data E E 3, the full set of
training data, and we are interested in the posterior probabilities (belief) of A

given some evidence E, denoted as &l(A). then we express Be/(A) as a function
of all the evidence

Be&A) = f(E)

If we have the expectation of the squared error cost function, A, as

5 = ,$, [&a, 1 - Wa, 11’ .

J=E{,$}=E 5 [D(a,)-Bel(a,)J’
1-I

C.K. Kwoh, D.F. Gillies I Artificial Intelligence 88 (1996) 1-38 35

then, following the method used by Hampshire and Pearlmutter [8], using the
joint probability density function of P(E, D(A)) of the training data and the
desired output, we have

The second summation is applied to each element of the desired value, so we can
change the representation to

which is the expectation of the squared-error average over the likelihood of each
state of the desired output given the evidence. Expanding the squared-error
expression we get

A = E i $ [(D(u,))~ + (Bel(u,))2 - 2D(u,)Bel(ui)]P(ujlE)
1 j=l i=l

= E 1$1

{ [

,$ (D(a,)>*f’(aj”) + If? (Bel(ai))*J’(ajlE)

I=1

- 2,tl D(u,)Bel(ui)P(ujlE) .

Bel(ui) only depends on the evidence and hence it can be moved outside the
summation, and further Cf= 1 P(ujlE) = 1, so the equation can be simplified to

5 (D(u,))*P(u,/E) + (Bel(u,))* - 2Bel(u,) $ D(u,)P(Ujl’)
j=l j=l

i [E((D(u~))~IE) + (Bel(u,))* - 2Bel(ui)E(D(ai)lE)] .
i=l

Now,

A
x (D(u,))~P(u~/E) = E{(D(u~))~IE}
j=l

and

36 (‘. K. Kwoh. 0. b. Gi1lie.v II Artificial Intelligence XX (1996) I -.iX

,* D(u,)P(a,lE) = E{D(a,)lEJ

are the conditional expectations of (D(u,)).’ and @a,) over specific evidence E.

Adding and subtracting a term

,$ E’{D(a,)iE)

and using the identity

var{D(a,)/E} = E{(D(u,))‘/E) -- E'[fl(u,)iEJ .

we have

:\

2 [E.‘{D(u,)lEJ t (Bd(u,))’ ~- 3Hel(u,)E{D(u,)iE}
/_I

t E{(D(u,))‘/E) -- E’{D(u,):E)J)

= E ,$, [E{D(u,)/E} - (Bel(u,))J’ + E{var{D(u,)/E}}
{ i

Since the second term is independent of the network outputs, minimisation of the

mean-squared-error cost function will be

i [E{D(a,)iE) -- (Brf(u,))]’
1-I

and E{D(u,)/E} is the expected belief of A given the evidence E.

References

[I] C.K. Chow and C‘.N. Liu. Approximating discrctc probability distributions with dependence

trees. IEEE Trans. Inform. Theory 14 (1986) K-467.

[2] G.F. Cooper and E. Herskovits. A Bay&an method for constructing Bayesian belief networks

for databases, in: B.D. D’Ambrosio. P. Smets and P.P. Bonissone. eds.. Proceedings 7th

International Conference on Uncertainty ,r, Artificial Intelligence. Los Angeles. CA (Morgan

Kaufmann, Los Altos, CA 1991) X6-94.

[3] A.P. Dempster, N.M. Laird and D.B. Rubin. Maximum likelihood from incomplete data via the

EM algorithm, J. Roy. Star. Sot. Ser. R 39 (1977) I-.%-.

]4] J.S. Denker and Y. Le Gun. Transforming neural-net output levels to probability distributions.

in: R.P. Lippmann. J.E. Moody and D.S. Touretzky. eds.. Advances in Neural Information

Processing Systems 3 (Morgan Kaufmann, Los Altos. (‘A. 1991).

[S] R.G. Gallager. Infbrrnation Theory and Reliuhle C‘ommunication (Wiley. New York. 1973).

[6] D. Geiger, An entropy-based learning algorithm of Bayesian conditional trees. in: D. Dubois.

M.P. Wellman, B.D. D’Ambrosio and P. Smets, eds., Proceedings 8th Conference on Uncertainty

m Artificial Intelligence. Stanford. CA (Morgan Kaufmann, Los Altos, CA. 1992) 92-97.

[7] D. Geiger, T. Verma and J. Pearl, Identifying independence in Bayesian networks. Networks 20

(1990) 507-534.

C.K. Kwoh, D.F. Gillies I Artificial Intelligence 88 (1996) l-38 31

[8] J.B. Hampshire and B. Pearlmutter, Equivalence proofs for multi-layer perceptron classifiers and

the Bayesian discriminant function, in: D.S. Touretzky, J.L. Elman, T.J. Sejnowski and G.E.

Hinton, eds., Connectionist Models, Proceedings of the 1990 Summer School (1990).

[9] D. Heckerman, Probabilistic similarity networks, ACM Doctoral Dissertation Award 1990, MIT.

