
Lecture 9: Exact Inference

Cutset Conditioning

Pearl suggested a technique called Cutset Conditioning to deal with the problem of propagation in multiply
connected networks. The idea of this is to find a minimal set of nodes whose instantiation will make the
remainder of the network singly connected and therefore safe for propagation. For example, in tutorial 3 we
looked at the following causal Bayesian net for dyspnea.

This has two loops, the first being round nodes DBSL and the second involving DLXT. Notice that the direction
of the arrows in not significant in considering the effect of loops, since probabilities propagate both in the
direction of the arrows (π messages) and against them (λ messages). For certain instantiations propagation
can be achieved. For example if D is not instantiated then propagation between all the other nodes is possible,
though it may not give the correct result in this case. However, ifD is instantiated probabilities could propagate
around either loop unchecked.

Looking at the network, we see that instantiating node L effectively blocks both loops. L is a single parent
node, and therefore if it is instantiated any change in S is blocked from X and D and vice versa. With L
instantiated we can think of the network as belonging to one of two singly connected possibilities:

If we now are presented with data which does not include an instantiation of L, but does include an instantiation
of some other nodes, for example D, we can calculate the probabilities using both networks, and then combine
them by weighting them according to the prior probability distribution over L. This is a safe, and correct prop-
agation technique which will always work, but it does rely on us having an estimate of the prior probabilities
of node L.

There are problems with cutset conditioning. First, it explodes computationally with the size of the cutset.
For example, if the cutset has three nodes each with eight states, then we will need to propagate the probabilities
for each of the 512 possible instantiations. Secondly, and more importantly, we need a reliable estimate of the
prior probability of each of those instantiations. This may not be reliably obtainable from the data.

Joining dependent variables

Joining variables is another way of reducing dependencies. IfC andD are dependent (givenA) we can combine
them into one new variable by joining them. If two variables are to be joined, C having |C| states andD having
|D| states the new variable C&D will have |C| × |D| states. The increased number of states is undesirable and
limits the applicability of this approach.

DOC493: Data Analysis and Probabilistic Inference Lecture 9 1

Join Tree Algorithm

A generalisation of the idea of joining nodes is the creation of a join tree. The idea is to replace a multiply
connected network network by a singly connected network in which the nodes are not represented by single
variables, but by the junction of several variables.

We have mentioned several times that, in the spanning tree algorithm we added the arcs in the order given
by the dependency between nodes. However for a set of n variables there are n!/(2!(n − 2)!) possible arcs
of which only n − 1 will be used. As the graph gets bigger there will be many unused arcs. Statistically,
there is very likely to be some significant dependency for these arcs. To make a network represent the data
dependencies more correctly we could add arcs whenever there is significant dependency. However, adding
one arc to a tree or a singly connected network will make it multiply connected. Thus, if we could devise a
way of propagating probabilities in multiply connected networks we could (arguably) build a better inference
system. A famous algorithm for coping with probability propagation in multiply connected, but sparse, graphs
was developed by Lauritzen and Spiegelhalter. Unlike the singly connected algorithm of Pearl it has no notion
causality. It is purely a mathematical technique.

The basic idea is to transform the network to a different representation where propagation is possible. The
new representation is called a join tree or a tree of cliques. We shall use a simple medical example, which is
taken from Neapolitan.

The nodes are all binary variables, and the causal graph (derived from expert advice) has one loop, meaning
that propagation is not possible when D is instantiated, but A,B and C are not. An example of a join tree is
shown below. It has the same joint probability distribution as the original tree, but has only three nodes, each
containing a subset of the original variables. We will use the join tree to propagate probabilities, using a revised
algorithm, and then calculate the probabilities of the original individual variables.

Potential Representations

In the above example we chose one way to group the variables to form a join tree. This could be done in a
number of ways and each is called a potential representation. Suppose we have a causal network with set of
variables V , in the example above V = [A,B,C,D,E], then a potential representation of a causal network is
a number of subsets Wi of our variables, and a function Ψ with the property:

P (V) =
∏
i

Ψ(Wi)

Each subset Wi in our potential representation is a node of the join tree, and contains one or more variables of
the original network. The function Ψ is alled the potential function (or table) and assigns a probability to each
joint state of the variables belonging to Wi. It is similar to a joint probability table, and will be used to compute
the joint probability table P (Wi) for the node.

