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Bayesian Network Definition

The following Bayesian network definition is referred to in questions 1, 2 and 3. The
variables are all binary. with, for example, variable A having states a; and ay.

o e
(Bjd) = [O.G 1 ]
R F P =[ 53 03]
PwIBC)={ 05 o 07 09 |
® PED) = [ § o7 ]

The condilional probabilities are given consistently in the form:

I)(])lB&C) _ [P(dl!b&.cl) P[ddb&c;) P(d1|b2&cl) P(dllbz&c-g) ]

P(d2|b&¢:1] P(dglbn_&Cg) P(d2|b2&cl) P(dglbg&CQ)
The cquations for propagating probabilities in Bayesian networks are:

The A message from child C to parents A and B is given by:
Aola) =D wc(b;) Y Plelaideb;)Mex)
i=1 k=1
In the case where we have a single parent (A) this reduces to:

Aelag) = Z Plcxla:)A(er)
k=1

and [or the case of the single parent we can use the simpler matrix form:
Ac(A) = MC)P(CJA)
The maltrix form for multiple parents relates to the joint states of the parents.
Ac(A&B) = AMC)P(C|A&B)

It is necessary to separate the A evidence {or the individual parents with a scalar
equation of the form:

/\0(0,) = Ejﬁc(bj)ﬁc(a;&bj)
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The 7 evidence to child node C from two parents A and B is given by:

{ m
)= Plexlaid&ed;)mc(ar)me(bs)

i=] j=1
This can be written in matrix form as follows:
7(C) = P(C|A&B)7c(A&B)

where
me(a:ded;) = mela)me(b;)

The single parent matrix equatjon is:

7(C) = P(C|A)7c(A)
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1 Probability Propagation.

For the Bayesian network defined above:

a Calculate the probability distribution over variable D after initialisation, but
before any nodes are instantiated.

b Is the probability distribution calculated in part a exact or approximate? Explain
your answer.

¢ Variable E is instantiated to state e,. Describe what messages are passed as a
result.

d Inaddition to variable £, variable C is now instantiated to state c». Calculate the
probability distribution over node B.

e If cutset conditioning is used in propagating probabilities, which individual
nodes could be used as a cut set?

Which node, if any, is the best choice of cutset?

The five parts carry equal marks.
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S

Joining Nodes.

a Itis suggested that the Bayesian network defined above could be modified to
remove the loop by joining nodes B and C. Draw the clustered network (with B
and C joined), and calculate any new conditional probability matrices that are

required, assuming P(B&C|A) = P(B|A)P(C|A).

b Assuming that D is instantiated to d, and A is instantiated to as, calculate the
probability distribution over variable B using the clustered network.

¢ Probability propagation is to be computed using a join tree. Find a suitable join
tree by drawing the moral graph and finding its cliques. Explain how your join
tree satisfies the running intersection property.

d For the join tree in which variable £ belongs to the bottom node, calculate the A
message that the boitom node will send to its parent if varible E is instantiated to

€2,

¢ What are the advantages and disadvantages of using the join tree method
compared to simple node clustering?

The five parts carry equal marks.
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3 Monte Carlo Markov Chain Methods

a  Explain what is meant by the Markov blanket of a node in a Bayesian network.
For the network defined above what are the Markov blankets of nodes A and C?

b  Given that, in the Bayesian network defined above, only node E is instantiated
explain how a Monte Carlo Markov Chain (MCMC) method, based on Gibbs
sampling, could be used to find the probability distributions over the
uninstantiated nodes (4, B, C and D).

c  Gibbs sampling is said to be:
i) Ergodic
ii) Balanced

Explain what is meant by the terms, and why the MCMC method that you
described in part b ensures that these properties hold.

d The Metropolis-Hastings algorithm provides a criterion for adding a new sample
to a sample chain. It uses a probability of acceptance defined as:

o = min{a, 1)

where: @ = P(X'*1)Q(X!| X"/ P(XHQ(X 1 XY).

Q(XY') is called the proposal density and is the probability of sampling state X
given that the network is in state Y. With reference to your answer to part b

explain how the proposal density Q{|a, b; ¢z d)]|[as by cq dy]) could be
computed.

e Compare and contrast the use of the MCMC methods with the join tree
algorithm for making inferences in Bayesian networks. Consider cases where the
variables are all highly dependent, and there are therefore many arcs in the
network, and those where there is little dependency between the variables, and
therefore there are few arcs in the network.

The five parts carry equal marks.
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4  Linear Discriminant Analysis.

A classifier is to be designed to separate two classes for which the following data
points are known:

Class1](2,) (23) (23) (.2)
Class2 | (1,1) LD GL-D) (-1

a  Find the two individual class means and, using all the data, the grand mean and
the pooled scatter matrix S,. (The scatter matrix is the un-normalised
co-variance matrix.)

b Calculate the between class scatter matrix S, from the two class means found in
part a above.

¢ Find the direction of the most discriminant LDA feature by finding the principal
eigenvector of the matrix L = 57 !S,. Hint: First calculate the eigenvalues using
det(L — AI} = 0, then solve (L — AT)¢ = 0 to find the eigenvectors ¢.

d i) Make an accurate sketch of the data plotted on the xy-Cartesian plane
showing the most discriminant LDA feature direction.

ii) On the same sketch draw the approximate direction of the first principal
component of the whole data set, and the approximate position of the SVM
separating hyperplane for the two classes. Label your sketch clearly.

e What assumptions does the LDA method make about the individual class
covariances? Explain briefly the circumstances in which this could cause errors.

The five parts carry equal marks.
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