Lecture 9

Approximate Inference
Highly Dependent Data

Approach 1: Model all the dependencies:

Data
Distribution

<table>
<thead>
<tr>
<th>a₁</th>
<th>b₃</th>
<th>c₂</th>
<th>d₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₃</td>
<td>b₂</td>
<td>c₄</td>
<td>d₂</td>
</tr>
<tr>
<td>a₅</td>
<td>b₁</td>
<td>c₁</td>
<td>d₃</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

A → B → C → D
Highly Dependent Data

Approach 1: Model all the dependencies:

\[\begin{array}{cccc}
 a_1 & b_3 & c_2 & d_1 \\
 a_3 & b_2 & c_4 & d_2 \\
 a_5 & b_1 & c_1 & d_3 \\
 \vdots & \vdots & \vdots & \vdots \\
\end{array} \]

\[\begin{array}{cccc}
 A & B & C & D \\
 B & A & C & D \\
 C & B & A & D \\
 D & C & B & A \\
\end{array} \]
Highly Dependent Data

Approach 1: Model all the dependencies:

Data
Distribution

\[
\begin{array}{cccc}
 a_1 & b_3 & c_2 & d_1 \\
 a_3 & b_2 & c_4 & d_2 \\
 a_5 & b_1 & c_1 & d_3 \\
 \cdots & \cdots & \cdots & \cdots \\
\end{array}
\]

Propagating probabilities is difficult or infeasible!
Highly Dependent Data

Approach 2: Find the maximally weighted spanning tree:

<table>
<thead>
<tr>
<th>Data Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1 b_3 c_2 d_1</td>
</tr>
<tr>
<td>a_3 b_2 c_4 d_2</td>
</tr>
<tr>
<td>a_5 b_1 c_1 d_3</td>
</tr>
</tbody>
</table>

...
Highly Dependent Data

Approach 2: Find the maximally weighted spanning tree:

Data Distribution

\[
\begin{array}{cccc}
a_1 & b_3 & c_2 & d_1 \\
a_3 & b_2 & c_4 & d_2 \\
a_5 & b_1 & c_1 & d_3 \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
\end{array}
\]
Highly Dependent Data

Approach 2: Find the maximally weighted spanning tree:

Data Distribution

$\begin{align*}
a_1 & \quad b_3 & \quad c_2 & \quad d_1 \\
a_3 & \quad b_2 & \quad c_4 & \quad d_2 \\
a_5 & \quad b_1 & \quad c_1 & \quad d_3 \\
\cdots & \quad \cdots & \quad \cdots & \quad \cdots \\
\cdots & \quad \cdots & \quad \cdots & \quad \cdots \\
\cdots & \quad \cdots & \quad \cdots & \quad \cdots \\
\cdots & \quad \cdots & \quad \cdots & \quad \cdots \\
\end{align*}$

Loops are not allowed
Highly Dependent Data

Approach 2: Find the maximally weighted spanning tree:

Data Distribution

\[
\begin{array}{cccc}
 a_1 & b_3 & c_2 & d_1 \\
 a_3 & b_2 & c_4 & d_2 \\
 a_5 & b_1 & c_1 & d_3 \\
\ldots & \ldots & \ldots & \ldots \\
\end{array}
\]

Intelligent Data Analysis and Probabilistic Inference Lecture 9 Slide 8
Highly Dependent Data

Approach 2: Find the maximally weighted spanning tree:

Data Distribution

\[
\begin{align*}
 a_1 & \quad b_3 & \quad c_2 & \quad d_1 \\
 a_3 & \quad b_2 & \quad c_4 & \quad d_2 \\
 a_5 & \quad b_1 & \quad c_1 & \quad d_3 \\
 \ldots & \quad \ldots & \quad \ldots & \quad \ldots \\
 \ldots & \quad \ldots & \quad \ldots & \quad \ldots \\
 \ldots & \quad \ldots & \quad \ldots & \quad \ldots \\
 \ldots & \quad \ldots & \quad \ldots & \quad \ldots \\
\end{align*}
\]

Now the network does not model the dependencies accurately.
Exact and Approximate Inference

• If we include all dependencies then computation is exact, but can be computationally infeasible for large sized networks and large data sets.

• If we choose a spanning tree then Pearl’s fast algorithm can be used, but the inference is only approximate.
Exact Inference Methods

There are several types of exact inference algorithms including:

1. Cutset Conditioning (Pearl)
2. Node Clustering
3. Join Tree Algorithms (Lauritzen and Spiegelhalter)

All are N-P hard and thus infeasible for highly dependent data, but work in all cases.

(More to follow later in the course)
Approximate Inference Methods

Spanning trees and Naive Bayesian networks can be considered approximate inference methods. They model the most important dependencies, though not all.

Their performance can be improved by a number of techniques including:

1. Node Deletion
2. Orthogonal Data Transformation
3. Hidden Node Placement
4. Loopy belief propagation
Node Deletion

• Given a pair of highly dependent nodes it has been found that deleting one sometimes improves a network's predictive performance. This is because we are biasing the network in favour of the information represented in both nodes.

• This is a surprising result from which it is difficult to infer any general rule.

• Node deletion is something that can be tested experimentally.
Selective Naive Bayesian Network

The idea here is to use only a subset of the variables. This can be done by starting with all the variables then deleting the least dependent variable and testing for improvement in performance. Deletion continues until no further improvement can be found.

