Lecture 5

Where do Bayesian Nets come from?

Building Networks from Data
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Expert knowledge

¢ In previous lectures we used the following
methodology:

1. Consult an expert to obtain the structure
2. Use available data to find the conditional probabilities
in the link matrices

e This approach dating from the 1980s assumes a

subjective structure, but objective parameters.
e However, should we trust expert opinion?
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Expert giving advice to a cat

Drawing by Kliban

Perhaps an objective approach might be better.
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Spanning Tree Algorithm

Given a set of variables (nodes) and a data set:

OOO
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Spanning Tree Algorithm

Given a set of variables (nodes) and a data set:

Find the most dependent variables and join them:

O
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Spanning Tree Algorithm

Find the most dependent variables and join them:

Bayesain networks represent dependency. We expect
that nodes joined by arcs have some dependency (though
mathematically this need not be the case).

Here’s the catch - Nodes that are not joined are assumed
conditionally independent.
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How can we measure dependency?

At the start of the course we observed that, if two
variables are independent:

P(D&S) = P(D) x P(S)
but if they are dependent in any way:
P(D&S) = P(D) x P(S|D)

Comparing P(S&D) with P(S) x P(D) is the basis of all
dependency measures.
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Dependency Measurement using an L1 metric

A joint probability, such as P(B&A), may be smaller or
larger than the product of the individual probabilities
(P(B) x P(B)). For the simplest dependency measure we
take the magnitude of the difference.

Dep(A,B) = |P(A&B) — P(A)P(B)|

Intuitively we choose to join the arcs with the largest
dependencies which leads to the maximum weighted
spanning tree algorithm.
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The Spanning Tree Algorithm

Assume we have a large data set over our variables, ie for
discrete variables A, B, C and D we have a number of
data points:

a) b2 C1 dz
a by ca ds
ay b1 Co d1
ar b1 ¢z d

1. For every pair of variables calculate the dependency,
Dep(A,B) from the data set.

2. Join the nodes in dependency order, providing the
resulting structure has no loops.
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Summing over the joint states

In order to compute:
Dep(A,B) = |P(A&B) — P(A)P(B)|
we need to sum over the joint states of the variables:
Dep(A, B) = a5 |Plai&by) — P(a) P(by)

This means we need to compute the distributions
P(A&B), P(A) and P(B) from the data set.
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Computing P(A&B)

From the data set we first find the co-occurence matrix:

A
a as as a4 [a2, bs] occurs 12 times
| ! 0/‘/ in the data set
bol 7 0] 0
gbs| 3 (<0 0
byl O 4 6 0
bl 4 2 5 1
bg| © 7 3 2

We convert this to probabilities by dividing by the
number of data points. (74 in this example)
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Computing P(A) and P(B) by marginalisation

a a9 as
b1 (0.07 0.03 0.00
b2 [ 0.09 0.00 0.00
b3]0.04 0.16 0.00
b4 0.00 0.05 0.08
b510.05 0.03 0.07
bs L0.08 0.09 0.04

»p(0.33 0.36_0.19 0. 10)\ Summing the columns gives
the probability distribution

over A: P(A)

Summing the rows gives
the probability distribution
& over B: P(B)

Joint Probability
distribution P(A&B)
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Problem

Calculate the dependency between the variables A and B
for the following two data sets:

1. Independent

a; by
a; by
a by
ag b
2. Dependent
a; by
a; b
as by
dag b

Data Analysis and Probabilistic Inference Lecture 5 Slide 14



Solution: Independent

Co-occurences:

ay das
by | 1 1
be | 1 1
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Probabilities:
a; as X
b; | 0.25 0.25 | 0.5
by | 0.25 0.25 | 0.5
¥ | 0.5 0.5

Dep(A, B) = Laxp|P(ai&b;) — P(a;) P(by)|

Dep(A,B) =

0




Solution: Dependent case

Probabilities:
Co-occurences:

a a) ag Y
b2 0 b |05 O |05
by| 0 2 b, | O 05|05

Y |05 0.5

Dep(A,B) = Y a«p|P(ai&b;) — P(a;)P(bj)|
Dep(A,B) = 0.25+0.25+0.25+0.25 — 1

Nota Bene - dependencies can be bigger than 1.
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Causal Directions

The maximum weighted spanning tree algorithm does
not give us any information on causal directions. One
way to determine these is to assume that the root nodes
represent fundamental causes and therefore all arrows
propogate from them:
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Causal Directions

If there is just one known root the resulting structure is
a decision tree. If there are many roots then a singly
connected network is created.
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Causal Directions

e Deciding which nodes are roots normally requires
expert intervention, and is therefore a subjective
process.

e There are algorithms for estimating causal directions
from data which we will discuss next lecture.
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Computing the Conditional Probabilities

We can compute the conditional probabilities from the
data as described in the first lecture:

115 _ Occurrences of [a;, bj,--- |
P(al|b~]) ~ Occurrences of [ ., bj,--- |

However, we have already computed every pair of joint
probability matrices. For a joint probability matrix we
can compute the corresponding conditional probability
matrix by normalising the columns to sum to 1, eg:

P(B|A) = P(B&A)/P(A)
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Other measures of dependency

e The measure we have used so far is an unweighted
L1 metric.

