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High-level vision is concerned with constructing a model of 

the visual world and making use of this knowledge for later 

recognition. In this paper, we develop a general framework 

for representing uncertain knowledge in high-level vision. 

Starting from a probabilistic network representation, we 

develop a structure for presenting visual knowledge, and 

techniques for probability propagation, parameter learn- 

ing and structural improvement. This framework provides an 

adequate basis for representing uncertain knowledge in 

computer vision, especially in complex natural environments. 

It has been tested in a realistic problem in cndoscopy, 
performing image interpretation with good results. We 

consider that it can be applied in other domains, providing 
a coherent basis for developing knowledge-based vision 
systems. 
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The process of vision involves the transformation 
of information, consisting of thousands of picture 
elements (pixels) obtained from the image(s) into a 
concise symbolic description that is useful to the viewer 
and not cluttered with irrelevant information’. This 
process has been divided into a series of levels, or a 
range of different representations, from low-level 
vision which involves operations acting directly on the 
images, through intermediate and high-level vision, 
that use the information obtained from the lower levels 
to build a simpler and more useful description. This 
process is represented schematically in Figure 1. 

While low-level processing is essentially general 
purpose and does not make use of domain-specific 

knowledge, high-level vision is concerned with con- 
structing a knowledge-base of the visual world and 
making use of this knowledge for later recognition. 
High-level vision seeks to find a consistent inter- 
pretation of the features obtained during low-level 
processing. This is called sophisticated perception by 
Pentland , and it uses specific knowledge about each 
particular domain to refine the information obtained 
through primitive perception. High level vision is based 
on recognition, that is matching our internal represen- 
tation of the world with the sensory data obtained from 
the images. It involves the use of high-level specific 
models to infer from visual features the information 
required for subsequent tasks. At this level, model 
knowledge becomes more specific and plays a vital role 
in image interpretation. 

According to their representation and recognition 
mechanisms we can classify vision recognition systems 
into two main categories: model-based and knowledge- 
based. In model-based systems the internal representa- 
tion is based on a geometric model and the process of 
recognition consists in matching this model with a two 
dimensional (2D) or three dimensional (3D) descrip- 
tion obtained from the image. The representation in 
knowledge-based systems is symbolic, including asser- 
tions about the objects and their relationships, and 
recognition is based on inference. 
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Figure 1 Levels of representation in vision. The different features’ 
obtained from the low-level processes are fed into the high-level 
processes that use knowledge of the world for postulating what 
objects are in the image (recognition) 
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Model-based vision 

Recognition in model-based vision involves matching 
the representation derived from the images with a set of 
predefined models. There are three main components 
in this type of system: feature extraction, modelling 
and matching. Feature extraction corresponds to what 
we called low-level vision, and in this case consists 
of deriving shape information from the images to 
construct a geometrical description. The modelling part 
involves the construction of internal geometrical 
models of the objects of interest, and it is usually done 
off-line prior to image analysis. Recognition is realized 
by geometric matching of the image description with 
the internal models. 

Model-based vision systems are useful in certain 
domains. mainly in robot vision for industrial applica- 
tions. Their success in these kind of tasks depends on 
three types of restrictions: 

They use simple models. The objects to be recog- 
nized can be represented geometrically with few 
parameters and in a relatively precise way. This 
applies mainly to man-made objects. 
They process few objects. The number of different 
objects in the domain is small. This is limited by the 
memory and processing requirements, especially 
if the system has to operate in real-time. 
Graph matching algorithms are computationally 
expensive. Indeed, in its worst case subgraph 
isomorphism is an NP-complete problem. 
They have robust feature extraction. The features 
obtained through the perception processes are 
reliable and an object description can be easily 
constructed. This usually assumes known illumina- 
tion conditions, surface properties and camera 
position, and sometimes the use of other sensors. 
such as multiple cameras and range finders. 

Current model-based systems are limited as general- 
purpose vision system? by the performance of the 
segmentation modules and their restricted representa- 
tion of world knowledge. These limitations also apply 
to other domains that to not satisfy the restrictions 
mentioned above. They are not well suited for natural 
scenes such as those required for autonomous naviga- 
tion in natural environments. 

Knowledge-based vision 

While model-based systems mainly use analogical 
models to represent objects, knowledge-based systems 
use propositional models, and recognition is realized by 
a process of inference which does not require the 
construction of an explicit model of the objects to be 
identified. They are a collection of propositions that 
represent facts about the objects and their relation- 
ships. The interpretation process consists of inferring, 
from the data and the known facts about the domain, 
the identity of the objects in the image. A general 
structure for this type of system is shown in Figure 2. 

Figure 2 Knowledge-based vision system \tructurc 

This is similar to the general framework for model- 
based vision; the main differences are in the way we 
represent and use domain knowledge. In the model- 
based approach the representation is based on exact 
geometric models. In the knowledge-based case, 
the models use a symbolic description based on 
the different knowledge representation techniques 
developed in artificial intelligence (AI). We can divide 
a knowledge-based vision system into three processes: 

Feature extraction, which obtains the relevant 
features from the images and constructs a symbolic 
description of the objects used for recognition. 
These are integrated into what we call a symbolic 
image. 
Knowledge acquisition, which concerns the 
construction of the model that represents our 
knowledge about the domain. This is done prior to 
recognition and stored in the knowledge-base. 
Inference, which is the process of deducing from the 
facts in the knowledge-base and the information in 
the symbolic image the identity and location of the 
relevant objects. 

Uncertainty 

Our knowledge about the relationship between the 
image features (evidence) and the objects in the world 
(hypothesis) is often uncertain. If we knew the struc- 
ture of the world we observe then we can categorically 
determine its projection in the image, as is the case in 
computer graphics, but given an image the relation 
becomes probabilistic, which is the case in vision. In 
both cases we represent the relationship between the 
world and the image in a causal direction, represented 
by a directed link from world to image. 

Previous work in knowledge-based vision uses repre- 
sentations based on predicate logic, production 
systems, semantic networks and frames’. These 
systems have logic as their underlying principle, and 
reasoning is based on logical inference. Thus, handling 
uncertainty has been done by enhancing the basic 
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representation and reasoning mechanisms, using some 
alternative numerical techniques such as Dempster- 
Shafer theory”.‘, certainty factors’, fuzzy logic”, a 
combination of them, or ad hoc methods developed 
for specific applications i”.il. Most systems based their 
beliefs, certainty factors or probabilities on statistical 
data. Only probability provides a clear semantic inter- 
pretation, either as a statistical frequency (objective), 
or as a subjective estimate used traditionally in expert 
systems. 

Probability theory provides an adequate basis 
for handling uncertainty in high-level vision. It is 
theoretically and practically appropriate in cases in 
which we require numerical predictions on verifiable 
eventsi2, which is the case in most computer vision 
systems. Probability theory satisfies the procedural 
adequacy criteria for a visual knowledge representation 
proposed by ~ackworth~~, namely: soundness, com- 
pleteness, flexibility, acquisition and efficiency. It also 
provides a preference ordering and efficient algorithms 
for a wide range of problems. The purely subjective 
Bayesian approach has been used in severa vision 
applications i4, however, there are some difficulties in 
its application. Ng and Abrahmson’” point out three 
main problems: 

The evidence comprises the features obtained from 
the image by domain-independent low-level vision, 
including uniform regions, contours, colour, 3D infor- 
mation, etc. The hypotheses are the different objects 
we expect to find in the worid, which is usuahy 
restricted to a specific domain, although, of course, 
we can have several knowledge-bases, one for each 
domain. The knowledge-base relates the features to the 
objects, through intermediate regions, surfaces and 
sub-objects, depending upon the complexity of the 
objects in the domain. It can also include relationships 
and restrictions between objects, such as topological 
relations. These relations can also exist between sub- 
objects or lower-level features. Thus, we can represent 
our visual KB as a series of hierarchical reiationships, 
starting from the Iow-level evidence features, to 
regions, surfaces, sub-objects and objects. 

1. The difficulty in extracting from the expert(s) the 
knowledge to assess the required probability distri- 
butions. 

2. The huge number of probabilities that must be 
obtained to construct a functioning knowledge- 
base. 

3. The independence assumptions that are required to 
render the problem tractable. 

Rimey and Brown I6 have made some progress 
towards reducing the large number of probabilities 
required by incorporating geometric properties of the 
scene into their computation, but their approach 
remains application oriented. In contrast, we have 
based our approach on objective probability, which 
provides an adequate framework for knowledge repre- 
sentation and reasoning in computer vision, and 
permits machine estimation of the probabilities. 

