
Lecture 3

Evidence and Message Passing
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The story so far:

Naive Bayesian networks express Bayes’ theorem for
conditionally independent variables:

P(C|S&D&F ) = αP(C)P(S|C)P(D|C)P(F |C)

Variable Interpretation Type Value
C Cat Discrete (2 states) c1,c2
S Eye separation Discrete (7 states) s1,s2,s3,s4,s5,s6,s7
D Eye difference Discrete (4 states) d1,d2,d3,d4
F Fur colour Discrete (20 states) f1, f2 · · · f20
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The story so far:

Bayes theorem allows us to separate the evidence into
two parts:
• Prior: P(C)

• Likelihood: P(S|C),P(D|C),P(F |C)

Both types of evidence are available to us, either through
established knowledge or from measurements.
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The story so far:

• Tree structured
networks represent the
data more accurately.

• Probabilities are again
computed by Bayes’
theorem, but the
calculations are tricky.

• We need an algorithm
that will extend easily to
large networks.

now read on . . .
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Evidence

To deal with intermediate nodes we need to generalise
the method of calculating probabilities. At any
intermediate node we have:

• Evidence from its descendents λ

evidence.

• Evidence from its parent(s): π

evidence.

• λ evidence generalises the concept
of Likelihood

• π evidence generalises the concept
of prior probability.
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The Nature of Evidence

• Evidence is simply unnormalised probability. The
evidence for the states of a variable need not sum to
one (though they can do).

• We write it as a vector λ(E)= [λ (e1),λ (e2),λ (e3)]

• We combine it by multiplication ε(ei) = λ (ei)×π(ei)

• Using evidence simplifies the equations since we do
not need the normalising constant α.
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Calculating λ Evidence

• For the simple case where leaf nodes are instantiated
we can find the λ evidence for the immediate parents
directly from the link matrices.

• Each child node provides a λ message to its parent,
and the λ evidence for the parent is calculated by
multiplying the messages together.

• In our cat network, if S = s4 and D = d2 the λ

evidence for node E is calculated as follows:

λ (e1) = P(s4|e1)×P(d2|e1)
λ (e2) = P(s4|e2)×P(d2|e2)
λ (e3) = P(s4|e3)×P(d2|e3)
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Calculating λ Evidence

• When we pass evidence from an
intermediate node to its parents
we must take into account the
evidence we have for each state
of the child node.

• The λ message is calculated by
weighting the conditional
probabilities from the link
matrix by the evidence for the
child node.

λ (c1) = [λ (e1)P(e1|c1)+λ (e2)P(e2|c1)+λ (e3)P(e3|c1)]P(f3|c1)
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The Conditioning Equation

In general we use the “conditioning equation”, so called
because we are calculating probabilities according to the
current conditions (ie measured values for some of the
variables).

λ (ci) = ∏
(children)

∑
j

λ (hj)P(hj|ci)

The states of the parent node are indexed by i and the
states of the child node are indexed by j
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Instantiation and Evidence

In the simple case, for leaf nodes we have a known state
for that node. We defined the eye separation measure as
having seven states, and if we make a measurement we
set the evidence for one state to 1 and the others to 0.

State Range λ (si)

s1 [below−1.5] 0
s2 [−1.5 · · ·−0.75] 0
s3 [−0.75 · · ·−0.25] 0
s4 [−0.25 · · ·0.25] 0
s5 [0.25 · · ·0.75] 1
s6 [0.75 · · ·1.5] 0
s7 [above1.5] 0
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Conditioning at the Leaf Nodes

If we apply the conditioning equation to instantiated leaf
nodes we get the same result as selecting the conditional
probabilities from the link matrices.

