The following network is used for reasoning about patients with suspected lung disease

B	Bronchitis
D	Dyspnea
L	Lung Cancer
O	Reduced Lung Capacity
S	Smoker
T	Tuberculosis
X	Positive XRay

All the nodes are binary, and the prior and conditional probabilities are as follows:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{O} \mid \mathrm{T} \& \mathrm{~L})=\left(\begin{array}{llll}
\mathrm{P}(\mathrm{O} 1 \mid \mathrm{T} 1 \& \mathrm{~L} 1) & \mathrm{P}(\mathrm{O} 1 \mid \mathrm{T} 1 \& \mathrm{~L} 2) & \mathrm{P}(\mathrm{O} 1 \mid \mathrm{T} 2 \& \mathrm{~L} 1) & \mathrm{P}(\mathrm{O} 1 \mid \mathrm{T} 2 \& \mathrm{~L} 2) \\
\mathrm{P}(\mathrm{O} 2 \mid \mathrm{T} 1 \& \mathrm{~L} 1) & \mathrm{P}(\mathrm{O} 2 \mid \mathrm{T} 1 \& \mathrm{~L} 2) & \mathrm{P}(\mathrm{O} 2 \mid \mathrm{T} 2 \& \mathrm{~L} 1) & \mathrm{P}(\mathrm{O} 2 \mid \mathrm{T} 2 \& \mathrm{~L} 2)
\end{array}\right)=\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \mathrm{P}(\mathrm{D} \mid \mathrm{O} \& \mathrm{~B})=\left(\begin{array}{llll}
\mathrm{P}(\mathrm{D} 1 \mid \mathrm{O} 1 \& \mathrm{~B} 1) & \mathrm{P}(\mathrm{D} 1 \mid \mathrm{O} 1 \& \mathrm{~B} 2) & \mathrm{P}(\mathrm{D} 1 \mid \mathrm{O} 2 \& \mathrm{~B} 1) & \mathrm{P}(\mathrm{D} 1 \mid \mathrm{O} 2 \& \mathrm{~B} 2) \\
\mathrm{P}(\mathrm{D} 2 \mid \mathrm{O} 1 \& \mathrm{~B} 1) & \mathrm{P}(\mathrm{D} 2 \mid \mathrm{O} 1 \& \mathrm{~B} 2) & \mathrm{P}(\mathrm{D} 2 \mid \mathrm{O} 2 \& \mathrm{~B} 1) & \mathrm{P}(\mathrm{D} 2 \mid \mathrm{O} 2 \& \mathrm{~B} 2)
\end{array}\right)=\left(\begin{array}{llll}
0.9 & 0.8 & 0.7 & 0.1 \\
0.1 & 0.2 & 0.3 & 0.9
\end{array}\right) \\
& \mathrm{P}(\mathrm{~L} \mid \mathrm{S})=\left(\begin{array}{ll}
\mathrm{P}(\mathrm{~L} 1 \mid \mathrm{S} 1) & \mathrm{P}(\mathrm{~L} 1 \mid \mathrm{S} 2) \\
\mathrm{P}(\mathrm{~L} 2 \mid \mathrm{S} 1) & \mathrm{P}(\mathrm{~L} 2 \mid \mathrm{S} 2)
\end{array}\right)=\left(\begin{array}{ll}
0.2 & 0.1 \\
0.8 & 0.9
\end{array}\right) \\
& P(T)=(0.1,0.9) \\
& \mathrm{P}(\mathrm{~B} \mid \mathrm{S})=\left(\begin{array}{ll}
\mathrm{P}(\mathrm{~B} 1 \mid \mathrm{S} 1) & \mathrm{P}(\mathrm{~B} 1 \mid \mathrm{S} 2) \\
\mathrm{P}(\mathrm{~B} 2 \mid \mathrm{S} 1) & \mathrm{P}(\mathrm{~B} 2 \mid \mathrm{S} 2)
\end{array}\right)=\left(\begin{array}{ll}
0.1 & 0.1 \\
0.9 & 0.9
\end{array}\right) \quad \mathrm{P}(\mathrm{~S})=(0.3,0.7) \\
& \mathrm{P}(\mathrm{X} \mid \mathrm{O})=\left(\begin{array}{ll}
\mathrm{P}(\mathrm{X} 1 \mid \mathrm{O} 1) & \mathrm{P}(\mathrm{X} 1 \mid \mathrm{O} 2) \\
\mathrm{P}(\mathrm{X} 2 \mid \mathrm{O} 1) & \mathrm{P}(\mathrm{X} 2 \mid \mathrm{O} 2)
\end{array}\right)=\left[\begin{array}{ll}
0.4 & 0.1 \\
0.6 & 0.9
\end{array}\right)
\end{aligned}
$$