In probabilistic terms these relations correspond to 
dependency information, i.e. we can think of a series of 
image features giving evidence for certain objects; or 
an object causing the appearance of certain features in 
the image. This dependency information and its causal 
interpretation can be represented by a probabilistic 
network. Each node in the network will represent an 
entity (features, region, . . ., object) or relation 
{above, surrounding, near, . . .) in the domain, and the 
arcs will represent the dependencies between these 
entities. This representation makes explicit the depen- 
dency information, indicating that a certain object 
depends on a group of entities and is independent from 
the others. Thus, the structure of the probabilistic 
network will represent the qualitative knowlege about 
the domain. The probability distributions attached to 
the links wiIl correspond to the strength of their 
dependencies. This representation reminds us of a 
semantic network representation, but in contrast, the 
structure of a probabilistic network has a clear meaning 
in terms of probabilistic dependencies, and it adds the 
representation of uncertainty to the relations, which 
are measured statistically. It also gives a rank ordering, 
in terms of probabilities, allowing us to select one of 
several conflicting interpretations of an image. 

KNOWLEDGE REPRESENTATION Probabilistic networks 

Structuring visual knowledge 

Within a knowIedge-based framework, our visual 
knowledge is modelted by a series of facts about the 
objects and their relationships. These facts relate the 
features we obtain from the image with the objects of 
interest, possibly specifying, also, constraints and 
relationships between different objects. Given the 
uncertainty implicit in our model as well as in the 
features we obtain from the low-level vision processes, 
we need to integrate all the information we can obtain 
and our a priori knowledge to arrive at an interpreta- 
tion. So our recognition mechanism should reason from 
the features or evidence obtained from the image to 
infer the identity of the objects in the domain. 

Probabilistic networks, also known as Bayesian 
networks, causal networks or probabiIistic influence 
diagrams, are graphical structures used for representing 
expert knowledge, drawing conclusions from input data 
and explaining the reasoning process to the user. A 
probabilistic network is a directed acyclic graph (DAG) 
whose structure corresponds to the ~e~e~~~~c~ rela- 
tions of the set of variables represented in the nework 
(nodes), and which is parameterized by the conditional 
probabilities (links) required to specify the underlying 
distribution. The variable at the end of a Iink is 
dependent on the variable at its origin, e.g. C is 
dependent on A in the probabilistic network in Figure 
3, as indicated by link 1. We can think of the graph in 
Figure 3 as representing the joint probability distribu- 
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directed acyclic graph, which consists of a finite set of 
vertices or nodes V and an irretlexive binary relation 6 
on V. The adjacency relation E specifies which nodes 
are adjacent, i.e. if (v, w) E E then bv is adjacent to v, 
represented by an arc or edge from v to u’. The 
adjacency relation specifies a dependency relation in 
probabilistic terms. Given the set of parents or causes 
of any node v denoted by C. L’ is conditionally 
independent of every other subset of nodes X, i.e.: 

Figure 3 A probabilistic network 

tion of the variables A, B, ., G, as: 

P(A, B, C, D, E. F. G) = 

P(G 1 D) P(FI C, D) P(E I B) P(D 1 A, B) 

P(C /A) f’(B) P(A) (1) 

Equation (1) is obtained by applying the chain rule and 
using the dependency information represented in the 
network. 

We can also view a probabilistic network as repre- 
senting a rule-base. Each node corresponds to a 
variable, evidence or hypothesis, and the rules corre- 
spond to the dependencies represented by the links. A 
group of arrows pointing at a node represents a set of 
rules relating the variables at the origin of the links to 
the variable at the end, quantified by the respective 
conditional probabilities. For example, the links 5 and 
6 in Figure 3 represent the set of rules: if C;, D, then Fl, : 
quantified in probabilistic terms as the conditional 
probability matrix P, where Pijk = P(F,/C,, D,). In a 
PN the arrows point from conditions to consequence. 
or causes to effects. denoting the causal structure in the 
physical world”. 

The topology of a probabilistic network gives direct 
information about the dependency relationships 
between the variables involved. In particular, it repre- 
sents which variables are conditionally independent 
given another variable. By definition, A is conditionally 
independent of B, given D, if: 

P(A 1 B, D) = P(A 1 D) 

This is represented graphically by node D ‘separating’ 
rl from B in the network. In general, D will be a subset 
of nodes from the network that if removed will make 
the subsets of nodes A and B disconnected. If the 
network represents faithfully the dependencies in the 
underlying probability distribution. this means that A is 
conditionally independent of B given D. For example, 
in the PN of Figure 3, {E } is conditionally independent 
of {A. C‘, D, F, G} given {B} . 

Formally, we define a probabilistic network as 
follows. Let V be a set of propositional variables with a 
joint probability distribution P, and G = (V, E) a 

P(v i C. X) = P(v 1 C) 

where X is a subset of propositional variables from V 
excluding v and v’s descendants denoted by D, i.e. 
Xc{V-(Duv)}. Then PN=(V. E, P) is called a 
probabilistic network. 

Visual probabilistic networks 

For the hierarchical description of our visual 
knowledge-base, we can think of the network as 
divided in a series of layers in which the nodes of the 
lower layer correspond to the feature variables and the 
nodes in the upper layer to the object variables. The 
intermediate layers have nodes for other visual entities, 
such as parts of an object or image regions: or represent 
relations between features and objects. The arrows 
point from nodes in the upper layers toward nodes in 
the lower layers. expressing a causal relationship. The 
structure of a probabilistic network for visual recogni- 
tion is shown in Figure 4. 

As we will discuss in the following section, prob- 
ability propagation in a general network is computa- 
tionally expensive, so in practice it is necessary to 
restrict our representation to certain types of networks. 
We require a network representation that is suitable for 
visual recognition. but at the same time efficient in 
terms of memory and processing requirements. The 
hierarchical visual network that we discussed before 
can be thought of as a series of trees, with each tree 
having its root at one object, connected to other nodes 
in the intermediate layers, and with the leaves of the 
tree as the feature nodes at the lower level. It is 
generally the case that we can represent the inter- 
mediate objects and features as separate nodes for each 

Objects 

Object parts 

. 

. 

Regions 

Image features 

Figure 4 Hierarchical probabilistic network for visual recognition 
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Figure 5 Example of a multitree for visual recognition. Feldman’ 
F 

gives this as an example of a description of Ping-pong and golf balls 
according to his functional model for vision. It is interesting to note 
that this model, derived from another perspective, is analogous to a 
probabilistic multitree (the figure is based on Feldman*, p. 541) ;i 

a 
object hypothesis, with common nodes only for repre- 
senting relations. The low level evidence or feature 
nodes will correspond to the information that is 
obtained directly from the image, so these nodes will be 
common to several objects, representing conflicting 
hypotheses. Thus, we have a network in which certain 
nodes have no parent (objects), other nodes have one 
parent (intermediate objects/features), and some nodes 
have multiple parents (features and relations). We will 
restrict the multiple parents variables to leaf nodes, 
that is, nodes with no descendants and call this type 
of network a rnuftitree. An example of a multitree is 
depicted in Figure 5. 

Figure 6 Expressing relational knowledge. The network in (a) 
represents a unary relation between 0 and F, and the network in (b) 
a binary relation between 0 and F,. Fz which is expressed through 
the relational variable R. The deterministic links between F,, F2 and 
R indicate that the value of R is a deterministic function of F, and Fz. 
---f: Probabilistic link; -----f: deterministic link 

Before we can define formally a multitree, some 
additional definitions are required. Let G = (V, E) be 
a DAG, and v and u vertices in V. If (u, V) E E then u is 
a parent of v and v is a child. If there is a path from u to 
v, u is an ancestor of v and v is a descendant of u. If u 
has no parents it is called a root and if u has no children 
it is called a leaf. 

independent. So there is a unary relationship between 
an object 0 and a feature F. This is represented 
graphically by the probabilistic network in Figure 60. 
However, in many cases the relation between several 
parts or features are important for the recognition of an 
object. 

Now we can define a multitree as follows. Let G = 
(V, E) be a DAG, and v a vertex in V. G is called a 
multitree if every non-leaf vertex v E V has at most one 
parent, i.e. that the root nodes have no parents, the 
leaf nodes have mutliple parents, and every other node 
has exactly one parent. 

