
Lecture 2

Simple Bayesian Networks
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Limitations of Simple Bayesian Inference

• Simple Bayesian inference is inadequate to deal with
more complex models of prior knowledge.

• Once several factors affect a decision they need to be
combined somehow
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The Catness Measure again

Catness = |(Rl−Rr)/Rr |+ |(Si −2× (Rl +Rr))/Rr |

• We are currently weighting the two error terms
equally, but perhaps this is not a good idea.

• Moreover we may want new terms, for example fur
colour around the putative eyes.
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A more complex Catness measure???

Catness = α|(Rl−Rr)/Rr |+β |(Si −2 (Rl +Rr))/Rr |+
γ(ColourMatch)+&c.

• α, β and γ are constants to be determined.

• The whole process becomes very heuristic and we
need to look for better methods for representing our
prior models.

• One approach is to go to a Bayesian Network.
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More Evidence

• When we used Bayes theorem in lecture 1 we had
just one hypothesis and one piece of evidence.

• Suppose now that we have evidence from more than
one source. Bayes’ Theorem is now written:

P(D|S1&S2&S3 · · ·&Sn) =
P(D)P(S1&S2 · · ·Sn |D)

P(S1&S2&S3 · · ·Sn)
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Conditional Independence

• The term: P(S1&S2 · · ·Sn |D) is of little use for
inference since for large n we are unlikely to be able
to estimate it.

• To get round the problem we normally make the
assumption that the different Si are independent
given a value for D. This enables us to write:

P(S1&S2..Sn |D) = P(S1|D)P(S2|D) · · ·P(Sn |D)

• However this assumption does not necessarily hold
in practice.
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Bayesian Inference Equation

As before we can use normalisation to eliminate:

P(S1&S2& · · ·&Sn)

and so Bayes theorem becomes:

P(D|S1&S2..&Sn) = αP(D)P(S1|D)P(S2|D) · · ·P(Sn |D)
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Graphical Notation

• We can represent this equation as a graphical model
called a Bayesian network.

• Variables (measures or hypothesised) are
represented by circles. Nodes are joined to their
parents by conditional probabilities. The arrow
directions represent causality, in this case the
disease is the cause of the symptoms.
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Let’s clarify the notation with the cat example

Variable Interpretation Type Value
C Cat Discrete (2 states) True or False
S Eye separation Continuous S = (Si −2∗ (Rl +Rr ))/Rr
D Eye difference Continuous |(Rl −Rr )/Rr |
F Fur colour Discrete (20 states) Histogram of pixel hues
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Discrete vs Continuous Variables

Our variables (hypothesis or evidence) fall into one of two
categories:

• Discrete variables take one of a finite number of fixed
values or states.

• Continuous variables can take any real value within
some range

We will come back to continuous variables later, but for
the first part of the course we will consider mainly
discrete variables.
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Quantisation

• To use continuous variables in a discrete framework
we must quantise them.

• For example in practice the Eye separation variable
might vary between -1.5 (eyes very close) to 1.5 (eyes
very far apart). We could therefore quantise it to have
a reasonable resolution in the range of interest:

[below−1.5][−1.5 · · ·−0.75][−0.75 · · ·−0.25]
[−0.25 · · ·0.25][0.25 · · ·0.75][0.75 · · ·1.5][above1.5]
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Some Observations about Quantisastion

• We can quantise variables in a large number of ways,
and indeed this forms an important area of research.

• An important class of methods uses data and
information theory to try to obtain the best
representation of the variable in as few states as
possible

• For our purposes we will simply use heuristic
methods.
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This is what our simple network now looks like

Variable Interpretation Type Value
C Cat Discrete (2 states) c1,c2
S Eye separation Discrete (7 states) s1,s2,s3,s4,s5,s6,s7
D Eye difference Discrete (4 states) d1,d2,d3,d4
F Fur colour Discrete (20 states) f1, f2 · · · f20
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Link Matrices

Each node in the network has an associated link matrix
(or conditional probability table) which connects it to its
immediate parents (or causes). For the link from D to C
we have:

