
Lecture 8: Approximate Inference

This set of notes is out of date. Please see the corresponding slides for the latest material. I will revise
this handout shortly

Pearls probability propagation algorithm is fast and intuitively appealing since it tells us about the causal struc-
ture upon which the inference was made. However it is limited to singly connected networks. Although for
some cases of instantiations propagation is possible, termination cannot be guaranteed in the general case. If we
adopt a naive network, or use the spanning tree algorithm to create a network we are almost certainly adopting
an approximate inference approach. This is because there will be data dependences which cannot be added to
the network without creating a loop.

Tree Augmented Network

Given a naive Bayesian network we can try to make it exact by adding arcs between the child nodes. If C and
D are dependent given A we can change the network structure to include the arc C→D or D→C. If we do not
know which way to orient the causal direction, we make an arbitrary choice. If we choose C→D we then have
the problem that propagation is not possible if D is instantiated and C and A are not. Similar problems occur if
we add the complete set of arcs with significant dependency to the spanning tree. There are algorithms that can
calculate probabilities for these cases, and we can always calculate them from data, however all such algorithms
are n-p hard and become computationally infeasible for relatively small numbers of variables and states.

The fact that spanning trees and naive networks are usually only approximate solutions means that in many
cases a naive Bayes network will out perform a spanning tree despite the fact that the latter should be a better
representation of the dependencies. Indeed the spanning tree and the naive network may not even be the best
approximate structure to choose. Thus different refinement algorithms have been investigated to address this
problem.

Selective Naive Bayesian Network

The idea here is to use only a subset of the variables. This can be done by deletion followed by testing (Sucar
1993)

An alternative strategy is to add variables until no performance improvement is found (Langley and Sage
(1994)).

DOC493: Data Analysis and Probabilistic Inference Lecture 8 1



Orthogonal transformation of variables

There is a well known transformation called principal component analysis which transforms one set of variables
into another where the correlations between variables are minimised. We will look at this in more detail later
in the course. The basic transform is simply an axis change, but arranged in a multi dimensional space. In two
dimensions it can be visualised simply:

This idea can be applied to remove correlation from the data.

In practice the details become a little complex, and will not be discussed here.

Hidden Nodes

A third technique is adding a hidden nodes between the parent and a pair of child nodes which are not con-
ditionally independent given the parent. The technique can be thought of as finding a common cause for the
relationship between the two children. It should be appropriate where there is some mutual information linking
the children, but not an obvious or strong dependency. Adding a hidden node can always be done since it does
not cause a singly connected network to become multiply connected. Indeed, adding a hidden node could turn
a multiply connected network into a singly connected one, as we saw in a previous example.
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It will be seen that a network to which a hidden node has been added can always represent the same informa-
tion as the network without the hidden node. In the network below suppose that we choose H to have the same
number of states as A, and we set P (B|H) = P (B|A), P (C|H) = P (C|A) and P (H|A) = I (the identity
matrix). The two networks will yield identical results, thus we can expect at least the same performance from
a network after adding a hidden node. In practice this may not always occur because, as we will see, we need
to use an optimisation process to find the conditional probabilities

Sometimes we do have information on the hidden node added. This was the case for example when we added
the eyes node to the cat network in lecture 2. However, in general, we don’t have any data or other knowledge
on the hidden node. This leaves us with two questions:

1. How many states should the hidden node have?

2. How can the conditional probabilities be found without data?

The number of states can be determined experimentally. Since the hidden node is, in effect, acting as a
common cause, we expect that the number of states will be comparable to the number of states of the nodes it
is separating. In fact as a good starting point we could set the number of states to the largest of the parent and
children, and then prune out states that have very low probabilities in the final link matrices.

The conditional probabilities can be found by an optimisation technique using the networks predictive
performance as a criterion for success. The idea is to go through the data set of values for A, B and C and
for each point instantiate say B and C and calculate the value of A. An error function could be the Euclidean
distance between the actual value of A and the calculated value. The optimisation is set up to minimise this
error. In summary:

1. Given estimates of: P (H|A), P (B|H), P (C|H) and data points (ai, bj , ck)

2. Use bj , ck to compute P (A), calculate an error measure: E = (P (A)− P (A, a = aj))2

3. Minimise E over the data set by adjusting the elements of P (H|A), P (B|H), P (C|H)

• For each conditional probability P (cj |hk) find an analytical expression for ∂E/∂P (cj |hk)
• Then in each epoch update the conditional probabilities using:

Pn+1(cj |hk) = Pn(cj |hk)− ∂E/∂P (cj |hk)

This process is called back propagation and is equivalent to the procedure used to train hidden layers in neural
networks. In contrast to other optimisation processes it has a further complication that the conditional probabil-
ities must obey the laws of probability. Thus special actions need to be taken if the optimisation process makes
a value negative. At the end of each epoch the probabilities must be normalised so that the columns sum to 1.

Back propagation is not the only possibility for setting up and minimising an error function. In practice we
can instantiate any subset of the variables and calculate an error function at the remainder. The following are
possibilities.
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Estimating a hidden node is an optimisation process, and as a consequence runs the risk of being trapped
in a secondary minimum. Therefore it is usually desirable to include some form of simulating annealing and to
use a fairly slow step size. Alternating the different propagation methods can benefit the process since they do
not necessarily adjust the parameters in the same way.

Modifying networks using hidden nodes

The decision to modify a network can be made on the basis of how well it fits the data. We did discuss
measures of model accuracy, but these are not sufficient for this purpose. In particular, we need to know which
parts of the network should be modified. For example, for each pair of nodes without an arc we could see what
residual mutual information remains between them. Alternatively, for children we could test their conditional
independence given the parents.

We have previously noted that the naive network performs as well as more complex singly connected
structures. Hence one effective methodology for classifiers is to start with a naive network and incrementally
remove conditional dependencies between children.
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