In a multitree there is one tree that encapsulates the 
rules for recognition for each object. Each recognition 
tree consists of a single root that represents the object 
of interest, intermediate objects/features, and several 
leaves that constitute the measured parameters. 
Although this structure could seem somewhat restric- 
tive, it is generally adequate for representing a 
visual KB, and probability propagation can be done 
efficiently as we will show later. 

Multiple objects in the world are easier to model as 
the composition of several sub-objects or parts, sub- 
divided recursively until at the lowest level there are 
simple objects that will generally correspond to a 
region in the image. An example of this type of 
representation is the 3D models proposed by Marr’ in 
which an object is described by a number of cylindrical 
parts and their relationships. In this case the recogni- 
tion of an object is not only dependent on the presence 
of its subparts, but it is also dependent on the physical 
relation between them. We need to represent this 
dependency of the object on the relation between its 
components in the network. 

Expressing relational knowledge 

The causal relationships represented in the visual 
probabilistic network we have discussed previously 
express unary relationships between objects and 
features, i.e. the presence of a certain object in the 
world will cause the appearance of some specific 
features in the image, which are usually assumed 

A physical relation between the components could, 
for example, be the distance between two regions or 
their topological relation (adjacent, above, surround- 
ing, etc.). These relationships are well defined, and so 
we can say that there is a determinisitic link from the 
components to their relation. However, the instance of 
a relation extracted from the image could either be 
caused by the object of interest, or be accidental or 
illusory. To represent this uncertainty, we consider that 
there is some probabilistic link from the object to the 
relation. For the case of one object and a binary 
relation between two features, the corresponding 
network is shown in Figure 6b. We represent a 
probabilistic link by an arrow and functional or 
deterministic links by a dotted arrow (Figure 6~). 

We can extend the representation to include more 
variables, and in general a relation for n variables can 
be expressed by an analogous network, as depicted in 
Figure 7~. Assuming that the relation can be uniquely 

Probabilistic reasoning in high-level vision: L E Sucar and D F Gillies 

46 Image and Vision Computing Volume 12 Number 1 January/February 1994 



Probabilistic reasoning in high-level vision: L E Sucar and D F Gillies 

b 

Figure 7 Probabilistic network for an n-variable relation. The 
network in (a) expresses the functional and probabilistic dependen- 
cies, which is transformed into the equivalent probabilistic network 
depicted in (b). The relation variable R is treated as an instantiated 
variable drawn as a shaded circle 

determined from the related variables, node R becomes 
a deterministic variable in the same way as the input 
variables. shown as a shaded node in the network. 
Thus, if we eliminate the functional links from the 
network, we are left with the probabilistic network 
shown in Figure 7b. This network also has a tree 
structure and we can apply the algorithms that we will 
develop for probability propagation in multitrees. 

Expressing temporal knowledge 

We live in a dynamic environment in which the 
information we obtain from our visual sensors changes 
constantly as a function of our movement or the 
movement of the surrounding objects. We can think of 
this dynamic information as a series of images which 
together provide more information than a single static 
image. To be able to operate in a dynamic environment 
we are required to incorporate in our knowledge-base 
temporal information. which can be used efficently as 
an aid for recognition. We will focus on the navigation 
aspect, considering a series of images that are similar, 
with an incremental difference between one image and 
the next due to the movement of the camera or the 
environment; and we will consider two cases: 

l Semi-stutic recognition, in which an object can be 
identified from a single image but observations 

t I-1 1 ti 1 $+I 

a b 
Figure 8 Semi-static recognition. The network in (a) represents the Figure 9 Dynamic recognition. The network in (a) corresponds to a 
causal relations between an object in several images. This is probabilistic network for representing an object across several 
simplified to the network in (b) for recognition at time I, images, which is extended to include relation<, in (b) 

from previous images can be useful as another clue 
for recognition. 

l Dynamic recognition, in which a series of images 
are necessary to identify an object, which otherwise 
would be impossible or very difficult to recognize. 

In semi-static recognition we consider an object 0 
which can be identified by a number of image features 
F,. ., FN obtained from an image at time t,. 
Assuming that the time difference at between images 
is small, the same type of object will be present at the 
same location in previous and successive images. We 
can state that object 0 appearing at time f, , CUUS~S 
the presence of the same object at time t,, with an 
analogous relation between f, and ,+,+I, This can be 
represented graphically by the network in Figure &a, 
where the conditional probabilities for the links con- 
necting the matching objects at different times will be 
high for objects of the same type and low for objects of 
different types. For evaluating the network at time f,, 
we can consider only the node for the object at time 
t I -I obtaining the structure shown in Figure 8h. This 
simplification is based on the assumption that knowing 
the identity of the object at t, , makes the previous 
observations irrelevant for 0 at t,. Thus, the posterior 
probabilities for an object in the previous image will 
influence the prior probability of the corresponding 
object in the current image. We will continue to have a 
tree structure although the object of interest is no 
longer at the root of this tree. 

In dynamic recognition, an object is defined by the 
presence of other objects or certain image features 
across a series of successive images. We can think of 
this case as analogous to the hierarchical description of 
an object in terms of parts. rcgionx, etc., but in which 
the sub-objects are in different images instead of the 
same one. Then we can represent a dynamic object 
with a probabilistic tree. where the presence of object 
0 is dependent on the observation of objects S,, ., 
S,\ in different successive images. as it is shown in 
Figurr 90. The physical relation. such as the distance. 
between these objects could be also important and we 
can extend the representation by including this rela- 
tional information in the way described in the previous 
section (Figure Yb). 

Both types of dynamic knowledge representations 
keep a single dependency structure in which probability 
propagation can still be done efficiently. 

a b 

Image and Vision Computing Volume 12 Number 1 January/February 1994 47 



PROBAEIILITY PROPAGATION 

There are two basic modes of reasoning that we can use 
with a visual knowledge base represented as a probabi- 
listic network. First, given an image or a series of 
images, we will use the network to recognize the object 
or objects in the image(s). This corresponds to deduc- 
tive reasoning and will be implemented by pr~babj~istic 
propagation techniques described in this section. The 
second mode of reasoning has to do with constructing b F 

the visual KB, that is learning or inductive reasoning a 
(known as knowledge acquisition in knowledge-based 
systems), which will be discussed in the next section. 

Figure 10 A probabilistic tree (a) and a polytree (b) 

Probability propagation consists in instantiating the 
input variables, and propagating their effect through 
the network to update the probability of the hypothesis 
variables. In contrast with previous approaches, 
the updating of the certainty measures is consistent 
with probability theory, based on the application of 
Bayesian calculus and the dependencies represented in 
the network. Probability propagation in a general 
network is a complex problem, but there are efficient 
algorithms for certain restricted structures, and alter- 
native approaches for more complex networks. Pearl” 
developed a method for propagating probabilities in 
networks which are tree-structured, and which was 
later extended to polytrees. For multiply connected 
networks, different approaches have been suggested. 
Lauritien ‘s developed a tee hnique based on graph 
theory, which will work efficiently in arbitrary ‘sparse’ 
networks. Other techniques include conditioning 
and st~c~a~t~c sirnuiati~~l~. We have developed an 
algorithm for probability propagation in multitrees’O. 

separates it into two independent subtrees, one formed 
by all the descendants of B and the other by every other 
node. Pearl” shows that we can combine the evidence 
from the whole tree at node B using the equation: 

P(BiIV)=aT(B;)A(Bi) 

where (Y is a normalizing constant. h(B;) is the 
evidence from the tree below B and is recursively 
defined as the product of the evidence from the sons 
of B: 

T(B/) is the evidence from above B and is given by: 

.i7(Bi) = c P(B; j AJ in n(A,) 17 A,(A~)l (7) 
I / 

Probability propagation in trees 

where 1 ranges over all the descendants of A except B, 
that is the siblings of B. Equation (7) shows how to 
obtain the causal support for B from its ancestors. 

Given a PN and the local conditional probabilities, it is 
desirable to be able to propagate the effect of new 
evidence by local computations, communicating via the 
links provided by the network. This mechanism, in 
analogy with logical inference, allows the tracing of the 
reasoning process for its explanation to the user, an 
important feature in expert systems; and it has poten- 
tial for a parallel implementation. Pearl” developed 
a method for propagating probabilities in networks 
which are tree-structured, i.e. each node has only 
one incoming link or one parent. In a pr~bab~~~.~t~c 
tree every node has only one parent except one 
node, called the root, which has no incoming links. An 
example of a tree is shown in Figure 1Oa. 