DOC493: Data Analysis and Probabilistic Inference Lecture 9 2

The running intersection property

For a potential representation we can define some ordering and intersection sets. We will adopt the convention
that the indices i of the subsets of the variables Wi are ordered with those nearest the root having the lower
value, so W1 is used to denote the root of the join tree, and W2 and W3 the child nodes in the above example.
For each Wi we define a subset Si which is all the varibales of Wi that have appeared higher up in the tree.
Formally we write:

Si = Wi ∩ (W1 ∪W2 ∪W3.... ∪Wi−1)

We use Ri to denote the remaining variables:

Ri = Wi − Si
Thus the variables in the set Ri are those that have not appeared higher up in the tree.

To be able to propagate probabilities in a join tree we need to ensure that the running intersection property
holds everywhere. This states that the variables belonging to every subset Si must appear in the parent of node
i in the join tree. So if j is the parent of i:

Si ⊆Wj

Given a join tree in which the running intersection property holds we can write:

P (V) = P (W1)

N∏
i=2

P (Ri|Si)

This property allows us to compute and pass λ and π messages among the groups of variables. We will look in
detail at how this is done in the next lecture.

Finding a Join Tree

We now consider the question of how to construct a join tree starting from any given causal network. This is
always possible using an algorithm which has five steps:

1. Moralise the graph (join any unjoined parents)

2. Triangulate the graph

3. Identify the cliques of the resulting graph. These form the subsets Wi.

4. Order the cliques following the running intersection property.

5. Initialise the clique potential functions ψ as follows: For each clique Wi find the subset of its variables
Xi whose parents Pa(Xi) also belong to the clique. Then set:

Ψ(Wi) =
∏
X

P (Xi|Pa(Xi)) (1)

Moralising and Triangulation
We first convert the causal graph by joining together multiple parents of a node (moralisation) and then adding
arcs to convert any polygon configurations to triangles. In this example the moral graph is already triangulated
and needs no further processing. If the resulting graph were not triangulated then we would need to add internal
arcs to make it so. There is no unique qay of doing this, but the algorithm will work for any triangulated graph.
Note that the triangulated graph is no longer a causal structure, and consequently we can drop the arrows. There
is no implication that there is any dependency expressed by the new arcs.

DOC493: Data Analysis and Probabilistic Inference Lecture 9 3

Finding the Cliques
A clique is a maximal set of nodes in which every node is connected to every other. In our example there are
three such groupings. Notice that [B,C] is not a clique, since it belongs to [A,B,C] and so is not maximal,
and [A,B,C,D] is not a clique since A is not connected to D. Each clique will be a node in the final join tree,
and its variables form the sets Wi.

Finding the structure of the join tree
We now need to order and index the cliques such that they form a join tree that conforms to the running
intersection property. This can be done by inspection of the cliques found in the previous step, and again there
is no unique solution. The ordering given in the figure above clearly obeys th running intersection property, and
we can configure the tree in two possible ways.

Having established the ordering we can calculate the S and R sets for each node.

Allocating potential to the nodes of the join tree
Each variable of the original network must be in the R set in exactly one node of the join tree. Moreover its
parents in the original network, must be in the same clique as a consequence of the moralisation step. Thus the
R set or each clique can be found easily, noting that a root node of the original network has no parents, and so
is in the R set of the clique in which it appears. Having found the R sets we define the potential functions as
the product of the prior or conditional probabilities with distributions over the variables in the R sets of each
clique. The result is as follows:

Index W S R X Ψ

1 ABC ABC ABC P (A)P (B|A)P (C|A)

2 BCD BC D D P (D|B&C)

3 CE C E E P (E|C)

Note that the X set may be empty for some nodes. If that is the case the potential table is initialised to all 1s.

DOC493: Data Analysis and Probabilistic Inference Lecture 9 4