Given that the evidence propagated between nodes is defined by the following equations:

For one parent only

$$
\lambda_{\mathrm{c}}\left(\mathrm{a}_{\mathrm{k}}\right)=\sum_{\mathrm{j}=1} \mathrm{P}\left(\mathrm{c}_{\mathrm{j}} \mid \mathrm{a}_{\mathrm{k}}\right) \lambda\left(\mathrm{c}_{\mathrm{j}}\right)
$$

For two parents

$$
\begin{aligned}
& \lambda_{\mathrm{c}}\left(\mathrm{a}_{\mathrm{k}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{n}} \pi_{\mathrm{C}}\left(\mathrm{~b}_{\mathrm{i}}\right) \\
& \sum_{\mathrm{j}=1}^{\mathrm{m}} \mathrm{P}\left(\mathrm{c}_{\mathrm{j}} \mid \mathrm{a}_{\mathrm{k}} \& \mathrm{~b}_{\mathrm{i}}\right) \lambda\left(\mathrm{c}_{\mathrm{j}}\right) \\
& \pi\left(\mathrm{c}_{\mathrm{i}}\right)=\sum_{\mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{k}=1}^{\mathrm{m}} \mathrm{P}\left(\mathrm{c}_{\mathrm{i}} \mid \mathrm{a}_{\mathrm{j}} \& \mathrm{~b}_{\mathrm{k}}\right) \pi_{\mathrm{C}}\left(\mathrm{a}_{\mathrm{j}}\right) \pi_{\mathrm{C}}\left(\mathrm{~b}_{\mathrm{k}}\right)
\end{aligned}
$$

a Calculate the π evidence for the nodes L and O before any measurements are made.
b A new patient arrives and has an X-Ray taken. Fortunately for him, it is negative (state X2). Given just this evidence, calculate the probability of his suffering from Lung cancer (ie the probability distribution over L).
c He is now examined and found to be suffering from Dyspnea (D is in state D1). Explain why it is no longer possible to compute a probability of his suffering from lung cancer.
d He now admits to being a smoker (S is in state s1). Calculate the probability of his suffering from Lung Cancer.
e Explain briefly the advantages and disadvantages of using a join tree for calculating probabilities rather than simple λ and π messages.

The five parts carry equal marks

2 The maximum Weighted Spanning Tree
A data warehouse contains the following vast data set connecting three variables A B and C:

A	B	C
a1	b1	c1
a1	b1	c 2
a1	b 1	c 2
a 1	b 2	c 1
a 2	b 2	c 2
a 2	b 2	c 1
a 2	b 2	c 2
a 2	b 2	c 1

a Construct co-occurrence matrices for the three possible pairings AB, BC and AC:

	a1	a2
b1		
b2		

etc
b From the co-occurrences construct the joint probability table for each pair, and the marginalisations, using the following format:

	a1	a2	$\mathrm{P}(\mathrm{B})$
b1			
b2			
$\mathrm{P}(\mathrm{A})$			

etc.
c Calculate the L1 metric for each possible pair of nodes

$$
\operatorname{Dep}(\mathrm{A}, \mathrm{~B})=\sum_{\mathrm{AXB}}|\mathrm{P}(\mathrm{ai} \& \mathrm{bj})-\mathrm{P}(\mathrm{ai}) \mathrm{P}(\mathrm{bj})|
$$

d Given that A is the root node construct the tree.
e Calculate the prior probability distribution $\mathrm{P}(\mathrm{A})$.
f Calculate the two conditional probability matrices for the tree found in part 2d.
g The tree of part (d) is being used in the case where it is not possible to measure node B. The state of C is found to be c2. Estimate the probabilities of nodes A and B.