Equations (5), (6) and (7) constitute the basis for the 
propagation mechanism in a probabilistic tree. For this 
we only need to store the vectors A and 7r in each 
node, and update them with the correspondirlg para- 
meters from its neighbours, and the fixed conditional 
probability matrix P for that node. This could be 
implemented by a message passing scheme” in which 
each node acts as a simple process which communicates 
with its neighbours (father and sons). Initially the 
network is in equilibrium. When information arrives, 
some nodes called data nodes are instantiated and the 
information is propagated through the network bv each 
node sending messages to its parent and sons, in two 
directions: 

Each node represents a discrete multivalued 
variable, e.g. A = {A,, AZ, . . . , A,}, and each link is 
quantified by a conditional probability matrix, P(BIA), 
where P(B/A),j = P(B,/A,). Given certain evidence V, 
represented by the instantiation of the corresponding 
variables, the posterior probability of any variable B, 
by Bayes’ theorem will be: 

l Bottom-up propagation. Each node (B) sends a 
message to its father (A), calculated as: 

A,@,) = c Wjl 4) Wj) (8) 

P(Bj ) V) = P(B,) P(V j B,)IP(V) (4) 

Given the dependencies represented in the tree, B 

o Tap-down propagation. Each node (B) sends a 
message to each of its sons (S)? for the kth son it is 
computed by: 

rk(Bi)=a r(Bj) HAI 
Ifk 
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Each node uses this information to update its local 
parameters, and update its posterior probability if 
required. For example. if nodes D and F were 
instantiated in the network of Figure IOU, they will send 
A messages to B, which will then send a A message to 
A and 7r messages to all of its sons. After the messages 
reach the root node, they will propagate top-down until 
they reach the leaf nodes, where the propagation 
terminates and the network comes to a new equili- 
brium. So the information propagates through the tree 
in a single pass, in a time (in parallel) proportional to 
the diameter of the network. 

The previous propagation mechanism only works for 
trees, so it is restricted to only one cause per variable. 
An extension for more complex networks, called 
plytrees. was proposed by Kim and Pearl”. In a 
polytree each node can have multiple parents, as shown 

Figure IOh, but it is still a singly connected graph. 

Probability propagation in multiply connected 
networks 

Multiply connected networks are those in which there 
are multiple paths between nodes in the directed graph, 
implying the formation of loops in the underlying 
network. If we apply the propagation schemes of the 
previous section in this type of network, the messages 
will circulate around these loops. and we will not reach 
a coherent state of equilibrium. 

For a sparse network, a solution is to transform it 
into a different structure, for which an efficient 
propagation scheme can be applied. For this, Lauritzen 
and Spiegelhalter’x developed a method based on 
graph theory, which extracts an undirected triangufuted 
graph from the probabilistic network, and creates a tree 
whose nodes are the cliques of this triangulated graph. 
Then the probabilities are updated by propagation in 
the tree of cliques. This technique will work efficiently 
if the number of variables in each clique is relatively 
small. It has been applied in MUNIN, a medical expert 
system for diagnosis and test planning in electro- 
myographylx. 

Pearl”’ suggests two other methods for dealing with 
multiply connected networks: stochastic simulation and 
conditioning. Stochastic simulation consists of assigning 
to each non-instantiated variable a random value and 
computing a probability distribution based on the 
values of its neighbours. Based on this distribution, 
a value is elected at random for each variable, and 
the combined values represents a sample point. The 
procedure is repeated a number of times, and the 
posterior probability of each variable is calculated 
as the percentage of times each possible value appears. 
Conditioning “’ is based on the fact that if we instantiate 
a variable it ‘blocks’ the paths for which the corres- 
ponding node forms part, changing the connectivity of 
the network. Thus, we can transform a multrply 
connected graph into a singly connected graph by 
instantiating a selected group of variables. We assume a 
set of fixed values for these variables, and so the 
probability propagation for the singly connected net- 
work. This is repeated for all the possible values of the 

separating variables, averaging the results weighted by 
the posterior probabilities. 

These techniques provide efficient algorithms 
for probability propagation in certain classes of 
networks: tree, polytrecs and sparse multiply con- 
nected networks. But in gcncral. WC have more 
complex structures, and it has been shown by Cooper” 
that probabilistic inference is NF’-hard. 

Probability propagation in multitrees 

As we can see in Figure’ 5, 21 multitree is not singly 
connected, i.c. there can be multiple paths between 
nodes. Algorithms for multiply connected networks arc 
more complex, and only work efficiently for certain 
kind of structures. Thus. we need to develop a 
technique for efficient propagation in multitrees, or 
else, a transformation of the network to make it singly 
connected. There are two important characteristics of 
the general structure of a visual PN that help to simplify 
probability propagation: 

I. Probability propagation is usually, bottom-up. That 
is, from the evidence nodes instantiated from the 
images towards the object nodes whose posterior 
probability we want to obtain. 

2. The leaf nodes will usually correspond to instan- 
tiated or evidence variables. These nodes, the 
feature and relation nodes, will have fixed values 
obtained from the feature extraction processes of 
low-level vision. 

By making use of these properties and the condition- 
ing technique we described before, we can separate a 
multitree into a series of independent trees so that 
we can do probability propagation independently in 
each one by extending the technique for probability 
propagation in probabilistic trees. 

Theorem 1 Let G = (V. E) be CI muititree, and WE V 
the subset of all leaf nodes in V. If every node v E W is 
instantiated, then the multitree G cun he squruted in one 
or more probabilistic networks G,. CT?, .1 CT,% where 
each network G, is u probabilistic tree. 

Proof 
By conditioning we block the pathways that go through 
the instantiated nodes. In the case of leaf nodes, this is 
equivalent to partitioning the network along this node. 
and connecting a copy of it to each one of its parents. 
Given that all the leaves are instantiated we can 
partition the network at every leaf node, meaning that 
each instantiated copy of the node will have only one 
parent. If every leaf has only one parent and. by 
definition, every other node in a multitree has at most 
one parent. then every node in the network has at 
most one parent. From this it follows that the network 
is a forest, that is a DAG where each node has at most 
one parent. A tree is a particular case of a forest where 
there is only one root node, and a forest is equivalent 
to one or more trees. 

Figure II shows an example of a multitree which has 
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a 

b 

Figure 11 Multitree with instantiated nodes and equivalent trees. In 
(a) we show the network with the instantiated variables shown as 
filled circles, and in (b) the two equivalent trees that form a forest. 
Three instantiated leaf nodes have been partitioned to render the 
network singly connected: these are shown as circles with black 
stripes 

been transformed into a forest by instantiating the leaf 
variables. In Figure lla we show the network with the 
instantiated variables shown as filled circles, and in 
Figure Ilb the two equivalent trees that form a forest. 
Three instantiated Ieaf nodes have been partitioned to 
render the network singly connected; these are shown 
as circles with black stripes. 

After partitioning the knowledge base into multiple 
independent trees, we apply the probability propaga- 
tion technique for trees to propagate the evidence 
through each tree independently and obtain a posterior 
probability for each object hypothesis. Given that all 
the leaf nodes are instantiated, we need only the 
bottom-up propagation part of the algorithm, combin- 
ing the diagnostic support received from each child 
upwards, until we arrive to the root node. So by using 
both conditioning and propagation in trees, we obtain a 
probability propagation algorithm for visual recogni- 
tion in a multitree. 

Algorithm 1 ~ob~bili~y ~o~agation in ~uItifrees 
1. Decompose the network into N probabilistic trees 

(T,) by partitioning it in every leaf node with 
multiple parents. 

2. Instantiate all leaf nodes by using the measured 
features obtained from low-level vision. 

3. For every tree T, (I = 1, 2,. . ., N): 

3.1 

3.2 

3.3 

3.4 

3.5 

For all instantiated (leaf) nodes B, set 
(Bj) = 1 for the instantiated value, and 0 
otherwise. 

From each leaf node B send a message to its 
parent node A calculated as: 

OH = C P(Bj IAi) n(B;) (10) 

For each parent node A update its h(A ;) by 
multiplying the messages received from its 
children: 

A(Ai) = n Ak(B,) (11) 
Ic 

Make the previous parent nodes A as the 
current ‘leaf’ nodes B. Repeat steps 3.2 and 
3.3. until the root node is reached. 

Obtain the posterior probability of the root B; 
by: 

P(BI; / V) = cx 7r(B;) A(B,) (12) 

where rr(B,) is its prior probability P(B,) 
and cy is a normalizing constant. 

