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Abstract. A Bayesian Network is a construct that is used to model a given joint 
probability distribution. In order to assess the quality of an inference, or to 
choose between competing networks modelling the same data, we need 
methods to estimate the accuracy of a Bayesian network. Although the accuracy 
of a Bayesian network can be easily defined in theory, it is rarely possible to 
compute it in practice for real-world applications due to the size of the space 
representing the variables. Instead, alternative characteristics of a Bayesian 
network, which relate to and reflect the accuracy, are used. A popular 
formalism that adopts such methods is the Minimum Description Length 
(MDL). It models the accuracy of a Bayesian network as the probability of the 
Bayesian network given the data set that it models. However in the context of 
Bayesian Networks, the MDL formalism is flawed, exhibiting several 
shortcomings. In its place, we propose a new framework for Bayesian 
Networks. We specify a measure, which models the accuracy of a Bayesian 
network as the accuracy of the conditional independencies implied by its 
structure. Experiments have been conducted, using real-world data sets, to 
compare MDL and the new measure. The experimental results demonstrate that 
the new measure is much better correlated to the real accuracy than the MDL 
measure. These results support the theoretical claims, and confirm the 
significance of the proposed framework. 

1  Introduction 

A Bayesian network is a construct that is used to model a given joint probability 
distribution. In effect, a Bayesian network represents the relationships between a set 
of variables [8, 10]. A Bayesian network does not necessarily represent causation 
between a set of variables. For example, the parents of a node should not necessarily 
be considered causes of the node, although they can be interpreted as such in certain 
cases; instead, they should be viewed as shields against other influences. 

A principal feature of a Bayesian network is the conditional independencies 
between the variables implied by the structure of the network. The absence of an arc 
(direct connection) between two nodes of a Bayesian network implies certain 
conditional independencies regarding these nodes. However, the structure of a 
Bayesian network does not imply dependencies between the variables of the joint 
probability distribution that it represents. The existence of an arc (direct connection) 
between two nodes of a Bayesian network does not imply dependence regarding these 



nodes. All independencies implied by the structure of a Bayesian network are 
considered conditional. An unconditional independence can be viewed as a 
conditional independence given the empty set. 

In this paper, we make three assumptions about the Bayesian network, which limit 
the scope of the research. Firstly, the Bayesian network models a data set. We are not 
concerned with networks that are estimated by subjective methods. Secondly, we 
assume that the data set is complete, and lastly that the variables of the data set are 
finite. 

2  The Accuracy of a Bayesian Network 

We will start with an intuitively appealing definition of the accuracy of a Bayesian 
network. A Bayesian network (BN) is accurate with respect to a data set (D), if and 
only if, the joint probability distribution represented by the Bayesian network (PBN) 
matches the joint probability distribution described by the data set (PD). 

Both the joint probability distribution represented by the Bayesian network and the 
joint probability distribution described by the data set can be represented as n-
dimensional matrices of states1 ∗ …∗ statesn elements, assuming the data set has n 
variables, and each variable vi has statesi states. Since a matrix of n elements can be 
represented geometrically as a point in the nℜ  space, then both the joint probability 
distribution represented by the Bayesian network and the joint probability distribution 
described by the data set can be represented geometrically as points in the nstatesstates ∗∗ℜ ...1  
space. In view of the geometrical representation, the degree to which the joint 
probability distribution represented by the Bayesian network matches the joint 
probability distribution described by the data set is reflected by how close the 
corresponding points are. 

The degree of accuracy of a Bayesian network is inversely related to the distance 
between the point corresponding to the joint probability distribution represented by 
the Bayesian network and the point corresponding to the joint probability distribution 
described by the data set. 

Correspondingly, the degree of inaccuracy of a Bayesian network, with respect to a 
data set, is defined as the geometrical distance between the point corresponding to the 
joint probability distribution represented by the Bayesian network and the point 
corresponding to the joint probability distribution described by the data set. 
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The Euclidean distance is used as a distance measure; alternative distance 
measures could be used, such as the L1 and L2 metrics. 
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The joint probability distribution described by the data set is determined directly 
from the data set, while the joint probability distribution represented by the Bayesian 



network is determined indirectly from the data set. The range of values for the degree 
of inaccuracy of a Bayesian network is [0,√2]. 