Cambridge, MA (1990).

[lo] G.E. Hinton, T.J. Sejnowski and D.H. Ackley, Boltzmann machine: constraint satisfaction

networks that learn, Tech. Rept. CMU-CS-84-119 (1984).

[ll] G.N. Khan, Machine vision for endoscope control and navigation, Ph.D. Thesis, Imperial

College, London (1989).

[12] G.N. Khan and D.F. Gillies, A highly parallel shade image segmentation method, in: P.M. Dew

and R.A. Earnshaw, eds., Parallel Processing for Computer Vision and Display (Addison-Wesley,

Reading, MA, 1989) 180-189.

[13] H.H. Ku and S. Kullback, Approximating discrete probability distribution, IEEE Trans. Inform.

Theory 15 (1969) 444-447.

[14] C.K. Kwoh and D. Gillies, Using Fourier information for the detection of the lumen in

endoscope images, in: IEEE Region 10’s Ninth Annual International Conference, Proceeding of
TENCON Conference, Singapore (1994) 981-985.

[15] H.J. Larson, Introduction to Probability Theory and Statistical Inference (Wiley, New York, 3rd

ed., 1982).

[16] S.L. Lauritzen, The EM algorithm for graphical association models with missing data, Cornput.
Stat. Data Anal., 19 (1995) 191-201.

[17] S.L. Lauritzen and D.J. Spiegelhalter, Local computations with probabilities on graphical

structures and their application to expert systems, J. Roy. Stat. Sot. Ser. B 50 (1988) 157-224.
[18] Y. Le Cun, J.S. Denker and S.A. Solla, Optimal brain damage, in: D.S. Touretzky, ed..

Advances in Neural Information Processing Systems 2 (Morgan Kaufmann, Los Altos, CA, 1990).

[19] R.M. Neal, Connectionist learning of belief networks, Artif. Zntell. 65 (1991) 71-133.
[ZO] R.E. Neapolitan, Probabilisitc Reasoning in Expert Systems: Theory and Algorithms (Wiley, New

York, 1990).

[21] G. Paass, Integrating probabilistic rules into neural networks: a stochastic EM learning

algorithm, in: B.D. D’Ambrosio, P. Smets and P.P. Bonissone, eds., Proceedings 7th Internation-
al Conference on Uncertainty in Artificial Intelligence, Los Angeles, CA (Morgan Kaufmann, LOS

Altos, CA, 1991) 264-270.

[22] J. Pearl, Fusion, propagation, and structuring in belief networks, Artif. Zntell. 29 (1986) 241-288.
[23] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan

Kaufmann, Los Altos, CA, 1988).

(241 F.P. Ramsy, Truth and probability (1926). reprinted in: H.E. Kyburg and H.E. Smokler, eds.,

Studies in Subjective Probability (Wiley, New York, 1964) 63-92.

[25] H. Rashid and P. Burger, Differential algorithm for the determination of shape from shading

using a point light source, Image Vision Comput. 10 (1992) 119-127.

[26] M.D. Richard and R.P. Lippmann, Neural network classifiers estimate Bayesian a posteriori

probabilities, Neural Comput. 3 (1990) 461-483.
[27] S.M. Roberts and J.S. Shipman, Two-Point Boundary Value Problems: Shooting Methods

(Elsevier. Amsterdam, 1972) Chapter 6.

[28] S.A. Solla, E. Levin and M. Fleisher, Accelerated learning in layered neural networks, Complex
Syst. 2 (1988) 625-640.

[29] D.J. Spiegelhalter, A.P. David, S.L. Lauritzen and R.G. Cowell, Bayesian analysis in expert

systems, Stat. Sci. 8 (1993) 219-283.
[30] L.E. Sucar, Probabilistic reasoning in knowledge-based vision systems, Ph.D. Thesis, Imperial

College, London (1992).

[31] L.E. Sucar and D.F. Gillies, Probabilistic reasoning in high-level vision, Image Vision Comput.
12 (1994) 42-60.

[32] L.E. Sucar, D.F. Gillies and D.A. Gillies, Objective probabilities in expert systems, Artif. Inteh.
61 (1993) 187-208.

38 C.K. Kwoh. D.F. Gillies ! Artificial Intelligence 88 (1996) 1-3X

[33] A.S. We&end, D.E. Rumelhart and B.A. Huberman, Back-propagation, weight-elimination and

time series prediction, in: D.S. Touretzky, J.L. Elman, T.J. Sejnowski and G.E. Hinton, eds.,

Connectionist Models, Proceedings of the 1990 Summer School (1990).

[34] B. Widrow and S.D. Stearns. Adaptive Signal Processing (Prentice-Hall, Englewood Cliffs, NJ,

1985).
[35] L. Xu and J. Pearl, Structuring causal tree models with continuous variables, in: L.N. Kanal,

T.S. Levitt and J.F. Lemmer. eds.. Uncertainty in Artificial Intelligence 3 (1989) 209-219.