¢ Its characteristic is that as the probabilities become
small they contribute less to the dependency.

e This effect reflects the fact that we have little
information on rare events
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The Weighted L1 Metric

Another metric is formed by weighting the difference in
magnitude by the joint probability:

Dep(A, B) = Yaxp P(ai&by) x |P(a;&bj) — P(a;) P(by)|

The effect is to further reduce the contribution to the
dependency measure where probabilities are low.

Data Analysis and Probabilistic Inference Lecture 5 Slide 22



The L2 Metric

L2 metrics use the squared differences:
Dep(A, B) = Ea«p(P(ai&b;) — P(ai)P(b)))?
There is a weighted form:

Dep(A, B) = Laxp P(ai&b;) x (P(a:&by) — P(a;) P(by))?
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Mutual Entropy

The most widely used measure in comparing probability
distributions is Mutual Entropy. It is also called Mutual
Information or the Kullback-Liebler divergence.

Dep(A, B) = Yaxp P(ai&bj)loga ((P(ai&b;)/(P(ai) P(by)))

e It is zero when two variables are completely
independent

e It is positive and increasing with dependency when
applied to probability distributions

e It is independent of the actual value of the probability
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Justification of Mutual Entropy

The chief justification for using mutual entropy for the
spanning tree algorithm is that it minimises the
difference between the joint probability distribution

calculated from the data and the joint probability of the
network.

I(Pn, Pp) ZPD )loga[Pp(X)/Pn(X)]
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Joint Probability distribution of a Network

The joint probability of any Bayesian network is the
product of the conditional probabilities given the parents
with the prior probabilities of the roots.

P(A)

For a simple three node tree: e

®  ©

P(A&B&C) = P(A) x P(B|A) x P(C|A)
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Joint Probability distribution of a data set

Given a data set of 3 variables(A, B and C) with N data
points, the joint probability distribution of the data is
found by frequency.

For each possible combination of states [a;, b, ¢;] we can
calculate:

P(ai, bj,ck) = (Number of Occurrences of [a;, bj, ci|)/N

Data Analysis and Probabilistic Inference Lecture 5 Slide 27



Example: Building a Spanning Tree

Given variables A, B and C and a data set:

(a1, b1, c1][ag, b, c1][ag, be, ca][ar, by, Ca]

The co-occurrence probability matrix for A and B is:

ay dy P(B)

by |05 0 | 0.5

bs O 05| 0.5
P(A) |05 05

Dep(A, B) = Y axp P(ai&by)logs ((P(ai&by)/(P(ai) P(b;)))

= 0.5logs2 + 0.5logs2 = 1

A and B are completely dependent.
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Example: Building a Spanning Tree

Next Consider A and C:

[a1,b1,c1][ag, be, c1][ag, be, ca][ar, by, Ca]

The co-occurrence probability matrix for A and C is:

a) (o)) P(C)

Ci 0.25 0.25 | 0.5

Co 0.25 0.25| 0.5
P(A)| 0.5 05
Dep(A,C) =

0.25logs 1 +0.25logs 1 +0.25loge 1 +0.25logs 1 = 0

A and C are completely independent.
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Example: Building a Spanning Tree

Similarly we find that B and C are completely
independent, thus our spanning tree takes the form:

®» ©
@)

We need further information (expert advice) to determine
the direction of the link between A and B.
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Dependency and Correlation

An alternative dependency measure is correlation (more
intuitive to anybody who has studied statistics).

However, correlation only measures linear dependency in
a numerical context.

To use it we must represent our states by integers in a
meaningful way. In effect we need an inverse
quantization that maps our states to numeric values.
This may not be an easy thing to do, but we could well
have numerical (as opposed to state) data for a given
application.
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Dependency and Correlation

Consider the data set in the previous example:
[a1, b1, c1][ag, be, c1][ag, ba, co][ar, by, ¢

Let us suppose that it can be mapped to numeric values
as follows:

1,1,1][2,2,1][2,2,2][1,1,2]
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Dependency and Correlation

given that the variance of A is defined as:

(@—ay)?/(N—-1)

™=

Oop =
1

~
Il

and the covariance of A and B is defined as:

N
Tap=) (@a—a)(b—by)/(N-1)
i=1

The correlation between A and B is defined as:

C(A,B) =XaB/+\/0a0B
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Dependency and Correlation

1,1,1]2,2,1]]2,2,2][1,1,2]
Using correlation on the above data set we get:

a=b=c=15
Cqa=0p,=0,=1/3
Xap=(0.254+0.25+0.25+0.25)/3=1/3
Yac=(0.25-0.25+0.25-0.25)/3=0
Dependence(A,B) = |C(A,B)| =1
Dependence(A,C) = |C(A,C)| =0

In this toy example correlation gives the same result as
mutual entropy.
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Correlation vs Mutual Information

Correlation only identifies linear relationships

Mutual information measures dependency and so it is
more general in encapsulating non-linear relationships.

However it does not tell us anything about how the
variables are related
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