The seven parts carry, respectively, $15 \%, 20 \%, 15 \%, 10 \%, 10 \%, 15 \%$ and 15% of the marks

Joining two variables is one technique that can be used to improve the accuracy of a network in cases where there are dependencies that cannot be accommodated in a singly connected graph. Consider the following simple network and data set:

a 0	b 0	c 1
a 0	b 0	c 1
a 0	b 1	c 0
a 0	b 1	c 0
a 1	b 0	c 0
a 1	b 0	c 0
a 1	b 1	c 0
a 1	b 1	c 1

a Find the conditional probability matrices for:
i) the original network $(\mathrm{P}(\mathrm{B} \mid \mathrm{A})$ and $\mathrm{P}(\mathrm{C} \mid \mathrm{A}))$
ii) the joined network $(\mathrm{P}(\mathrm{B} \& \mathrm{C} \mid \mathrm{A})$).
b The network is being initialised and the prior probability of A is known to be $\mathrm{P}(\mathrm{A})=\{0.3,0.7\}$. This prior probability is treated as π evidence and propagated. What are the posterior distributions over B and C in:
i) the original network
ii) the joined network
c The node B is instantiated to state b 1 , and node C is instantiated to c 0 . Calculate the λ evidence at node A using
i) the original network
ii) the joined network
d Given the network:

find a join tree using the following steps from the algorithm by Lauritzen and Spiegelhalter:
i) Find the moral graph
ii) Triangulate the moral graph
iii) Identify the cliques of the resulting triangulated moral graph
iv) Define a join tree in which the ordering of the cliques satisfies the running intersection property.
v) Draw up a table showing the potential functions and the R and S sets for each node

The four parts carry, respectively, $20 \%, 20 \%, 20 \%$ and 40% of the marks

The following artificial problem has three variables and just two data points set out in the table below

x	y	z
1	0	3
5	2	1

a Find the mean-centred data matrix $U=\left[\mathbf{x}-\mathbf{x}_{\mathbf{m}}, \mathbf{y}-\mathbf{y}_{\mathbf{m}}, \mathbf{z}-\mathbf{z}_{\mathbf{m}}\right]$, hence, find the covariance matrix using $U^{T} U$
b For real problems, where sample sizes are much smaller than the number of variables, it is common to use the Karhunen-Lowe transformation to find the principal components. Using the answer to part a, find the reduced matrix $\mathrm{A}=$ UU^{T} and calculate its principal eigenvector. First calculate the eigenvalues using $\operatorname{det}(A-\lambda I)=0$, then solve $(A-\lambda I) e=0$ to find the eigenvectors.
c Find the principal eigenvector of the covariance matrix of part a by multiplying the eigenvector found in part b by the data matrix U. Check that this is indeed an eigenvector of the covariance matrix, and find its corresponding eigenvalue.
d Explain what is meant by an eigenface in face recognition. How many eigenfaces could be calculated from a face data base in which the images are 128 by 128 resolution and there are three images of twenty subjects in the data base.
e The Mahalanobis distance between two two-dimensional points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is defined by the formula:

$$
\sqrt{ }\left(\left(\mathrm{x}_{2}-\mathrm{x}_{1}, \mathrm{y}_{2}-\mathrm{y}_{1}\right) \Sigma^{-1}\left(\mathrm{x}_{2}-\mathrm{x}_{1}, \mathrm{y}_{2}-\mathrm{y}_{1}\right)^{\mathrm{T}}\right)
$$

where Σ is the covariance matrix.
Explain briefly why the Mahalanobis distance might be used in preference to the Euclidian distance in classification problems.

The five parts carry equal marks