λ (ci) = ∏
(children)

∑
j

λ (hj)P(hj|ci)

Calculating the evidence for the E node we have:

λ (ei) = (∑j λ (sj)P(sj|ei))(∑k λ (dk)P(dk |ei))

and if S is instantiated to s4 and D to d2, then only λ (s4)
and λ (d2) are non zero and the right hand side reduces
to:

λ (ei) = P(s4|ei)×P(d2|ei)
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Virtual Evidence

Sometimes, when we make a measurement it is possible
to express uncertainty about it by distributing the
evidence values. For example, instead of setting λ (s5) = 1
we could use a Gaussian distribution:

State Range λ (si)

s1 [below−1.5] 0
s2 [−1.5 · · ·−0.75] 0
s3 [−0.75 · · ·−0.25] 0.08
s4 [−0.25 · · ·0.25] 0.3
s5 [0.25 · · ·0.75] 0.5
s6 [0.75 · · ·1.5] 0.1
s7 [above1.5] 0.02

This makes our level of uncertainty about the
measurement explicit.
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Virtual Evidence requires Conditioning

If we use virtual evidence at the leaf nodes then we
calculate the evidence sent to the parent using the
condidioning equation.

λ (ci) = ∏
(children)

∑
j

λ (hj)P(hj|ci)

So in the event that we have virtual evidence for S, but D
is instantiated to d2 we find that:

λ (ei) = (∑j λ (sj)P(sj|ei))×P(d2|ei)
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No Evidence

Sometimes, we may not have data for a node. In this
case each state must be given the same λ value, and for
convenience we choose this to be 1.

State Range λ (si)

s1 [below−1.5] 1
s2 [−1.5 · · ·−0.75] 1
s3 [−0.75 · · ·−0.25] 1
s4 [−0.25 · · ·0.25] 1
s5 [0.25 · · ·0.75] 1
s6 [0.75 · · ·1.5] 1
s7 [above1.5] 1
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No Evidence and the Conditioning Equation

The conditioning equation still works if we have no
evidence. For example if there is no evidence on node S,
but we have evidence on D we get:

λ (ei) = (∑j λ (sj)P(sj|ei))(∑k λ (dk)P(dk |ei))

λ (ei) = (∑j P(sj|ei))(∑k λ (dk)P(dk |ei))

λ (ei) = ∑k λ (dk)P(dk |ei)

The evidence from S evaluates to 1 for every state of E.
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Problem Break

Given the following virtual evidence, write down an
expression for the λ evidence for state e1 of E (which has
two children S and D)

s1 1
s2 0.2
s3 0
s4 0
s5 0
s6 0
s7 0

d1 0
d2 0
d3 0.5
d4 1
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Solution

The general conditioning equation states:

λ (ci) = ∏
(children)

∑
j

λ (hj)P(hj|ci)

so for this case:

λ (e1) = (P(s1|e1)+0.2P(s2|e1))× (0.5P(d3|e1)+P(d4|e1))
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Upward Propagation

• Our cat network can be used as a Bayesian classifier.
In this case we have one hypothesis node, which is
the root node C.

• All the evidence is propagated upwards, using the
conditioning equation for all instances.

• At the root node the λ evidence is multiplied by the
prior probability of the root and we then have a
probability distribution from which we can classify
the picture as “cat” or “not cat”.
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The Conditioning Equation in Vector form

• We have been using the scalar form of the
conditioning equation in order to demonstrate how it
works.

• In practice it is much easier to calculate λ messages
using a vector equation thus:

λS(E)= λ(S)P (S|E)
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The Cat Example Again

• Propagating the λ evidence up
the tree allows us to collect all
the evidence there is about
the C node.

• However, suppose we want to
reason about the E node
(which is not one of our
measured variables)? There is
evidence for E that comes
from its parent C.
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Case 1: C is instantiated

• Suppose we measure node C
and it turns out that there is
a cat in the picture.

