
Always provide justifications and show any intermediate work for your answers.
A correct but unsupported answer may not receive any marks.

You may find the following useful:

•Bernoulli distribution

p(x|µ) = µx(1− µ)1−x , x ∈ {0, 1} (1)

•Binomial distribution

p(m|N,µ) =

(
N

m

)
µm(1− µ)N−m (2)

•Beta distribution

Beta(µ|α, β) =
Γ(α + β)

Γ(α)Γ(β)
µα−1(1− µ)β−1 (3)

•Gaussian distribution

N (x|µ,Σ) = (2π)−
D
2 |Σ|−

1
2 exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
, x ∈ RD (4)

•Gamma distribution

Gamma(τ |a, b) =
1

Γ(a)
baτa−1 exp(−bτ) (5)

•Wishart distribution

W(Σ|W , ν) = B|Σ|
ν−D−1

2 exp
(
− 1

2
tr(W−1Σ)

)
, Σ ∈ RD×D (6)
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The equations for propagating probabilities in Bayesian networks are:

The λ message from child C to parents A and B is given by:

λC(ai) =
m∑
j=1

πC(bj)
n∑
k=1

P (ck|ai&bj)λ(ck)

In the case where we have a single parent (A) this reduces to:

λC(ai) =
n∑
k=1

P (ck|ai)λ(ck)

and for the case of the single parent we can use the simpler matrix form:

λC(A) = λ(C)P(C|A)

The matrix form for multiple parents relates to the joint states of the parents.

λC(A&B) = λ(C)P(C|A&B)

It is necessary to separate the λ evidence for the individual parents with a scalar
equation of the form:

λC(ai) = ΣjπC(bj)λC(ai&bj)

The π evidence to child node C from two parents A and B is given by:

π(ck) =
l∑

i=1

m∑
j=1

P (ck|ai&bj)πC(ai)πC(bj)

This can be written in matrix form as follows:

π(C) = P(C|A&B)πC(A&B)

where
πC(ai&bj) = πC(ai)πC(bj)

The single parent matrix equation is:

π(C) = P(C|A)πC(A)
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1 Probability Propagation

In the Bayesian network below the variables are all binary, with, for example,
variable A having states a1 and a2.

The conditional probability matrices are given consistently in the form:

[
P (q1|r1&s1&t1) P (q1|r1&s1&t2) P (q1|r1&s2&t1) P (q1|r1&s2&t2) · · ·
P (q2|r1&s1&t1) P (q2|r1&s1&t2) P (q2|r1&s2&t1) P (q2|r1&s2&t2) · · ·

]
and are

P (A) = [0.2, 0.8]

P (B) = [0.4, 0.6]

P (C) = [0.6, 0.4]

P (E|C&D) =

[
0 0.3 0 0.8
1 0.7 1 0.2

]

P (F |E) =

[
0.4 0.5
0.6 0.5

]

P (D|A&B&C) =

[
1 0 0.3 1 1 0.6 0 0
0 1 0.7 0 0 0.4 1 1

]
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a Given that node a is instantiated to state a1, and there are no other instantiations
calculate the π evidence for node D.

b Node A remains instantiated to state a1, and node C is instantiated to state c2.
Calculate the π evidence at node and E.

c Node F is now instantiated to state f2, and nodes A and C remain instantiated as
before. Calculate the posterior probability of node D.

d When the network was constructed from data it was found that the joint
probability table P(E&C&D) was:

c1d1 c1d2 c2d1 c2d2
e1 0 0.06 0 0.32
e2 0.1 0.14 0.3 0.08

Assuming that C-D was the arc with the lowest dependency find the conditional
probability matrices P (E|C) and P (E|D) for the spanning tree.

e Given that you wanted to remove the arc C-D as in part d, but did not have the
joint probability table P (A&B&C&D) but only the conditional and prior
probability tables given above, what assumption would you need to make in
order to compute an estimate of the conditional probability matrix P (D|A&B)?
Calculate the estimate of P (D|A&B).

The five parts carry equal marks.
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2 Exact and Approximate Inference

a Find a join tree that can be used for exact probability propagation between the
variables of the network defined in question 1, using the following steps:

i) Draw the moral graph and find its cliques.

ii) Using the clique containing variable A as the root node, find an ordering of
the cliques that preserves the running intersection property.

iii) For each clique find the R and S variable sets and the initial value of the
potential function in terms of the conditional and prior probabilities in the
original Bayesian network.

b Calculate the potential tables for each clique of the join tree before any
propagation occurs.

c Given that variable F is instantiated to state f2 calculate:

i) The lambda message that will be sent from its clique.

ii) The change in the potential table of its parent.

d Cutset conditioning is a possible alternative algorithm for exact computation in
the case of the network defined in question 1. Which nodes of the original
network could be used as a cut set. Give the reasons for your choice.

e An alternative approach to ensure accurate probability propagation would be to
add a hidden (or latent) node to make the network singly connected. Redraw the
network with an appropriate placed hidden node and briefly explain how its
associated link matrices could be found.