This algorithm lends itself to a natural parallel 
implementation. We can propagate the probabilities 
for each tree in parallel, so that the objects’ posterior 
probability can be updated in a time linearly propor- 
tional to the number of levels in the largest tree of the 
network. For image understanding in navigation, such 
as in endoscopy, we need to process images sequen- 
tially. In this case, the algorithm can be made even 
faster by pipelining, making each level in the tree one 
stage in the pipeline. 

LEARNING 

Given a KB represented as a probabilistic network, the 
process of knowledge acquisition is divided naturally 
into two parts’“. . structure learning and parameter learn- 
ing. Given a certain structure, parameter learning 
consists of finding the required prior and conditional 
probability distributions. An advantage of using prob- 
ability to represent uncertainty is that we make use of 
techniques developed in statistics and estimation 
theory, mainly in the parameter estimation phase. 
Structure learning has to do with obtaining the 
topology of the network, including which variables 
are relevant for a particular problem, and their 
dependencies. This is of major importance for visual 
probabilistic networks, because the structure of the 
network determines which features are relevant for 
each object, a critical aspect for recognition. Also, the 
independence assumptions we are using when doing 
probability propagation are dictated by the topology 
of the network, and if not valid could degrade 
the performance and make invalid the calculated 
probabilities. 
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Parameter learning in mukitrees 

We start with only qualitative information from the 
domain, that is the structure of the network, and obtain 
all the prior and conditional probability distributions 
from real data. Tn the case of a multitree, we need to 
estimate the prior probability distributions of each root 
node P(A,) denoted by P(A), and the conditional 
probability distributions of each node given its parent 
P(B,lA,). denoted by P(BlA). We will assume that 
each node represents a discrete multivalued variable 
with N possible values. so each P(A) will be stored as 
an N dimensional vector and each P(B IA) as an N x M 
dimensional matrix. Each entry in P(A) and P(BIA) 
will bc stored as an integer ratio. Given the nature of 
the vision domain and the limited resolution of image 
acquisition. most variables will be discrete or can be 
given a discrete approximation in a limited range. In 
the second case we use a method based on Pawn 
~~indovt:s” to estimate the probability density function. 
approximating it by N intervals with constant value. 

Given an observation and the actual value of each 
node. it is trivial to update the system parameters by 
incrementing the corresponding entries in the prior and 
conditional probability matrices. If we observe Ax and 
B,. and the previous values are: P(A) = a,/s and 
P(B IA) = h,/u,, then the probabilities will be updated 
by using the following equations: 

l prior probabilities: 

a,+ 1 
f’(A,)= z, i=k (13) 

P(A,) = a, 
s+l ’ 

i#k 

l conditional probabilities: 

b, + 1 
P(B,jil,)= rr, i=kandj=l 

I 
(15) 

P(B, l,4,) = 5 3 i=kandj#l 
I 

(16) 

E’(B,/,4,)= !!. j=k 
0, 

(17) 

We start with all values set to zero and update them 
with each observation. In this way, the probabilistic 
parameters are learned by the system and its perform- 
ance will improve as more data is accumulated. 

Another alternative to starting with no information is 
to start with a subjective estimate as an initial value. 
For this. the values given by an expert in the domain 
could also be represented as ratios. assuming an 
implicit sample size’“, and improved with statistical 
data. This approach can be useful in cases in which 
there is not enough data, providing an initial estimate 
for the required parameters. A problem is that unless 
the expert’s estimate is close to the objective probabili- 
ties, the system may take more time to learn than in the 
case in which it starts from zero. 

Previously, we have assumed that all the variables 
are directly observable from the images, or are 
provided as feedback by the users in the learning phase. 
But it could be that some intermediate nodes could not 
be measured directly. In this cast, we propagate the 
probabilities in both directions in the tree (from the 
root and from the leaves) towards the unknown node 

and obtain a posterior probability for it. The value with 

the highest probability is assumed to be the ‘observed’ 

and all the conditional distributions arc updated as 

above. Assuming that at least the root and leaf nodes 

are instantiated, we combine the bottom-up and top- 

down propagation mechanisms for probabilistic trees to 

develop an algorithm for estimating the probability 

distribution of ‘hidden nodes’ in a multitree. 

4. For every tree r, (I= I. 3.. . NY): 

4.1 For all instantiated nodes B. set A(B,) = I 
and T(B,) = 1 for the instantiated value. and 

0 otherwise. 

4.2 From each instantiated rmdc R send a A 

message to its parent A and z- messages to its 

children S, calculated as: 

h.(A,) = 2: f’(B, ~ A,)A(B,) (1x1 

m(B,) = u dB,) 1 1 n/fH,) (1’)) 
‘. / 

4.3 For each non-instantiated node f1 that 

receives A messages from its children S and ;I 

7~ message from its parent A. update its 

current A(B) and n(B) by: 

A(B,) = 11 AA(.~,) (20) 
i 

and send A messages to its children and a Z- 
message to its parent using equations (19) and 

(21). rcspcctivcly. 

3.4 

3.5 

Repeat step 3.3 until the propagation tcrmi- 

nates by reaching instantiated nodes. 

Obtain the posterior probability of non- 

instantiated nodes B hv: 

5. Set 

f(B,~V)=tr_ir(R,)A(f3,) (33) __ 

where cy is a normalizing constant. 

non-instantiated variables H to the value B, 

Algorithm 2 Learning Hidden Node.? in a Multitree 
I. Decompose the network into N probabilistic trees 

(r,) by partitioning it in every leaf node with 

multiple parents. 

3 -. Instantiate all leaf nodes by using the mcasurcd 

features obtained from low-level vision. 

3. Instantiate the root node and (~11 possible inter- 
mediate nodes from feedback provided by an 

external agent (usually the expert). 

that corresponds to the highest posterior probabi- 
lity, so that P(B,iV)a f’(B,‘V). Vjti. 
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6. Update all the prior and conditional probabilities 
using equations (13) to (17). 

7. Repeat steps 2 to 6 for each sample until the 
learning phase is finished. 

In this algorithm we are using the simplest way to 
update the probabilities of unobservable or hidden 
nodes, in which the conditional probability with highest 
value is incremented by one implying that we assume 
this value with probability equal to one. But this could 
be a too strong assumption to make and in some cases 
could lead to an incorrect state from which the system 
cannot escape. A better alternative is to have a smaller 
increment depending on the posterior probabilities of 
the node. For this several techniques have been 
proposed, including decision directed, probabilistic 
teacher and method of momentsz4. A simplified version 
of Algorithm 2 will be used when all variables are 
observable, eliminating steps 4 and 5. 

Structure learning 

Structure learning consists of finding the topology of 
the network, that is the dependency relationships 
between the variables involved. Most KB systems 
obtain this structure from an expert, representing in the 
network the expert’s knowledge about the causal 
relations in the domain. But our knowledge could be 
deceptive, especially in the domain of vision in which 
recognition seems to be at a subconscious level. Also, 
knowledge acquisition could be an expensive and time 
consuming process. So we are interested in using 
empirical observations to obtain and improve the 
structure of a probabilistic network. Relatively little 
research has been done on inducing the structure of a 
PN from statistical data. Chow and Liu” presented an 
algorithm for representing a probability distribution 
as a dependency tree, and this was later extended by 
Rebane and Pearl’” for recovering causal polytrees. 

Although these techniques allow us to obtain certain 
types of structures from second order statistics, there 
are several important limitations: 

They are restricted to predefined structures: trees 
or polytrees, and there is a guarantee of an 
optimum solution only for trees. 
They cannot obtain the direction of all the links in 
the network. Even for a tree the selection of the 
root node is arbitrary. 
They cannot find the actual causal relations 
between variables without additional information 
or external semantics, i.e. they cannot distinguish 
genuine causal relationships from spurious cor- 
relations’“. 
They make use of the closed world assumption, 
considering that all relevant variables are already 
included in the network. 

Due to these limitations, instead of starting from no 
information about the structure of the network, we 
use the network derived from the subjective rules 
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Figure 12 A recognition subtree 

as an initial topology. Then we employ a methodology 
based on statistical techniques to improve the initial 
structure26. 

We decompose our visual PN model into several 
trees (multitree), with each one representing our 
knowledge for one object. In a tree, each node is 
directly dependent on its parent and sons and condi- 
tionally independent of all the other nodes. Thus, in a 
recognition subtree (see Figure 12) with object 0 and 
features F, , F2, . . . , F,,, the evidental information for 
0 is given by its sons F;. So each subtree within a 
recognition tree, represents which entities (sons) are 
relevant for the recognition of another entity (parent). 
The structure of each subtree implies that all the 
feature variables F, are conditionally independent given 
their parent 0. 

