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1 Probability Propagation.

In the following Bayesian network the variables are all binary, with, for example,
variable A having states ag and a;.

i
£

The conditional probability tables are written in the form:

P(E|C&D) = [P(G()'Co&do) P(eglcodedy) Pleg|lerd&eds) Pleo|cr&edy) ]

P(€1|Cg&dg) P(61|Cg&d1) P(€1|Cl&d0) P(el]cl&dl)

and are

P(A) = [0.4,0.6]

~[05 04 03 08
02 0.3 ] P(Ew&p)*{oﬁ 06 0.7 0‘2]
P(BIA) =108 07
‘ 0.1 08
0.1 0] Fip)ey= [0,9 0,2]
PICIB) =109 08

Pearl’s operating equations are given at the end of the paper.
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a  Find the 7 evidence for node E after initialisation, but before any nodes have
been instantiated.

b Ifnode E is instantiated to e; and node C is instantiated to ¢y calculate the
posterior probability over node D.

¢ With node E instantiated to state e, and node C uninstantiated the probability
propagation algorithm will not terminate. One method to get an approximate
solution is to delete one arc from the network, as would be done in the case of
the maximum weighted spanning tree algorithm. Given that the arc BD is
removed from the network, and that D is assumed to have equal priors
(P(D) = (0.5,0.5)), calculate the posterior probability of node C.

d An alternative method to get an approximate solution is to make use of hidden
nodes. A possible alternative network is given in the figure below. Briefly
explain how the new conditional probability matrices P(H|B), P(C|H),
P(D|H) and P(E|H) could be found using the original data set.

§ 6%

The four parts carry equal marks.
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]

Joining Nodes

Given the Bayesian network of question 1 it 1s possible to get
exact solutions for the probabilities of the unknown variables by
joining them into groups. The figure shows a network which can
be used as a replacement for the original.

i) Calculate the conditional probability matrix P(C'D|B).

B—E—E

ii) Given that node B is instantiated to state by and node E is
instantiated to eg calculate the probability distribution over
node C.

O

Find a join tree for the network of question 1 by using the following steps:
1) Find the moral graph.

ii) Find a tree of cliques of the moral graph that obeys the running intersection
property.

iii) Define a potential table for each clique in terms of the original conditional
probability tables.

iv) Define the R and S sets for each clique found

In the case where the join tree is being initialised before any instantiation occurs,
the A messages propagated will contain no evidence. Explain briefly why this is
SO.

To complete the initialisation of the join tree, after propogating the A messages
upwards, ™ messages are propagated down the tree. Explain briefly how the 7
messages are computed.

Once the initialisation of the join tree is completed the probability distribution
over E can be calculated by marginalisation. Would you expect to get the same
result if you calculated the distribution over E using Pearl’s message passing
algorithm on the original Bayesian network (following the method described in
the first part of question 1)? Explain your answer.

The five parts carry equal marks.
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3 Sampling and re-sampling
a  Sampling provides a practical approach to estimating probability distributions in
many cases where exact computation may be computationally infeasible.
Explain what it means for a sample chain to be:
1) Ergodic

i1) Balanced

b Define what is meant by the Markov blanket of a node in a Bayesian network.
What is the Markov blanket of node D in the network defined in question 1?

¢ For the network of question 1 explain how a Monte Carlo Markov chain
(MCMC) can be used to estimate the probabilities of the nodes B, C and D in the

case where nodes A and E have been instantiated.

d  Briefly explain how the Metropolis-Hastings algorithm could be used for
selecting samples in the MCMC chain, and what the advantages of using it is.

e Explain what is meant by a bootstrap data set and why they are used.

The five parts carry equal marks.
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4 Samll sample size problems

a A small sample size problem is one where the number of data points is smaller
than the number of class variables. A very simple problem has three variables
and two data points. There are two classes, each defined by a data matrix D
where the rows are the data points and the columns are the variables.

-
p=[3 10

-2 -2 -1
DQ‘[—«:; —~6 —5}

Calculate the 3 x 3 covariance matrix U7 U for each class.

Ut D

b Explain why it would not be possible to use a parametric Bayesian classifier with
a Gaussian “plug in’ kernel to calculate the probability of a given point
belonging to each of the above classes.

¢ Fisher defined a pooled covariance for a multi class problem using the following
formula:

Vo= ol 37700 - 15

N—g i=1
Using this method calculate a pooled covariance for the above two class problem.

d  With the aid of a suitable diagram explain how a non-parametric classifier, such
as the Parzen window, makes an estimate of the probability that a point x
belongs to a class .

e For the two classes above calculate a suitable covariance estimate that could be
used in a Parzen classifier as follows:

i) For class 1 use the estimate proposed by van Ness.

ii) For class 2 shrink the covariance towards the pooled estimate with a
parameter of 1/2.

The five parts carry equal marks.
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Pearl’s Operating equations for probability propagation

Equation 1: The )\ message

T

Aclar) = Y me(bi) D Pleslankebi)A(ey)

i=1 j=1

and for the case of the single parent there is a simpler matrix form:
Me(A) = A(C)P(C|A)

Equation 2: The = Message from A to C is given by:

i if A is instantiated for a;

me(aj) =< 0 if Ais instantiated but not for a,
P'(a;)/Ac(a;) if A is not instantiated

Equation 3: The A evidence of node C with n children Dy, Dy, .. D

T

1 if C' is instantiated for &
)\(Cj) =<¢ 0 if C' is instantiated but not for &;
[ Ap,(C;) if C is not instantiated

Equation 4: The 7 evidence of node C with two parents A and B:
m(c) =) Plcilaj&ebi)me(a;)me(by)
j=1 k=1
‘This can be written in matrix form using as follows:
7(C) = P(C|A&B)nc(A&B)

where
we(a;&be) = me(a;)mo(by)

Equation 5: The posterior probability of variable C:
P'(c;) = ad(ei)(c:)

where « is chosen to make ), P'(¢;) = 1
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