The five parts carry equal marks.
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3 Gaussian Processes

a Fill in the gaps in the following text.
You will get 0.5 mark for a correct answer. For a wrong or incomplete answer,
we will subtract 0.5 mark. If you choose to leave the field blank, you will get 0
marks for this answer. In total, you cannot get less than 0 marks or more than 6
marks.

We consider a regression setting y = f(x) + ε where ε ∼ N (0, σ2
n), x ∈ RD,

y ∈ R. We place a Gaussian process (GP) prior on f . A Gaussian process (GP)
is fully specified by a mean function m( · ) and a covariance function k( · , · ). In
the following, we assume that m ≡ 0.

A commonly used covariance function is the squared exponential (Gaussian)
covariance function

k(xi,xj) = (1)

which reflects the prior belief of a (2) latent function. This
means, the closer the two inputs x and x′ are, the more correlated the
corresponding function values f(x), f(x′). The (3)
hyper-parameter determines the degree of correlation between to function values
f(x) and f(x′).

The training data is given byX = [x1, . . . ,xn]T of training inputs and the
vector y = [y1, . . . , yn]T of corresponding training targets (observations).

We train the hyper-parameters of the GP by maximizing the
(4) , given by

log p(y|X,θ) = (5)

whereK is the kernel matrix. This training objective automatically trades off
(6) and (7) .

The posterior predictive distribution of the function value f∗ = f(x∗) at a query
point x∗ is (8) with mean and variance given by

µ(f∗) = (9)

σ2(f∗) = (10)

Training a GP scales in O( (11) ); predictions required O( (12) ) computations.

b Figure 1 shows two possible fits of a GP (prior mean m ≡ 0, Gaussian
covariance function) for a given data set (black crosses). The signal variance is
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(a) GP fit 1.
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(b) GP Fit 2.

Fig. 1: Possible GP fits.

the same in both fits. However, the GPs differ in terms of length scale and noise
variance.

i) Briefly explain the differences between the two GP fits in terms of length
scales and noise variance (2 bullet points)

ii) Why can both GP fits be possible outcomes of the training procedure? (1–2
sentences)

iii) Why would it be useful to integrate out the hyper-parameters (1 bullet
point) and how would you do this (1 bullet point)?

c One way to scale a GP to larger data sets is to use a distributed model.

i) Explain in 2–3 sentences the key idea behind distributed GPs with respect
to training and predictions.

ii) One model that we discussed is the product-of-experts model. Give the
equation for predicting the function value f∗|X,y,x∗ at x∗.

iii) In the product-of-experts-model, assume that every expert predicts
p(f∗|X,y,x∗) = N (0, 1)

∗ What happens to the predictive variance in the limit of infinitely
many experts

∗ Why does this happen?

∗ How could you address this issue?

The three parts carry, respectively, 30%, 30%, and 40% of the marks.
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Fig. 2: Directed graphical model

4 Graphical Models, Bayesian Optimization, Sampling

a Graphical Models

Consider the graphical model in Figure 2. State whether the following
conditional independence statements are correct?
You will get 1 mark for a correct answer. For a wrong answer, we will subtract 1
mark. You cannot get less than 0 marks.

i) a ⊥⊥ f

ii) a ⊥⊥ g

iii) b ⊥⊥ i|f

iv) d ⊥⊥ j|g, h

v) i ⊥⊥ b|h

vi) j ⊥⊥ d

vii) i ⊥⊥ c|h, f

b Bayesian Optimization

We want to globally minimize an unknown objective function f with respect to
its parameters x. We only have access to noisy function evaluations
y = f(x) + ε, ε ∼ N (0, σ2

n).
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i) Describe the key steps of Bayesian optimization given an initial set of
experiments D(0) = {X(0),y(0)}

ii) What is the role of the acquisition function in Bayesian optimization?

iii) Gaussian processes (without approximations) scale up to about 10,000 data
points. Why is Bayesian optimization with 10,000 not practical from a
computational perspective?
Hint: Where does Bayesian optimization spend most time?

iv) Briefly describe how the PI (probability of improvement) acquisition
function works (when looking at sampled functions) and explain why
exploration is very slow in its standard form. How could this be fixed?
(3–4 sentences).
Hint: What does the typical PI acquisition function look like?

c Sampling

i) Imagine that a model consists of three random variables A,B,C. What
three distributions would a standard Gibbs sampler sample from in order to
generate samples from p(A,B,C)?

ii) In the context of rejection sampling, consider a true distribution
p(x) = N (0, σ2

pI) and a proposal distribution q(x) = N (0, σ2
qI) where

σq = 1.01σp.

A) What is the value of k such that kq ≥ p, if x ∈ R1000?

B) What is the acceptance rate of rejection sampling with this proposal
distribution?

Hint: It may be helpful to draw a diagram.

The three parts carry, respectively, 35%, 45%, and 20% of the marks.
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