
Lecture 7

Model Accuracy
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Joint Probability

We noted previously that:

The joint probability of any Bayesian network is the
product of the conditional probabilities given the parents
with the prior probabilities of the roots.

For a simple three node tree:

P(A&B&C)=P(A)×P(B|A)×P(C|A)

Given a data point (ai ,bj,ck) the joint probability
P(ai ,bj,ck) tells us how well that point fits the model.

Data Analysis and Probabilistic Inference Lecture 7 Slide 2



Model Accuracy

Suppose we have a data set Ds and a Bayesian network
Bn, and we write the joint probability of the network as
P(Bn) then we can define the likelihood of the data set
given the network as:

P(Ds|Bn) = ∏
data

P(Bn)

The higher the value of P(Ds|Bn) the closer the data
distribution is to the joint probability distribution of the
variables.
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Maximum Liklihood

The concept of model accuracy is closely related to
maximum liklihood.

We find the product of probabilities of each data point.
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A Simple Example

Suppose we have the following data set and model:

X Y
x1 y1
x2 y1
x2 y2
x2 y2

P(X)=
[

1/4 3/4
]

P(Y |X)=

[
1 1/3
0 2/3

]
P(Bn) = P(X&Y ) = P(X)P(Y |X)

P(Ds|Bn)= ∏
data

P(Bn)= (1/4×1)×(3/4×1/3)×(3/4×2/3)×

(3/4×2/3) = 1/64 = 0.0156
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A Simple Example

Suppose we now choose a different model for the same
data:

X Y
x1 y1
x2 y1
x2 y2
x2 y2

P(X)=
[

1/4 3/4
]

P(Y )=
[

1/2 1/2
]

P(Bn) = P(X&Y ) = P(X)P(Y )

P(Ds|Bn)= ∏
data

P(Bn)= (1/4×1/2)×(3/4×1/2)×(3/4×1/2)×

(3/4×1/2) = 0.0066
Data Analysis and Probabilistic Inference Lecture 7 Slide 6



Log Likelihood

The value of P(Ds|Bn) goes down dramatically with the
number of data points. Consequently it is more common
to use the log likelihood of the data set given the model:

log2(P(Ds|Bn))

P(Ds|Bn) = 0.0156
log2P(Ds|Bn) =−6

P(Ds|Bn) = 0.0066
log2P(Ds|Bn) =−7.24
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Log Likelihood

Note that when using log liklihood the product becomes
a sum i.e.:

P(Ds|Bn) = ∏
data

P(Bn)

becomes:
log2P(Ds|Bn) = log2( ∏

data
P(Bn))

and to avoid underflow we take the log of each joint
probability and add them up:

log2P(Ds|Bn) = ∑
data

log2P(Bn)
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Minimum Description Length

• It is not surprising that the first model represents
the data better. It uses six conditional probabilities
rather than four.

• So although log2P(Ds|Bn) gives us a measure of how
well a network represents a data set it is not
sufficient to compare competing models since it will
always be maximised by adding more arcs.

• Instead we invoke the minimum description length
principle which is to choose the smallest model that
represents the data accurately.

• Thus we define an MDLScore which weighs size and
accuracy.
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Model Size

• A simple measure of model size is to count the
number of parameters required to represent the
conditional and prior probabilities.

• Each prior probability is a vector of m probability
values. However since it is a probability distribution
and sums to 1 it can be represented by m−1
parameters.

• Each link matrix has n×m probability values, but
each column is a probability distribution, hence it
can be represented by (n−1)×m parameters.
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Representing the parameters

• We know that with M bits we can represent integers
between 0 and 2M −1.

• Conversely integers up to R can be represented by
dlog2Re bits. We can also calculate the average
number of bits required to represent integers up to R
which is (log2R)/2.

• Suppose that we have N data points, and instead of
representing our parameters as probabilities we
represent them by frequency counts, then we will
need on average (log2N)/2 bits to represent each
parameter.

• This is the normal measure used to define the size of
the model parameters.
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Model Size

Suppose that the model has been defined using N points
and that we require |Bn| parameters to be able to
construct the probabilities in the prior probability vectors
and the conditional probability matrices. Then the model
size can be defined as:

Size(Bn|Ds) = |Bn|(log2N)/2
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Model Size Example

In our simple example above we used the following data
set and model:

X Y
x1 y1
x2 y1
x2 y2
x2 y2

P(X)=
[

1/4 3/4
]

P(Y |X)=

[
1 1/3
0 2/3

]
P(X) can be represented by one parameter.
P(Y |X) can be represented by two parameters.
Hence |Bn| = 3 and the number of data points N = 4
Thus:

Size(Bn|Ds) = |Bn|(log24)/2 = 3×2/2 = 3
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Problem

What is the model size for the independent model?

X Y
x1 y1
x2 y1
x2 y2
x2 y2

P(X)=
[

1/4 3/4
]

P(Y )=
[

1/2 1/2
]
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Problem

What is the model size for the independent model?

X Y
x1 y1
x2 y1
x2 y2
x2 y2

P(X)=
[

1/4 3/4
]

P(Y )=
[

1/2 1/2
]

P(X) can be represented by one parameter.
P(Y ) can be represented by one parameter.
Hence |Bn| = 2 and the number of data points N = 4
Thus:

Size(Bn|Ds) = |Bn|(log24)/2 = 2×2/2 = 2
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Overall Model Score

Since we wish to find the smallest model that will
represent the data accurately we define our measure as:

MDLScore(Bn&Ds) = |Bn|(log2N)/2− log2P(Ds|Bn)

We saw in the examples above that the lower the network
liklihood the larger the negative log likelihood becomes.
Hence the network with the lowest MDL score is the best.

