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1 Probability Propagation 
 
 The following network is used for reasoning about patients with suspected lung 

disease 

 
 All the nodes are binary, and the prior and conditional probabilities are as 

follows: 

  
 
 Given that the evidence propagated between nodes is defined by the following 

equations: 

 
 
 

S

T
L

X D

B

O

B Bronchitis
D Dyspnea
L Lung Cancer
O Reduced Lung Capacity
S Smoker
T Tuberculosis
X Positive XRay

P(O|T&L) = P(O1|T1&L1) P(O1|T1&L2) P(O1|T2&L1) P(O1|T2&L2) = 1 1 1 0
P(O2|T1&L1) P(O2|T1&L2) P(O2|T2&L1) P(O2|T2&L2) 0 0 0 1

P(D|O&B) = P(D1|O1&B1) P(D1|O1&B2) P(D1|O2&B1) P(D1|O2&B2) = 0.9 0.8 0.7 0.1
P(D2|O1&B1) P(D2|O1&B2) P(D2|O2&B1) P(D2|O2&B2) 0.1 0.2 0.3 0.9

P(L|S) = P(L1|S1) P(L1|S2) = 0.2 0.1
P(L2|S1) P(L2|S2) 0.8 0.9

P(B|S) = P(B1|S1) P(B1|S2) = 0.1 0.1
P(B2|S1) P(B2|S2) 0.9 0.9

P(X|O) = P(X1|O1) P(X1|O2) = 0.4 0.1
P(X2|O1) P(X2|O2) 0.6 0.9

P(T) = (0.1,0.9)

P(S) = (0.3,0.7)

For one parent only
m

λc(ak) = Σ P(cj | ak) λ(cj)
j=1

For two parents
n m

λc(ak) = Σ πC(bi) Σ P(cj | ak& bi) λ(cj)
i=1 j=1

n m
π(ci) = Σ Σ P(ci | aj&bk) πC(aj) πC(bk)

j=1 k=1
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  a Calculate the π evidence for the nodes L and O before any measurements are 

made. 
 
 
  b A new patient arrives and has an X-Ray taken. Fortunately for him, it is negative 

(state X2). Given just this evidence, calculate the probability of his suffering 
from Lung cancer (ie the probability distribution over L). 

 
 
  c He is now examined and found to be suffering from Dyspnea (D is in state D1). 

Explain why it is no longer possible to compute a probability of his suffering 
from lung cancer. 

 
 
 
  d He now admits to being a smoker (S is in state s1). Calculate the probability of 

his suffering from Lung Cancer. 
 
 
  e Explain briefly the advantages and disadvantages of using a join tree for 

calculating probabilities rather than simple λ and π messages. 
 
 
 
 
 
The five parts carry equal marks 
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2 The maximum Weighted Spanning Tree 
 
 A data warehouse contains the following vast data set connecting three variables 

A B and C: 
 

A B C 
a1 b1 c1 
a1 b1 c2 
a1 b1 c2 
a1 b2 c1 
a2 b2 c2 
a2 b2 c1 
a2 b2 c2 
a2 b2 c1 

 
 
  a  Construct co-occurrence matrices for the three possible pairings AB, BC and 

AC: 
 a1 a2 

b1   
b2   

 etc 
 
  b  From the co-occurrences construct the joint probability table for each pair, and 

the marginalisations, using the following format: 
 a1 a2 P(B) 

b1    
b2    

P(A)    
 etc. 
 
  c  Calculate the L1 metric for each possible pair of nodes 

  
Dep(A,B) = Σ |P(ai&bj) - P(ai)P(bj)| 
 AXB  

 
  d Given that A is the root node construct the tree. 
 
  e Calculate the prior probability distribution P(A). 
 
  f Calculate the two conditional probability matrices for the tree found in part 2d. 
 
  g The tree of part (d) is being used in the case where it is not possible to measure 

node B. The state of C is found to be c2. Estimate the probabilities of nodes A 
and B. 

 
 
The seven parts carry, respectively, 15%,20%,15%,10%,10%,15% and 15% of the 

marks 
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3 Join Trees 
 
 Joining two variables is one technique that can be used to improve the accuracy 

of a network in cases where there are dependencies that cannot be 
accommodated in a singly connected graph. Consider the following simple 
network and data set: 

  a Find the conditional probability matrices for: 
  i)  the original network (P(B|A) and P(C|A))  
  ii) the joined network (P(B&C|A)).  
 
  b The network is being initialised and the prior probability of A is known to be 

P(A) = {0.3,0.7}. This prior probability is treated as π evidence and propagated. 
What are the posterior distributions over B and C in: 

  i)  the original network 
  ii) the joined network 
 
  c The node B is instantiated to state b1, and node C is instantiated to c0. Calculate 

the λ evidence at node A using 
  i)  the original network 
  ii) the joined network 
 
  d Given the network: 
 

 find a join tree using the following steps from the algorithm by Lauritzen and 
Spiegelhalter: 

  i)  Find the moral graph 
  ii)  Triangulate the moral graph 
  iii)  Identify the cliques of the resulting triangulated moral graph 
  iv)  Define a join tree in which the ordering of the cliques satisfies  
        the running intersection property.  
 v)  Draw up a table showing the potential functions and the R and S  
  sets for each node 
 
The four parts carry, respectively, 20%, 20%, 20% and 40% of the marks 

A

B&CCB

Aa0 b0 c1
a0 b0 c1
a0 b1 c0
a0 b1 c0
a1 b0 c0
a1 b0 c0
a1 b1 c0
a1 b1 c1

 

A 

H

G

E

DC

BP(C|A&B) 

P(G|D&E) 

P(A) 
P(B) 

P(E|C) 

P(D|B) 

P(H|D) 
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4  Co-variance and Principal Component Analysis 
 
 The following artificial problem has three variables and just two data points set 

out in the table below 
 

x y z 
1 0 3 
5 2 1 

 
 
  a Find the mean-centred data matrix U = [x-xm, y-ym, z-zm], hence, find the co-

variance matrix using UTU 
 
 
  b For real problems, where sample sizes are much smaller than the number of 

variables, it is common to use the Karhunen-Lowe transformation to find the 
principal components. Using the answer to part a, find the reduced matrix A = 
UUT and calculate its principal eigenvector. First calculate the eigenvalues using 
det(A-λI)=0, then solve (A-λI) e = 0 to find the eigenvectors. 

 
 
  c  Find the principal eigenvector of the covariance matrix of part a by multiplying 

the eigenvector found in part b by the data matrix U. Check that this is indeed an 
eigenvector of the covariance matrix, and find its corresponding eigenvalue. 

 
 
  d Explain what is meant by an eigenface in face recognition. How many 

eigenfaces could be calculated from a face data base in which the images are 
128 by 128 resolution and there are three images of twenty subjects in the data 
base.   

 
 
  e The Mahalanobis distance between two two-dimensional points (x1,y1) (x2,y2) is 

defined by the formula: 
  √((x2-x1,y2-y1) Σ-1 (x2-x1,y2-y1)T) 
 where Σ is the covariance matrix. 
 
 Explain briefly why the Mahalanobis distance might be used in preference to the 

Euclidian distance in classification problems. 
 
 
 
 The five parts carry equal marks 


