
Lecture 6

Cause and Independence
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Joint Probability Distributions

A data set has a joint probability
distribution:

P(ai,bj,ck) = (No ([ai ,bj,ck ]))/N

a3 b2 c1
a2 b3 c5
a4 b3 c1
a1 b1 c2
a2 b2 c1

etc

And so does a network:

P(A&B&C)=P(A)×P(B|A)×P(C|A)
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Network joint Probability Distribution

• Last lecture we introduced the Maximally Weighted
Spanning tree algorithm which tries to find a
network with a joint probability distribution as close
as possible to the distribution of the data set.

• Calculating the joint probability of a data point from
the network is very much faster than calculating it
from the data set.

• Inference in networks is achieved by probability
propagation. Theoretically it could also be calculated
directly from the data distribution but for non trivial
problems this is computationally infeasible.
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Multi-Trees (Heckerman)

• A simple but rudementary method of using Bayesian
networks for inference is to make use of the joint
probability of the variables.

• A low joint probability implies that the data point
under test does not fit the model well and vice versa.

• This property can be used to reduce the size of an
classifier by one variable - along with other things
which we will discuss in due course.
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Multi-tree example

Given a data set with the root identified as D:

[a1,b1,c1,d1][a2,b1,c1,d1][a2,b1,c2,d1][a2,b2,c1,d1]
[a1,b2,c2,d2][a2,b1,c1,d2][a2,b2,c2,d2][a1,b1,c1,d2]
[a1,b1,c1,d3][a2,b2,c2,d3][a2,b2,c1,d3][a2,b2,c2,d3]

Split the data into different sets corresponding to the
states of D:
• D = d1: [a1,b1,c1][a2,b1,c1][a2,b1,c2][a2,b2,c1]

• D = d2: [a1,b2,c2][a2,b1,c1][a2,b2,c2][a1,b1,c1]

• D = d3: [a1,b1,c1][a2,b2,c2][a2,b2,c1][a2,b2,c2]
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Multi-tree example

Now build a network for each data set. These
“conditional” networks will have one less variable than
the original network.

Causal directions may need to be determined for these
networks.
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Multi-tree example

• For a given data point: (ai ,bj,ck) we calculate the
joint probability using each tree found:

• Evidence for d1 is PD=d1(ai&bj&ck)
• Evidence for d2 is PD=d2(ai&bj&ck)
• Evidence for d3 is PD=d3(ai&bj&ck)

• The evidence can be normalised to form a
distribution over the states of D.

Note that there is a different spanning tree for each state
of the class variable.
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Independence

Independence is a clearly defined notion with well
defined measures.

Given two variables X and Y , if changing X does not
change Y and vice versa then X and Y are independent.

In a network if there is no path between two variables
they are independent.

Nodes E and F are indepen-
dent of nodes A, B, C and D.
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Arcs and Independence

It is possible for two variables to be connected by a path
in a network and still be independent. This is because a
conditional probability matrix can express no
dependency. Consider

P(B|A) =

[
0.5 0.5
0.5 0.5

]
For any λ evidence on B say [b1,b2] we have that:

λB(A) = [b1,b2]

[
0.5 0.5
0.5 0.5

]
= [(b1 +b2)/2,(b1 +b2)/2]

In other words the λ message contains no evidence and
therefore A does not change when B changes.
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Arcs and Independence

• So in theory, the absence of an arc in a network is
more significant than the presence of an arc.

• However in practice we should avoid having arcs
expressing very low dependency in networks.

• The spanning tree algorithm can help in this respect.
Instead of continuing to include arcs which until we
create a connected graph we can terminate the
process when the dependency becomes too low to be
significant.
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Dependency Separation (d-separation)

Any two variables X and Y which are not directly
connected by an arc are conditionally independent if
there is a set of nodes Z such that knowledge of Z makes
X and Y independent. The set Z is said to d-separate X
and Y .

Both nodes A and B d-
separate C and D.
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Causal Directions

• Bayesian networks have a causal direction
associated with the arcs. The arrow points from
cause to effect.

• The notion of cause in a Bayesian network comes
from the idea of conditional probability:

P(A&B) = P(A)P(B|A)

• If P(B|A) = P(B) then A and B are independent, if not
we think of A causing (or influencing) B, since, given
A, B’s probability distribution has changed

• However there is nothing in the underlying
mathematical theory that helps us to determine
causal directions. Instead we usually turn to the
semantics of the application to do this.
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Causal Directions

• So far we have taken our causal directions from
knowledge about the root variables in our network.

• Knowledge of this kind can come from:
• Our understanding of the semantics (expert advice)
• Temporal sequences of events (Granger Causality)

• In certain circumstances, it is also possible to
determine cause by examining variable
independence.
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Possible configurations of connected triplets
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Non-colliders

For the non colliders A and B are conditionally
independent given C.

If C is instantiated no messages pass
from A to B.
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Colliders

However for a collider (multiple parent), the nodes A and
B are only independent if there is no information on C.