P (D|C) =


P(d1|c1) P(d1|c2)
P(d2|c1) P(d2|c2)
P(d3|c1) P(d3|c2)
P(d4|c1) P(d4|c2)


Note that the link matrices are written in bold face to
distinguish them from the scalar probabilities written,
for example, in Bayes’ theorem.
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Prior Probability of the Roots

• The root nodes of a network do not have any parents.
Instead of a link matrix they have a vector giving the
prior probabilities of the states, eg:

P (C) = [P(c1),P(c2)]

• This can be thought of a link matrix to empty
parents.
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Problem Break

Given the simple network:

If each node has two states: [a1,a2], [b1,b2], [c1,c2] find an
expression for P(a1|b2&c1) in terms of the probabilities
found in the link matrices.

Hint: Use Bayes’ Theorem and the fact that:

P(a1|b2&c1) + P(a2|b2&c1) = 1
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Solution

P(a1|b2&c1)+P(a2|b2&c1) = 1

Apply Bayes’ theorem (with the independence
assumption):

P(a1)P(b2|a1)P(c1|a1)

P(b2&c1)
+

P(a2)P(b2|a2)P(c1|a2)

P(b2&c1)
= 1

P(b2&c1) = P(a1)P(b2|a1)P(c1|a1)+P(a2)P(b2|a2)P(c1|a2)

thus:

P(a1|b2&c1) =
P(a1)P(b2|a1)P(c1|a1)

P(a1)P(b2|a1)P(c1|a1)+P(a2)P(b2|a2)P(c1|a2)
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Finding the link matrices from data

• We can find the values of the conditional
probabilities in the link matrices by experiment.

• To do this we need a large number of cases in which
we know the values of all the variables

• For example, in our problem we might process many
real pictures for the leaf nodes, S, D and F, and get
expert advice on the state of C.

Suppose that there are N(c2&d4) points in our data set
where variable D is in state d4 and variable C is in state
c2. Then we can calculate P(d4|c2) as folows:

P(d4|c2) = N(c2&d4)/N(c2)
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Problems in finding the link matrices

• If a network is to represent the variables in an
inference problem accurately it may be necessary to
have a large number of states for each variable.

• Already the state space of our problem is quite big,
and it grows exponentially.

• As the number of conditional probabilities grows, so
does the size of the data set that we need to estimate
them objectively
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Naive Bayesian Network

• Networks of the sort we have considered so far are
referred to by a number of names:

• Naive Bayesian Network
• Bayesian Classifier
• Simple Bayesian Network.

• They are, in many ways, the most useful and should
be used wherever possible.

• Clearly they give us a much more accurate way of
expressing how each term in the catness measure
relates to the presence of a cat.

Data Analysis and Probabilistic Inference Lecture 2 Slide 20



Using a naive Bayesian network

• Setting a node to a measured value is called
instantiation.

• Once a node has been instantiated, we can look up
the values for the conditional probabilities in the link
matrices.

• Calculating the probabilities of the states of the
hypothesis is done by multiplying together the
conditional probabilities of the instantiated nodes
and the prior probability of the hypothesis node and
normalising.
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Decision Trees

• The next level of complexity in Bayesian networks is
a simple decision tree.

• Reasoning about our variables we could argue that,
given there was a cat in the picture, the separation
and the difference variables might not be completely
conditionally independent.

• Thus we might refine our network into a more
complex structure where we explicitly model the
relation between them.
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The Cat Decision Tree

The nodes S and D are related by a common cause - the
presence of eyes - which we now include in the model.
Eyes might be present but not caused by a cat.
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Adding the Eyes Node

• In adding a new node we have to decide how many
states it has.

• It could be simply binary (true or false), but for better
generality we could have three states:

• e1 interpreted as probably not eyes
• e2 interpreted as could be eyes
• e3 interpreted as probably eyes

• To estimate the link matrices we need expert advice
on both the non terminal node E and the hypothesis
node C.

• Using the network is a little more complex.