This method of scoring models by subtracting the
liklihood of the model from its size was originally
developed by Gideon Schwarz in 1978 and is called the
Bayesian Information Criterion (BIC).

There is another similar score called the Akaike
Information Criterion (AIC) which we will not cover.
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A (slightly) bigger example

X Y
x1 y1
x2 y1
x2 y2
x2 y2

x2 y2
x1 y1
x1 y1
x2 y2

P(X) =
[

3/8 5/8
]

P(Y |X) =

[
1 1/5
0 4/5

]

log2P(Ds|Bn) = 3× log2(3/8)+ log2((5/8)× (1/5))+
4× log2((5/8)× (4/5))

= 3× log23−9−3−4 =−11.25
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A (slightly) bigger example

Choosing an independent model:
X Y
x1 y1
x2 y1
x2 y2
x2 y2

x2 y2
x1 y1
x1 y1
x2 y2

P(X) =
[

3/8 5/8
]

P(Y ) =
[

1/2 1/2
]

log2P(Ds|Bn) = 3× log2(3/16)+ log2(5/16)+4× log2(5/16)
= 3× log23−12+ log25−4+4× log25−16
= −15.6
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A (slightly) bigger example

The model size has gone up reflecting the fact that the
data set is twice as big:

Connected: |Bn|(log2N)/2 = 3×3/2 = 4.5
Independent: |Bn|(log2N)/2 = 2×3/2 = 3

Which gives the following MDL (or BIC) scores:

Connected: MDLScore(Bn&Ds) = 4.5+11.25 = 15.75
Independent: MDLScore(Bn&Ds) = 3+15.6 = 18.6

The data set shows a strong correlation between X and Y
and the MDL metric indicates that the connected
network, though bigger is preferable.
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Searching for the best network

• Our MDLScore opens up the possibility of choosing
between competing networks.

• We could devise heuristic tree search algorithms to
find the best network. For example with four
variables A, B, C and D:

• There is independent network (root of the search tree)
• There are C4

2 networks with one arc: A−B, A−C,
A−D, B−C, B−D and C−D

• It looks as if we might be up against a combinatorial
explosion!

• How many networks are there in total?
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Size of the search tree

• We can estimate the size of the search tree by noting
that n variables can be connected by a possible:

(n−1)+(n−2)+ ...2+1 = n× (n−1)/2 arcs.
• Since any possible arc can be present or not, there

are a total of 2(n(n−1)/2) possible networks.
• Unfortunately this is rising exponentially and for 8

variables there are 268,435,456 nodes in the search
tree

• So exhaustive search is not possible for non trivial
networks, and even singly connected networks soon
become infeasable.
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Heuristic Search

One possibility is to prune the tree during the depth first
search using some heuristic rules. Possibilities could
include:

1. If a network has a higher MDLScore that its parent
remove it from the search tree.

2. Add arcs only if the mutual information between the
variables is high

3. At each level expand only networks with low MDL
scores

These strategies can dramatically reduce the search
time, but they all run the risk of finding a sub-optimal
solution. Given that the spanning tree algorithm gives us
an aproximate model, tree search does not seem to add
much value.
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The MDL Score is not an absolute measure

MDLScore(Bn&Ds) = |Bn|(log2N)/2− log2P(Ds|Bn)

Suppose we have a data set Ds with N items, and we test
a Bayesian Network Bn against it. Let log2P(Ds|Bn) = s.

Now create a new data set Ds′ by duplicating every data
point in Ds. Ds and Ds′ will have identical probability
distributions, but log2P(Ds|Bn) = 2s

Since N has been doubled log2N increases by 1 and the
Size measure increases by the number of parameters.

Overall the MDLScore increases significantly, though the
model and data distributions have not changed.
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Measuring Predictive Accuracy

An alternative approach to model accuracy is to measure
a network’s predictive ability.

Data Analysis and Probabilistic Inference Lecture 7 Slide 24



Measuring Predictive Accuracy

Choose a target variable eg E.

For each point in the testing
data set:
• Instantiate C,S,D and F
• Calculate P ′(E)

• Calculate |P ′(E)−D(E)|
(where D(E) is the data
value of E

The smaller the average |P ′(E)−
D(E)| the more accurate the
network
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Small is beautiful

• The joint probability of the variables in a Bayesian
Network is simply the product of the conditional
probabilities and the priors of the root(s).

• If the network is an exact model of the data then it
must represent the dependency exactly.

• However, using a spanning tree algorithm this may
not be the case.

• In particular, we may not be able to insert an arc
between two nodes with some dependency because it
would form a loop.

• The effect of unaccounted dependencies is likely to
be more pronounced as the number of variables in
the network increases.
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Minimal Spanning Tree Approach

The predictive aproach can be used to minimise the
number of variables in the spanning tree. (Enrique
Sucar)

1. Build a spanning tree and obtain an ordering of the
nodes starting at the root.

2. Remove all arcs

3. Add arcs in the order of the magnitude of their
dependency

4. If the predictive ability of the network is good enough
(or the nodes are all joined) stop:
otherwise go to step 3
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