Unfortunately, although the accuracy of a Bayesian network is well defined in 
theory, and an appropriate measure of inaccuracy is specified, it is rarely possible to 
determine the degree of inaccuracy of a Bayesian network in practice for real-world 
applications. This is due to the fact that in most cases it is computationally unfeasible 
to determine and use the joint probability distribution described by the data set, 
because of both processing and storage limitations. For example, for the Hepatitis C 
data set, which was used for our experimentation, the matrix of the joint probability 
distribution described by the data set is 9 dimensional containing 14,696,640 
elements. So, it is not only computationally unfeasible to determine the matrix, but 
also virtually impossible to use the matrix in practice. This is principally the reason 
why a Bayesian network is used to model the joint probability distribution described 
by the data set, instead of the joint probability distribution itself. 

3  Minimum Description Length (MDL) 

We noted in the previous section that it is rarely possible to determine directly the 
degree of accuracy of a Bayesian network. For real-world applications, alternative 
characteristics of a Bayesian network, which relate to and reflect the accuracy, are 
used to model and examine the accuracy of a Bayesian network. A formalism 
commonly used for this purpose is the Minimum Description Length (MDL) [11] (see 
also [4]). The MDL formalism evaluates a model of a data set based on the length of 
the description of the data set. This is the sum of the length of the description of the 
model and the length of the description of the data set given the model. The length of 
the description of the model reflects the model size and complexity, while the length 
of the description of the data set given the model is interpreted as the model accuracy. 

In the context of the Communication domain, the MDL formalism is employed in 
data compression, in order to identify the model that provides the shortest description 
of the data set. In this case, the length of the description of the data set is the number 
of bits required to encode the data set. This is the sum of the number of bits required 
to describe the model and the number of bits required to encode the data set given the 
model. 

In the context of Bayesian Networks, the length of the description of the data set 
given the Bayesian network is the negation of the log likelihood of the Bayesian 
network given the data set, which is interpreted as the degree of inaccuracy of the 
Bayesian network. In effect, the MDL formalism models the accuracy of a Bayesian 
network with respect to a data set as the likelihood of the Bayesian network given the 
data set. 
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The likelihood of a Bayesian network given the data set is equivalent to the 
likelihood of the data set given the Bayesian network. 
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The range of values for the degree of accuracy of a Bayesian network, with respect 
to any data set, is (-∞,0]. 

Since the MDL formalism evaluates the likelihood of a Bayesian network given a 
particular data set, the specific range of values for the degree of accuracy of a 
Bayesian network, with respect to a given data set, depends on the nature of the data 
set. As a result, it is not possible to determine the degree of accuracy of a Bayesian 
network unless the nature of the data set is examined. The degree of accuracy of a 
Bayesian network, with respect to a data set, is affected directly by the size of the data 
set [3]. Consequently, the MDL formalism can only be used to compare “relative” 
degrees of accuracy for a set of Bayesian networks and for a particular data set. Any 
results acquired and any conclusions drawn are valid for the Bayesian networks, only 
in view of the particular data set. 

Although the MDL formalism is being used in the field of Bayesian Networks, it 
was initially developed for the Communication domain where the focus is the 
transmission of a message. In the field of Bayesian Networks, the focus is the 
construction of a network that models the joint probability distribution in a given data 
set. Evidently, the semantics of these two fields are different, and thus the MDL 
formalism, which has been developed for the communication domain, is being taken 
out of context when used in the field of Bayesian Networks. 

The MDL formalism examines the accuracy of a Bayesian network with respect to 
the data entries of the data set, and not with respect to the joint probability distribution 
represented by the data set. 