The topology of the visual network is mainly 
determined by the structure of all of its subtrees. So our 
methodology for structure improvement is based on 
validating the structure of each subtree in the network. 
This is done by testing the independence assumptions, 
and altering the structure if any of them is not satisfied. 

Testing conditional independence 

As in the Bayesian subjective approach, we start from 
subjective knowledge. We initially assume that the 
group of characteristics is independent given their 
cause (parent), but we then test out this assumption 
against the data. One way of testing for independences 
consists of calculating the correlation of pairs of the 
characteristics. Although a low correlation does not 
necessarily imply independence, it provides evidence 
that independence is a reasonable assumption to make; 
and, on the other hand, a high correlation indicates that 
the characteristics are not independent and our 
assumptions are invalid. If we find a high correlation 
between a pair of characteristics we must modify 
the structure of the probabilistic network. This could be 
done by introducing a link between the pair 
of dependent nodes, but it will cause the destruction 
of the tree structure. There are at least three other 
alternatives: 
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N&e e~i~z~nat~#Fl: eliminate one of the dependent 
sons, including the subtree rooted at this node. We 
choose for elimination the variable with lower 
discriminatory cupability. The concept of probabi- 
listic di.~tance’7 can be used for selecting the 
redundant node, in which case the node with the 
lowest value is selected for elimination. 
Nerds ~~~rnbirlati~n: fuse the two dependent 
variables into one node which includes the infor- 
mation provided by the two dependent nodes, and 
link this new variable to the parent and sons of the 
original nodes. 
Node creation: create a new variable which will be 
an intermediate node between the object and the 
two dependent features, linking this node to the 
object (parent) and the features (sons). This new 
node will, hopefully, make the two dependent 
variables conditionally independent, removing the 
requirement that they should be independent given 
their previous parent (0). 

The three alternatives are illustrated in Figure 13. 
Each one implies an increasing level of complexity. In 
(1) we simply cut part of the network without anv other 
effect: in (2) we need to recompute the probabilities in 
the links based on the joint distribution of the two 
variables; and in (3) we will usually require from some 
external agent to define the new variable, and we also 
need to obtain the required probabilities. Thus, for 
node combination we need to return to a parameter 
learning phase, and for node creation we need to return 
to the initial knowledge acquisition phase. Following 
our general principles, we try each alternative in 
sequential order, testing the system after each modifi- 
cation, until the performance IS satisfactory. 