Data Analysis and Probabilistic Inference Lecture 2 Slide 24



Calculating the probability of a cat

• For the Cat node and its two children we have:

P(C|E&F ) = αP(C)P(E|C)P(F |C)

• For the Eyes node we have:

P(E|S&D) = αP(E)P(S|E)P(D|E)

• But now we have a problem since we don’t have a
prior probability for E.

• We will see shortly that P(E) is evidence sent from
E’s parent C.
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The Likelihood of the Eyes

• From Bayes theorem (last slide) we have

P(E|S&D) = αP(E)P(S|E)P(D|E)

• Although we don’t have any direct prior information
P(E) but we do have likelihood information about E
from S and D:

L(E|S&D) = P(S|E)P(D|E)

• The likelihood information is evidence, but it does
not form a probability distribution.

Data Analysis and Probabilistic Inference Lecture 2 Slide 26



Calculating the Probability of a Cat

P(C|E&F ) = αP(C)P(E|C)P(F |C)

• Suppose we measure F , say F = f5, we can look up
P(f5|c1) and P(f5|c2) directly from the link matrix.

• However, we don’t have an instantiated value for E,
but we have likelihood evidence over the states of E,
and we can use this to calculate a weighted average
of the conditional probabilities:

P(e|c1) = P(e1|c1)L(e1)+P(e2|c1)L(e2)+P(e3|c1)L(e3)
P(e|c2) = P(e1|c2)L(e1)+P(e2|c2)L(e2)+P(e3|c2)L(e3)

Data Analysis and Probabilistic Inference Lecture 2 Slide 27



Calculating the Probability of a Cat

P(C|E&F ) = αP(C)P(E|C)P(F |C)

Substituting in the instantiated value for F and the
likelihood evidence for E calculated from S and D we get:

P(c1|e&f5) = α×P(c1)×
{P(e1|c1)L(e1)+P(e2|c1)L(e2)+P(e3|c1)L(e3)}
×P(f5|c1)

P(c2|e&f5) = α×P(c2)×
{P(e1|c2)L(e1)+P(e2|c2)L(e2)+P(e3|c2)L(e3)}
×P(f5|c2)
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Posterior Probabilities

• The term posterior probability, indicated P ′, is used
to indicate the probability calculated after some
instantiation.

• For our previous example we write P ′(C) instead of
P(C|E&F )

• It is called posterior because it is the probability after
some evidence has been collected.
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Calculating the Probability of Eyes

• We already have the likelihood evidence from S and
D for the states of the Eyes node.

• Although we don’t have a Prior probability for it we
have evidence that comes from its parent C.

• However, this is not from the posterior probability
P ′(C), but rather from the evidence for C excluding
anything that came from E itself. We write (for the
time being):

PE(C) = αP(C)P(F |C)
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Passing Evidence from C to E

• Let’s suppose we calculate PE(C) as [0.4,0.6]. We use
the link matrix to calculate the equivalent of a prior
probability for E: P(e1)

P(e2)
P(e3)

=

 P(e1|c1) P(e1|c2)
P(e2|c1) P(e2|c2)
P(e3|c1) P(e3|c2)

[ 0.4
0.6

]
= 0.4P(e1|c1)+0.6P(e1|c2)

0.4P(e2|c1)+0.6P(e2|c2)
0.4P(e3|c1)+0.6P(e3|c2)


• Note that this is a probability distribution since the

columns of the link matrix sum to 1
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Finally E can be Calculated

• Suppose we have instantiations S = s3 and D = d2,
then we calculate P ′(E) as

P ′(e1) = αP(e1)P(s3|e1)P(d2|e1)
P ′(e2) = αP(e2)P(s3|e2)P(d2|e2)
P ′(e3) = αP(e3)P(s3|e3)P(d2|e3)

• and as usual α is calculated by normalisation.

P ′(e1)+P ′(e2)+P ′(e3) = 1
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In Conclusion

• The whole process looks very complex, and this is
just a tiny network.

• However, don’t despair - every node in a big network
is calculated in the same way.

• Next time we will start to develop a general method
for calculating probabilities in any network which
uses just 5 equations.
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