Other formalisms that have been developed to evaluate the characteristics of a 
Bayesian network are the Akaike Information Criterion (AIC) [1] and the Bayesian 
Information Criteria (BIC) [14]. However, both of these formalisms are identical to 
the MDL formalism with regards to the evaluation of the accuracy of a Bayesian 
network. Bayesian Network learning algorithms, such as the Maximum Weight 
Spanning Tree (MWST) algorithm [2], provide some sort of an evaluation scheme for 
a Bayesian network. However, each algorithm is based on its own heuristic methods, 
which do not specify clearly what the characteristics of a Bayesian network are, and 
how these are evaluated. 

4  A New Definition of Accuracy in Bayesian Networks 

We have developed a formal framework for describing the accuracy of Bayesian 
Networks. Full details will be found in [9], but for now we state just the central 
theorems of the framework. 



 
Given: 
• A data set ( D ) representing a joint probability distribution ( P ) over variables (V ) 

)(VPPD =  

• A Bayesian network ( BN ) of nodes ( N ), arcs ( A ), distribution ( P′ ) 
),,( PANBN ′=  

)(NPPBN
′=  

Provided: 
• The nodes of the Bayesian network are the variables of the joint probability 

distribution represented by the data set 
VN ≡  

iiii vnVvNni ≡∈∈∀ :,,  

• The probabilities of the Bayesian network reflect the corresponding probabilities of 
the joint probability distribution represented by the data set 

))(|())(|(:, iiiii nparentsnPnparentsnPNni =′∈∀  

Then: 
½ The Bayesian network is accurate with respect to the data set, if and only if, the 

conditional independencies implied by the structure of the Bayesian network are 
conditional independencies of the joint probability distribution represented by the 
data set 
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We refer to the set of conditional independencies implied by the structure of a 

Bayesian network as the Network Conditional Independencies (NCI) set. Our 
framework introduces the NCI Soundness theorem and the NCI Incompleteness 
theorem, which are remarkably significant for the field of Bayesian Networks. 

The NCI Soundness theorem indicates that given a data set there exists a Bayesian 
network whose NCI is sound, that is the network conditional independencies also 
belong to the data conditional independencies. It guarantees that given any data set it 
is possible to construct an accurate Bayesian network. 

The NCI Incompleteness Theorem indicates that there exists data sets (at least one) 
for which there exist no Bayesian networks whose NCI is complete. Thus given any 
data set it might be impossible to construct a Bayesian network whose structure 
implies all the conditional independencies of the joint probability distribution 
represented by the data set. 

Computationally it is feasible to measure the inaccuracy of each conditional 
independence implied by the network, using a measure such as Mutual Information. 
The conditional dependency measure ( DM ) for variables A  and B  given variable C  
is the conditional Mutual Information ( MI ) for variables A  and B  given variable C . 
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By setting ∅=C  we obtain an unconditional dependency measure. Using the 
framework theorems and the definition of Mutual Information, it is possible to derive 
the following definition for the inaccuracy of a Bayesian Network. 
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We call this measure the Network Conditional Independencies Mutual Information 
(NCIMI) measure. 

The framework facilitates the comparison of individual Bayesian networks with 
regards to their characteristics, and provides the theoretical means to justify when and 
why a particular Bayesian network is more accurate than another Bayesian network. 
The framework can clarify the procedure of the addition and deletion of arcs and 
nodes from the structure of a Bayesian network [13], and provide the means to 
illustrate and explain the effects of such actions on the characteristics of a Bayesian 
network. The framework can supply a theoretical rationale to the process of the 
introduction of a hidden node within the structure of a Bayesian network [7] and the 
effects of such an action. The framework can be employed to develop Bayesian 
Network construction (learning) algorithms [15] as tree search algorithms that 
examine the accuracy of a Bayesian network and use the degree of inaccuracy as the 
evaluation function of the tree nodes. 