For validating the independence assumption we use 
the correlation coefficients estimated from the sample 
data available. For this, we apply two different 
measures of association between random variables: 
Pearson’s correlation coefficient (p), which indicates if 
there is a linear relationship; and Kendall’s c~rre~at~~~~ 
~~~~~~~~e~t ( 7). which detects any increasing or 
decreasing trend curve present in the data. Although 
both measures do not correspond directly with depen- 

Figure 13 Subtrec ctructure 
rn~~dific~ti~~n. The figure shows the 
original network (a) with two 
cwrelated variables (F,, F,), and the 
three possible network alterations: 
r~odr rlirninrrtion (b), rzodp 

comhinufion (c), and node 
creurion (d) a 

dency, in general they provide a reasonable approxima- 
tion. So if either of them is above a certain threshold, 
we consider the variables not independent and we 
modify the dependency structure of the network 
accordingly. 

Structure refinement algorithm 

Based on the dependancy and discrimin~t~~ry tests 
described in the previous section. we developed an 
algorithm for refining the structure of a visual KR 
represented as a probabilistic multitree. The algorithm 
tests the validity of the network using statistical data, it 
makes the possible improvements automatically, and 
it alerts us to the remaining problems which require 
external knowledge. The algorithm is the foll(~wing: 

Algorithm 3 Structure Refinement in Probabilistic 
Multitrees 
1. Decompose the network into N probabilistic trees 

(7’,) by partitioning it in cvcry leaf node with 
multiple parents. For every tree r, (/= I. 2, _, 
Nfdo2to4. 

2. Select the top subtree in the tree defining the root 
node as 0 and its sons as F,. . . F,,. 

?J. For each pair F;. F,: 

Obtain the correlation coefficients p and T. 

If j pl < Tp and / 71-c T, go to the next 
pair, otherwise continue 

Node eliminati[?n ~ obtain the prt~babilistic 
distance (n,,) for F, and F, and eliminate 
the node with the lower is,,. <Given that wc 
are restricted to discrete variables and assum- 
ing conditional independcncc. WC use the 
Patrick-Fisher” measure for I),,, which for 
each feature variable in the two class case is 
defined as: 

where F, is the jth possihlr: value of feature 

b C d 
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variable F. Then test the system, if perform- 
ance is satisfactory go to the next pair, 
otherwise go to 3.4. 

3.4 Node combination - combine the nodes F, 
and Fj into a single node Fk and obtain 
the conditional distributions P(F, IO) and 
P(Si 1 FL), where S, are the sons of F,, F,. 
Test the system, if performance is satisfactory 
go to the next pair, otherwise go to 3.5. 

others. If the tip is not controlled correctly it can be 
very painful and dangerous to the patient, and could 
even cause perforations on the colon wall. This is 
further complicated by the presence of many difficult 
situations such as the contraction and movement of the 
colon, fluid and bubbles that obstruct the view, pockets 
(diverticula) that can be confused with the lumen and 
the paradoxical behaviour produced by the endoscope 
looping inside the colon. 

3.5 Node creation -create an intermediate node I 
by consulting the expert, and obtain the 
conditional distributions P(F, 1 I), P(F, 1 I), 
and P(il0). 

4. Repeat 3 for every subtree in the tree, by selecting 
each of the child nodes as the parent, recursively, 
until the leaf nodes are reached. 

We are developing an expert system for 
colonoscopyzx. Its primary objective is to help the 
doctor with the navigation of the endoscope inside the 
colon by controlling the orientation of the tip via the 
right/left and up/down controls. The control of the 
translation of the instrument (push/pull) and possible 
shaft rotation will still be controlled manually by the 
doctor. As well as a navigation system, it will also serve 
as an advisory system for novice endoscopists. 

In the previous algorithm, TP and T, stand for the 
maximum thresholds for the respective correlation 
coefficients, and the words in italics indicate when 
external knowledge is required. 

Probabilistic network for colonoscopy 

Although the algorithm seems complex, especially 
for large networks, several pragmatic considerations 
make its use practical. Firstly, most of the algorithm 
can be done without external intervention so it could be 
left to run without human supervision. Secondly, we 
expect that in practical systems the initial KB will pass 
the tests in most parts and only some critical elements 
will need alteration. Finally, it will be applied mainly 
during the initial knowledge acquisition phase so a real- 
time response is not strictly necessary. 

APPLICATION TO ENDOSCOPY 

Endoscopy is one of the tools available for diagnosis 
and treatment of gastrointestinal diseases. It allows a 
physician to obtain direct colour information of the 
inside surface of the human digestive system. Beside its 
diagnostic capabilities, endoscopes have therapeutic 
applications. They allow the removal of colonic polyps 
and other foreign bodies, and direct attack on bleeding 
lesions. The endoscope is a flexible tube with viewing 
capability. It consists of a flexible shaft which has a 
manoeuvrable tip. The orientation of the tip can be 
controlled by pull wires that bend the tip in four 
orthogonal directions (left/right, up/down). It is con- 
nected to a cold light source for illumination of the 
internal organs and has an optical system for viewing 
directly through an eye piece or on a TV monitor. The 
instrument has channels for transmitting air to distend 
the organ, a water jet to clean the lens and for sucking 
air or fluid. Additionally, it has an extra ‘operating’ 
channel that allows the passage of flexible instruments 
(biopsy forceps, cytology bushes, diathermy snares). 

Colonoscopy provides an interesting and challenging 
application for testing our methodology for visual 
recognition. Although it is a restricted domain, it has 
the complexity and uncertainty inherent in real-world 
image interpretation. A knowledge-base in colon 
endoscopy was compiled with the help of an expert 
colonoscopistzx. Taking as a starting point this KB, we 
represented the visual part of it as a probabilistic 
network. In Figure 14 we show the complete network 
representing our current visual knowledge for colon- 
oscopy, derived from the qualitative rule-base. This 
network corresponds to a probabilistic multitree. The 
dotted lines indicate that the relation nodes (distance 
and topological) refer to the connected objects, and do 
not imply a probabilistic dependency. 

Although this network includes most of the depen- 
dencies in the KB, not all of them are represented. For 
example, the presence of a lumen in the image can 
reduce the probability of having a diverticula, and vice 
versa, so we can argue that there must be a link 
between them or that they must be put together in a 
single node. A similar arugment can be made about 
some intermediate nodes such as large dark region and 
small dark region. We decided not to modify this model 
because we wish to maintain a multitree structure in 
which probability propagation is efficient, and we also 
want to to keep its semantic clarity by having a separate 
node for each object. We consider that these differ- 
ences do not have a big impact in practice, due to the 
fact that we are only making bottom-up propagation 
and we are not interested in the posterior probabilities 
of intermediate nodes. 

We are interested primarily in colonoscopy, which is 
especially difficult due to the complexity and variability 
of the human colon. The doctor inserts the instrument 
estimating the position of the colon centre (lumen) 
using several visual clues such as the darkest region, the 
colon muscular curves, the longitudinal muscle and 

From this PN model for colonoscopy, we have 
focused on implementing the lumen recognition art, 
which is the most important for endoscope navigation. 
For this we are using the features obtained through two 
different low-level vision processes. The first one uses a 
2D region-based segmentation algorithm to find the 
lumen, and the second uses 3D shape from shading 
information integrated in gradient histogram for esti- 
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Figure 14 Probabilistic network 
r~present~~ti~)n of the visual model 
for colonoscop!: 

mating the lumetl location. We will review both 
techniques in the following section. 

Low-level processing 

Due to the type of illumination of the endoscope, the 
darkest region in the image generally corresponds to 
the centre of the colon (lumen) because there is a single 
light source close to the camera. To obtain this 
icformation, Khan”’ has developed a new method for 
the extraction of the dark region in colon images. He 
uses a ~~~~dt~e~ representation in which the largest 
quadrant with a certain intensity level and variance is 
used as a seed region that is entended to ‘cover‘ the 
lumen area. This technique is based on a Quadtree 
representation of the image and is suitable for parallel 
implementation in a pyramid architecture. From this 
process we obtain a dark region in the image with the 
following features: region size (SIZE), mean intensity 
level (MEAN), and intensity variance in the region 
(VAR). 

A shape from shading technique suitable for endos- 
copy was developed by Rashid3”. His model assumes a 
point light source very close to the camera which is a 
good approximation to a real endoscope. His shape 
from shading algorithm obtains the relative depth of 

the colon surface in the image. The depth map we 
obtain consists of a vector (p. q) per pixel that gives the 
orientation of the surface at this point with respect to 
two orthogonal axes (x, _Y) that are perpendicular to the 
camera axis (2). The surface orientati(~n can vary from 
perpendicular to the endoscope’s tip (camera) with 
p = y = 0. to parallel to the camera with p or y close to 
infinity. If we assume that the colon has a shape similar 
to a tube and in the image a section of the internal wall 
of this tube is observed, then a reasonable approxima- 
tion of the position of the centre of the colon (lumrn) 
will be a function of the direction in which the majority 
of the p-q vectors are pointing. For this WC divide 
the space of possible values of /j-y into a small number 
of slots and obtain a 2D histogram of this space. which 
we call a gradient or p9 hi~togrum”, The largest peak 
in this histogram will give an estimate of the position of 
the lumen. So from this process we obtain another 
estimate of the lumen. consisting ot’ a pmk in the pq 
histogram with the following attributes: number 
of pixels (NUMBER), distance from the centrc 
(DISTANCE), and the difference in size to the next 
peak (DIFFERENCE). 

The features obtained through these two low-level 
vision processes are integrated in high-level vision using 
our probabilistic reasoning techniques. The quantiza- 
tion of the variables results directly from the discrete 
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nature of the measurement process. For example, since 
the seed regions are extracted using a regular quadtree 
decomposition, their size, measured as the pixel length 
one dimension, is always a power of 2. Similarly, the 
mean is quantized into integer values at the intensity 
resolution of the hardware we are using. The choice of 
resolution of the probability distributions must be 
a compromise between the speed of computation 
required, and the accuracy to which the required 
probabilities are computed. We have not investigated 
this relationship, but chosen a resolution which makes 
full use of the measured data. 

Table 1 Summary of the results of image interpretation and advice 
for 90 colon images (experiment 1) 

tmage Interpretatinn 

Diverticula interpretation correct 
Lumen inte~r~tation correct 

Expert’s Rating 

Number Percentage 

40 x5.1 
21 87.5 

Correct interpretation 
Not correct interpretation 

72 80.9 
17 19.1 

Predictive Score (Breir score) 

Experimental results Total square error 11.6 
Mean square error 0.13 

To test the different aspects of our methodology, we 
have performed two sets of experiments. In the first 
one we used the dark region features to recognize the 
lumen, and differentiate it from small pockets in the 
wall, called diverticula, which can be confusing to the 