Operating Equation 1:

λC(ai) =
m

∑
j=1

πC(bj)
n

∑
k=1

P(ck |ai&bj)λ (ck)

Converging paths are blocked when there is no λ

evidence.

λ (C) = [1,1,1 · · ·1]
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Marginal Independence

Converging paths are blocked when there is no λ

evidence.

λ (C) = [1,1,1 · · ·1]

Given a data set for the triplet A−C−B we can measure
the dependence between A and B using all the data. (ie
with no information on C).

If this is low we may suspect that the configuration is a
multiple parent.
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Conditional Independence

C is instantiated:

λ (C) = [0,0,1 · · ·0]

Alternatively we can partition our data according to the
states of C, and then compute a set of dependency values
(one for each state of C).

If any of these is high we may again suspect that the
configuration is a multiple parent.
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Practical Computation

Given a triplet, partition the data according to the states
of the middle node C, and calculate the dependency of
the other variables A,B for each set.

if Dep(A,B) small, and some Dep(A,B)C=cj is large then
the configuration is likely to be a multiple parent.
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Computation from the joint probability matrix

Rather than compute the dependencies from the data we
can marginalise the joint probability of the triplet:

P(A&B) = ∑C P(A&B&C)

For any joint state [ai ,bj] we sum all the matrix entries
[ai ,bj,ck ].

We use P(A&B) to calculate the Dep(A,B) which is the
dependence of A and B with no information about C and
is called the marginal independence.

Data Analysis and Probabilistic Inference Lecture 6 Slide 20



Computation from the joint probability matrix

Similarly we can use the joint probability matrix to
calculate the conditional probabilities:

P(A&B|C) = P(A&B&C)/P(C)

If we think of P(A&B&C) as having a column for each
state of C and a row for each joint state of A and B, then
we normalise each column into a probability
distribution.

We then compute a separate value of Dep(A,B) for each
column. Adding these together gives us a measure of
conditional dependence. If this is close to zero the
configuration is not a collider.
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Algorithm for determining causal directions

• compute the maximally weighted spanning tree
• for each connected triplet in the spanning tree

• compute the joint probability of the triplet
• compute the marginal dependence and conditional

dependence
• if the marginal dependence is low and the conditional

dependence is high put in causal directions
corresponding to a collider (multiple parent).

• propagate the causal arrows as far as possible. eg:
given:

If A and C are independent given B, B is the parent
of C and vice versa.
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Example of finding causal directions

Start by finding the spanning tree
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Example of finding causal directions

Find all multiple parents using marginal independence
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Example of finding causal directions

Propagate arrows where possible
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Example of finding causal directions

Continue to the leaf nodes
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Problem

Given the following data, what arc directions would you
give to the triple A−B−C.

a1 b1 c1

a1 b1 c1

a2 b1 c2

a2 b1 c2

a1 b2 c2

a1 b2 c2

a2 b2 c1

a2 b2 c1
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Problem

Given the following data, what arc directions would you
give to the triple A−B−C.

a1 b1 c1

a1 b1 c1

a2 b1 c2

a2 b1 c2

a1 b2 c2

a1 b2 c2

a2 b2 c1

a2 b2 c1

• If we ignore B then A and C are
completely independent.

• However given B = b1 or B = b2
there is complete dependence.

• Thus the causal picture is
A→ B← C
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Problems in identifying causal directions

• Our dependency measures are unlikely to give us a
decisive result (independent or dependent). We need
heuristic thresholds in practice.

• We may find few (or no) cases of multiple parents.

• If there is an unknown (or unaccounted) source of
dependency between two variables then the method
will give incorrect results.

• We need to compute joint probabilities of triples of
variables, hence there may computational problems.
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Structure and Parameter Learning

• Bayesian networks combine both structure and
parameters.

• We can express our knowledge (if any) about the data
by choosing a network structure.

• Alternatively we can learn our network structure
from data.

• We then optimise the performance by adjusting the
parameters (link matrices).
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Other machine learning formalisms

• Neural Networks
• Neural networks are a class of inference systems

which offer just parameter learning.
• Generally it is very difficult to embed knowledge into

a neural net, or infer a structure once the learning
phase is complete.

• Rule based systems (Logic)
• Traditional rule based inference systems have just

structure (sometimes with a rudimentary parameter
mechanism).

• They do offer structure modification through methods
such as rule induction.

• However, they are difficult to optimise using large
data sets.
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Inferring Cause

• Neural networks are most applicable when we have
no causal knowledge, but correspondingly we cannot
extract causal information from them.

• Rule based systems are most applicable when we
have good causal knowledge as they can represent it
well.

• Bayesian networks can incorporate known causal
relations, but also have the potential to learn cause
from data.
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Learning Cause

• The notion of learning cause from data caused
considerable interest in data mining applications -
for example genetics.

• Microarray data can measure simultaneous activities
of genes normal and cancerous cells. We could
potentially learn causal networks from these using
the methods described above.

• However to date the large number of variables, small
number of data sets and high experimental error has
meant the technique has not met with huge success.

• However it remains an intriguing idea as data
volumes and accuracy expands.
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