• If node C is in state C1
(cat=true) then P(C) = [1,0]
and its children (in particular
F in this case) cannot affect
its value.
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Looking at the Link Matrix

From the fundamental law of probability we know that

P(E&C) = P(E|C)P(C)

and since C is in a known state (P ′(C)= [1,0]) we can
write:

P(ei&c2) = P(ei |cj)0 = 0
P(ei&c1) = P(ei |c1)1 = P(ei |c1)

Which means that we can calculate all values of P(E)
from the matrix equation:

P (E) =

 P(e1|c1) P(e1|c2)
P(e2|c1) P(e2|c2)
P(e3|c1) P(e3|c2)

[ 1
0

]
=

 P(e1|c1)
P(e2|c1)
P(e3|c1)


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Simplified Network

• The previous equation allows us to calculate a
probability distribution over the states of E using
only the evidence from its parent, node C.

• We can treat this value of P(E) as if it were a prior
probability of E.

• To find the posterior probability of E we need to
multiply it by λ (E) and normalise.

• It is as if we have a simplified network:

Data Analysis and Probabilistic Inference Lecture 3 Slide 23



Case 2: C is not instantiated but has evidence
from other sources

• In the more general case we might not be able to
instantiate C, but we could have evidence about its
state.

• Some of that evidence may have originated from E,
but, if we are to send evidence to E we are interested
only in the evidence that comes from elsewhere.

• In this example that is the evidence from F and the
prior probability (evidence) for C.
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A π Message from C to E

Suppose for a given picture we calculate the λ evidence
for C from F as:

λF(C)= [λF (c1),λF (c2)] = [0.3,0.2]

and the prior probability of C is:

P(C) = [0.6,0.4]

the total evidence for C, excluding any evidence from E,
is found by multiplying the individual evidence values:

πE(C)= [0.3×0.6,0.2×0.4] = [0.18,0.08]

This is the π message to E from C. It is not P ′(C) since it
does not contain the evidence from E.
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A π Message from C to E

The π evidence for E, which is written as π(E) is found
as follows:

π(E)= P (E|C)πE(C)

π(E)=

 P(e1|c1) P(e1|c2)
P(e2|c1) P(e2|c2)
P(e3|c1) P(e3|c2)

[ 0.18
0.08

]
=

 0.18P(e1|c1)+0.08P(e1|c2)
0.18P(e2|c1)+0.08P(e2|c2)
0.18P(e3|c1)+0.08P(e3|c2)


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Scalar equation for the π Evidence

There is also a scalar form of the equation for π evidence:

The less said about it the better!
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Generality of Propagation in Trees

• Now that we can propagate
probability both up and
down a tree making
inferences is completely
flexible.

• We can instantiate any
subset of the nodes and
calculate the probability
distribution over the states
of the other nodes.
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Magnitude and Evidence

• Remember that the magnitude of the evidence is not
relevant. It is the relative magnitudes of the evidence
for the states of a node that carries the information.

• We could at any point normalise evidence to turn it
into a probability distribution, but doing this would
make no difference to the outcome of the probability
propagation.
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Normalisation of Evidence in a Tree

For example, to calculate the π message from C to E we
could first calculate the posterior probability of C:

P ′(C) = αP(C)λE(C)λF (C)

and then divide out the evidence from E

πE(C) = P ′(C)/λE(C)

The magnitudes of πE(C) would be different, but the final
result for P ′(E) would be the same as using the previous
calculation.
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Prior and π, Likelihood and λ

• We have now a uniform way of propagating
probabilities at any node in a network.

• The π evidence that comes from the parent is
equivalent to the prior probability at the root of a
tree.

• The λ evidence is equivalent to likelihood information
that comes from the subtree below a node.

• This means that probabilities can be calculated by a
simple message passing algorithm.
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Incorporating more Nodes

• One of the best features of Bayesian Networks is that
we can incorporate new nodes as the data becomes
available.

• Recall that we had information from the computer
vision process as to how likely the extracted circles
were.

• This could simply be treated as another node.
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Adding a Node doesn’t change the rest of the
Network

If we add this new node we only need to find one new
conditional probability matrix. All the others remain
unchanged.
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