doctors. In this experiment we focus on the learning 
part, especially on structure learning. In the second 
experiment we combined the dark region and shape 
from shading algorithms to identify the lumen. This 
experiment focuses on the knowledge representation 
issues, using a more complex network that includes 
relational knowledge. 

Experiment 1 

For this experiment we used the part of our KB for 
lumen and divertic& recognition, obtaining the multi- 
tree shown in Figure 15. We analysed a random sample 
of about 125 colon images and generated the statistics 
from which the probability distributions were obtained 
using algorithm 2. We than evaluated the system with 
another sample of 90 colon images. Some typical cases, 
along with the dark region obained from low-level 
vision, and the interpretation given by the KB system, 
are shown in Figure 16. In Table I we summarize the 
results for the images that were analysed. 

Lumen 9 

Figure 15 Probabilistic network for lumen and diverticula recogni- 
tion 

The results presented in Table I are divided into 
three parts. In the first one we show the performance of 
the lumen and diverticula recognition trees only, 
indicating the percentage of correct interpretation (true 
positives and true negatives) as evaluated by an expert 
colonoscopist. The second part of the table shows the 
performance for the interpretation and advice given by 
the system as rated by the expert endoscopist. The third 
section shows the system’s performance by measuring 
the discrepancy between the system’s prediction and 
the expert’s assessment. This evaluation is done by 
computing the square difference between the posterior 
probability and the actual value according to the 
expert, to which we assign a probability equal to one. 
By summing this squared error for all the samples we 
obtain a measure of the system’s predictive capability 
denominated ‘Brier score”‘, which is defined as: 

Total square error: B = c (1 - Pi)’ (24) 

where P, is the posterior probability of the ith sample 
being true. Dividing the Brier score by the number of 
samples (N) we obtain an estimate for the average 
predictive error which we define as: 

Mean square 

B ‘c(1-P;)2 
error: mB=--= ’ 

N N 

Although its performance was satisfactory for lumen 

P-5) 

and di~~ertic~~a recognition, we thought it could still be 
improved. We were mainly interested in validating the 

Table 2 Correlation between Iumen wgion and diverticula region 
parameters 

Correlation 
coefficients 

Lumen Subtree 

Size & 
mean 

Size & 
variance 

Mean & 
variance 

P -0.146 0.264 0.482 
7 -0.089 0. I16 0.342 

Diverticula Subtree 

P -0.039 0.147 -0.231 
7 -0.068 0.137 -0.161 
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Fieu.€ 16 lntcrprctation givcn lor
difierent colon imaees {experineni
i). In each inage, the dark reglon'
obtaincd fron loi!-lcvcl vhion is
dcpided as a rectangle. Below Ne
show th€ interpretation (including rhc
posrerior probabih!) as it was givcn
by thc systcm. Intcerctations: (a)
diuricuta lP :0.93)t lh) divdnuta
(P =0 88)r (c) Iterri./d (P: l):

independence assumptions thal are represented in thc
network, and which in somc cases seem difficult to
justify. For this we applied the ltructure refinement
algorithm using the same data as ior the parameter
learning phase. First, w€ calculated the correlatlon
( o ( i | i r i c n l .  i o r  I h (  r h r ( c  p r i a  o f  \ a n a b l e "  g i \ ( n  r
lumen rcgion and a divefticuta rcgit n (Table 2).

In the lumen case there is a strong correlation
hetween mean & variance that questions our independ
ence assumption between lhese two variables. Th€
other ts'o values seern.elatively low. so we will
maintain that rfue is independeni froln l/!eo,, and fronl
variance. Thcse results are confimcd by pldling rhc
samplc points in a two dimersional r.dli€l diaSr'an for
cach va.iabl€ pairr'�. As a first s.ep, applying the rrdc
elimindlion technique, we eliminated one of the corre-
l J r ( J  \ J r i r b l e s .  l h i .  r e . u l r . d  I n  r $ o  l l r e r n a r i r e  r r e e .
lor lumen recognition (Figurc I7). one rvith only rize
and n/n.dn and the orher \^tith size and variance.

To selecl one of the these two alternalives, we
calculated the probabilistic disrance for r',i?d/? and
rdl.znc€, and the results are shown in 7i7rle-1. It shows
a greater probabilislic distance for variance, which

I
I

j-
/ l

o @
D

Fis!.e l? Altcrn.tivc tr.cs for iu'ncn rccognjlio. we show the
origin.l lree for.trmd, (.). rnd tbe tso nrodified siructurcs obt.nied
by.ode elinin^rion. elifrinllins ldr@ii. (b) and eliminatrrg n.,,

'Irhfe 
3 Prob,bih|ni:cdktlnc.lot turak and,a/iahce Ei\ci a ll,h.n

o 221
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Table 4 Performance results for different structures {experiment 1) 

All parameters Eliminate V Eliminate M 

(S, M> V) (S, W (S. V) 

Image interpretation No. % No. % No. % 

Diverticula 40 85.1 37 78.7 3X 80.8 

interpretation correct 
Totat Diverticula 
Lumen interpretation Z 

100 47 100 47 100 
87.5 21 87.5 22 91.6 

correct 
Total Lumen 24 100 24 100 24 100 

Expert raring 
Correct interpretation 72 80.8 6X 76.4 73 82.0 
Not correct 17 19.1 21 23.5 16 17.9 

interpretation Figure 18 Probabilistic tree for lumen recognition, combining dark 
region (2D) and shape from shading (3D) features 

points to the structure in Figure 17~ as the preferred 
alternative. 

Table 5 Summary of the results of image interpretation for 50 colon 
images (experiment 2) 

In this case of diverticula, all the correlations are low 
giving evidence of independence. So the diverticula 
subtree should remain with the same structure. 

For comparison purposes, we tested the performance 
of the system with both alternative structures for lumen 
and diverticula, and the original structure. The per- 
formance evaluation was done with a similar sample of 
about 90 colon images, and the results are shown in 
Table 4. For lumen, although the performance is 
acceptable with the original structure (all parameters), 
there is a definite improvement when the mean 
parameter is eliminated, with a higher percentage of 
correct interpretations. Additionally, the network size 
was reduced and consequently object recognition was 
faster, so at the same time we obtain a more reliable 
and efficient system. Given the good performance 
obtained by node elimination, we did not consider in 
this case the alternative techniques. The results for 
diverticula also support our analysis by giving a better 
performance with all the parameters, compared with 
the structure with only two parameters (S & M or S & 
V). The overall performance is higher with S & V 
because for this experiment we eliminated one para- 
meter in both trees, and lumen recognition improves. 
Thus, the best structure is given by using two para- 
meters (S, V) in the lumen tree and three parameters 
(S, M, V) in the diverticufa tree. 

Image interpretation 

Number Percentage 

Lumen interpre~tion correct 
NOT-Lumen interpretation correct 

34 97.1 
21 h8.8 

Predictive score (Breir score) 

Total square error 
Mean square error 

4.97 
0.099 

l The proximity of the different estimates is an 
important factor for object recognition, so we add 
their distance relation as a node in the network. 

Based on these assumptions, the probabilistic net- 
work for lumen recognition will have the structure 
given in Figure 78. 

As in the previous experiment, we trained the 
network from a sample of approximately 100 colon 
images, and then tested its performance with a different 
sample of 50 images. The results of this test are shown 
in Table 5. We note a definite improvement in the 
lumen recognition performance, which may be due to 
the fact that we are combining two independent 
techniques as well as using relational knowledge. The 
system predictive capability has also improved con- 
siderably, with a mean square error of less than 0.1. 

Experiment 2 

In this second experiment we extended the probabilistic 
tree for lumen by including the features obtained in the 
pq-histogram from the shape from shading algorithm. 
We can think of the pq-histogram and dark region 
algorithms as two different ways of obtaining an 
estimate of the position of the lunzen, which we should 
be able to combine in a probabilistic way. For repre- 
senting this information in a probabilistic network we 
make two important considerations: 

The probabilistic network for lumen recognition has 
been integrated in an expert system for colonoscopy. It 
uses the results of image interpretation as input to a 
rule-based inference engineZx to give advice to the 
physicians. In Figure 29 we show some representative 
cases, including the image interpretation and advice 
given by the system. 

CONCLUSIONS 

l The estimates provided by pq-histogram and dark 
region are independent. 

We have proposed a general framework for represent- 
ing uncertain knowledge in computer vision. Starting 
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Figun 19 Interpretllion and advicc givc. tor diilerenl.wl!n maels (rrpenmcnr 2) tn ed.h unagc, rhr 'Jrrk region, is dcficiert.s a redangle
and tlE luoen Posltio. inrercd ttom r\c ?ti-hhtog'am \ \hosn Js a d.uble rc.rangrc fhe Gdi;gtc ]n Lhr middle is fixcd and onty shown ior
referen e) Below w€ show the inlerpretation as it was givcn b' lhe system, .nd l he p;sftrior proba-bitit! of lune. lnLerprerations: (;) r,1l(p=
0.081r (b) toi ri.D (P:0 r0): lc) trnen lP:o.ee): (t) tarten (p:0.e1)

tron a probabilistic netwo.k represenralion. we
developcd a structure for representing visuai kDow-
ledge, and techniques for probability propagation,
parameter learnjng and srruct ral improvement.

Our reprcsentation is based on a probabilistic ner,
wo.k modelwhose structurc corresponds ro the qualita
nve v'sual knowledgc in the domain. The nerwork is
divided irlo a series oflayers, in which the nodes of the
Iower layer correspond to the fearure variables and
those of the upper layef to rhe objecl variables. The
intermediate tayers havc nodes for other visual enrirics,
such as palts of a. objecro. image regions, or represent
relations between leatures and objects. 'lhe links point
f.om nodes io the upper layers roward nodes in the
towcr Layers. cxpressrng a causal relalionship The
h ; e '  r r r  h i L  , l  \  r . u a l  n e r $ o r r  ( d n  b e  t t r o u g h '  o t  a .  J  \ e r  i e r
of trees. which we cl|lled a muttitrce. itr:s rcpr.senra-
lion has been exlcnded 1() include reldt;oral and
r . ,  r ' . , /  I n o w e d g (  $ h i , h  J r (  i m p o f l a l l r  I n  \ i . i o n
especially for navigation.

By using borh. probabiliry propagarion in trees and

. ' t ld i t ioninE. se derelonr, l  r  L,robabi,rrr  prupagoron
a l g o r i t h m  l o r  \ n u r l  r e c o e n I r o n  i n  a  m u l r i l r ( e  t r  r .
based on pariilioning the network into a series of trees.
instanliating the leai nodes thar corrcspond to ttre
feature variables, a d p.opagating their effect upwards
to the objcct variables. This algorithm Icnds itselt ro a
parallel implementation b] pfocessing all rhe trces in
parallel. so the object s postedor probabiliry can be
upclated in a time linearly pfoportional to rhc numbcr
of levels in the largesl lrcc in the nerwork.

We also dcveloped algorilhnrs for prramerer and
. r r u . l u r e  l e a r n i n !  i n  m u l r r r - e e .  l h e  r e q L I e L l  p , . , r , r o i
l r l r c r  a r e  e \ l | m  e d  5 t a r i , t i c J l l \  f r o m  ' m u g e .  o t  t h c
I n r ( n d e d  o t p l i c a . i o n  d o m r r n .  r n , l  r m p r u r e d : .  r r r u | e
images arc processed. The qualilalive struclurc is
initially dc.ived from subjective knowtcdge abour the
domarr, rcpresenting thc relevanr variable! and thcir
dcpendency relarions- Then tilis siructurc is improved.
by vcfifying the independcncc assumptions wirh srads-
ttcal tests and modifyirg the strucLure of the ncr$,ork
accordingly.
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This framework provides an adequate basis for 
representing uncertin knowledge in computer vision, 
especially in complex natural environments. It has been 
tested in a realistic problem in endoscopy, performing 
image interpretation with good results. We consider 
that it can be applied in other domains, providing a 
coherent basis for developing knoweldge-based vision 
systems. 
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