5  Experimental Results 

Several experiments were conducted using real-world problems. One data set that was 
used represents information concerning Hepatitis C patients, while a second data set 
provides information about morphological development of neurons [6]. The Hepatitis 
C data set has 1672 data entries, each being an individual Hepatitis C patient  
characterised by 9 distinct variables. The neurons data set has 44 data entries, each 
about an individual neuron, characterised by 6 distinct variables. At any time, only 
three variables of the given data set were used to carry out the experiments and collect 
experimental results. This limited approach was adopted, so that it was 
computationally feasible to calculate the joint probability distribution represented by 
the data set. The experiments were conducted for a collection of different data sets, 
created by randomly selecting the set of variables. For a given data set, all possible 
tree structured Bayesian networks that can model the given data were used to carry 
out the experiments and collect experimental results. 

For a given data set and a given Bayesian network, the experiments determine the 
accuracy of the Bayesian network with respect to the data set. Three quantities were 
computed. First, the actual degree of inaccuracy of the Bayesian network, computed 
as the Euclidean distance between the data distribution and the joint probability 
distribution of the network. Secondly, the degree of inaccuracy of the Bayesian 
network according to the Minimum Description Length formalism, and thirdly the 
degree of inaccuracy of the Bayesian network according to our new measure. 



The experimental results are presented below in a tabular and graphical form. The 
graphs are scatterplots of the actual degree of inaccuracy of the Bayesian network, 
against either the degree of inaccuracy measured by the MDL, or our NCIMI 
measure. Trendlines are drawn and their corresponding 2R  value computed. The 
closer the 2R  value of the trendline is to 1, the more reliable the trendline is, and the 
better it fits the points of the graph. The best trendline for the points of a graph is 
associated with the correlation of the variables represented in the graph. A low 
correlation coefficient indicates that the variables are unrelated. 

According to the MDL formalism, the degree of inaccuracy of a Bayesian network, 
with respect to a data set, is affected directly by the size of the data set [3]. For the 
data sets of the Hepatitis C domain, the average degree of inaccuracy of the Bayesian 
networks examined is 7858.3; for the data sets of the Neurons domain, the average 
degree of inaccuracy of the Bayesian networks examined is 245.26. Thus, the average 
degree of inaccuracy of the Bayesian networks for the data sets of the Hepatitis C 
domain is 32.04 times greater than the average degree of inaccuracy of the Bayesian 
networks for the data sets of the Neurons domain. This result is not only of the same 
magnitude but also very close to the size ratio of the Hepatitis C data set and the 
Neurons data set, which is 38. The experimental results point to a linear correlation 
between the degree of inaccuracy of a Bayesian network, with respect to a data set, 
and the size of the data set, which agrees with what is predicted in theory. 

The NCIMI measure does not exhibit the shortcomings of the MDL formalism. It 
provides a proper error norm so that the inaccuracy of the networks for the different 
data sets can be compared. It will be seen both visually and by the statistical 
measures, that it reflects the true accuracy of the network much better than MDL. 

 

 Correlation 
(Hepatitis C) 

Correlation 
(Neurons) 

R2 value 
(Hepatitis C) 

R2 value 
(Neurons) 

MDL 0.31 0.14 0.09 0.02 
NCIMI 0.97 0.73 0.94 0.53 
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6  Conclusion 

We have proposed a framework for Bayesian Networks, in order to examine the 
accuracy of a Bayesian network. The framework has subtle similarities with research 
by Pearl [10], Neapolitan [8], and Chow & Liu [2]. Further investigation is required to 
identify these similarities, and to amalgamate these seemingly different 
methodologies into a unified framework. Using the framework, we have proposed a 
new accuracy measure for Bayesian networks called the NCIMI measure, which is 
based on assessing conditional independencies implied by the structure of the 
Bayesian network. The framework is formally established, with several definitions 
and theorems, and well-defined semantics. Applying our measure to real world 
problems we have demonstrated that it performs considerably better than the popular 
MDL measure, which was defined for a different application within a different formal 
system and with a different set of assumptions. 

The data sets employed for the experiments are data sets of just three variables. 
Supplementary experiments are in hand, employing larger data sets with more than 
three variables. However, the data sets have to remain relatively small so that the 
experiments are computationally feasible. The refinement and the extension of the 
framework will result in an even greater understanding of Bayesian Networks, while 
the supplementary experiments will offer further insight, and additional evidence in 
support of the proposed framework. 
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