Alternatively we can test pairs of children for high conditional dependence.

Intelligent Data Analysis and Probabilistic Inference Lecture 9 Slide 14
Selective Naive Bayesian Network

Equivalently we can add variables incrementally (in dependency order) and test the performance of each network. (Langley and Sage (1994))

Choose Best Performing Network
Orthogonal Transform

Another approach is to transform the data to a space where the dependencies between variables are minimised (Chee Keong Kwoh 1996)
Orthogonal Transform

There is a standard procedure - Principal component analysis - which can find the orthogonal transformation from data.

Points are correlated in the X-Y space

Points are uncorrelated in the P-Q space

It needs adapting for the naive Bayesian network since we want to minimise conditional dependencies.

The fundamental limitation is that it de-correlates data rather than removing dependency.
Hidden Nodes (or Latent Variables)

If any two children of a parent node are not conditionally independent, they can be separated by a hidden node:

The new node represents a common cause that relates B and C. It is called hidden because we have no corresponding measured variable.

Now we look at how to obtain it statistically.
Switch Nodes

Adding hidden nodes which act as switches can simplify complex networks.

Example from Neopolitan:
Advantages of Adding Hidden Nodes

A network can always perform as well with a hidden node as it can without:
Advantages of Adding Hidden Nodes

A network can always perform as well with a hidden node as it can without:
Advantages of Adding Hidden Nodes

A network can always perform as well with a hidden node as it can without:

\[P(B|A) \quad \text{and} \quad P(C|A) \]

\[P(B|H) \quad \text{and} \quad P(C|H) \]
Using Hidden Nodes

In order to create a hidden node we need to:

1. decide how many states the hidden node is to have;
2. identify values for the three new link matrices introduced.

It may be possible to obtain hidden node information from an expert (eg the eyes example from lecture 2). For example an expert may:

1. identify a variable corresponding to the hidden node;
2. provide data for training (ie calculating the link matrices).

In general however this is not always possible.
How Many States?

- We expect that the number of states will be comparable to the number of states of the nodes it is separating.
- From the previous slides we would expect the hidden node to have at least the same number of states as its parent.
- Link matrices with too many states will have very low probabilities for some states, so a possible approach is to start with a large number of states and reduce the number depending on how many low probability states we have.
Calculating the Conditional Probabilities

1. Given estimates of:
 \(P(H|A), P(B|H), P(C|H) \) and a set of data points \([a_i, b_j, c_k]\)

2. Use each \(b_j, c_k \) to compute \(P'(A) \) from the network, calculate and accumulate an error:
 \[
 E = (P'(A) - P(a_i))^2
 \]

3. Minimise \(E \) over the data set by adjusting the elements of \(P(H|A), P(B|H), P(C|H) \)
Calculating the Conditional Probabilities

For each conditional probability $P(c_j|h_k)$ we need to find a value for:

$$\frac{\partial E}{\partial P(c_j|h_k)}$$

Then in each epoch we update the conditional probabilities using:

$$P(c_j|h_k) \Rightarrow P(c_j|h_k) - \mu \frac{\partial E}{\partial P(c_j|h_k)}$$

Gradients may be calculated analytically or numerically. A closed form equation for the gradients was developed by Chee Keong Kwoh.
Gradient Descent and Probabilities

Gradient descent has problems when applied to probability distributions. After one cycle of updating:

- Distributions will no longer sum to 1
- Individual probability values may be greater than 1 or less than 0

The conditional probability matrices must be normalised so that the columns sum to 1. This may compromise finding an optimal solution.
Propagation Strategies for calculating errors

Strategies may be alternated during the optimisation and this produces annealing behaviour:

- Back propagation
- Forward Propagation
- Mixed Propagation

Intelligent Data Analysis and Probabilistic Inference Lecture 9 Slide 28
Hidden Nodes for Removing Loops

Suppose we build a network including all the dependencies, we can then use hidden nodes to remove any loops that were formed. In the case of the simple triple we have seen that:

The process is to remove the least dependent link of a multiple parent.
Reducing bigger loops

We can apply the same process to bigger loops. Modelling the dependency between C and D we get:

The training methods still work since for any instantiation of A or B the probability propagation will finish.
Reducing bigger loops

We can continue by modelling the dependency between B and H_1:

This results in a singly connected network but with two hidden nodes.
Reducing bigger loops

We can always reduce any network a singly connected form by this method. One possible form of the Asia network is:

However, the large number of hidden nodes makes the method look less attractive.

The performance will become increasingly dependent on the training data and training process.
Reducing bigger loops

Could we simplify things by combining our two hidden nodes into one?:

The answer to this is very much data dependent. Clearly the hidden node now has to model the dependency between B and C that comes through both the common parent A and the common child D.
Limitations of the Hidden Node Method

There is clearly going to be a limit to the degree to which we can model dependencies through hidden nodes. As the dependencies become more complex, either:

1. We will need many hidden nodes, or
2. The number of states in the hidden node will become very large

In either case we may not have enough data to train the new network.
Criteria for Introducing Hidden Nodes

Given a network we can measure the conditional independence of each pair of children given the parents. If this is high we expect that benefits will occur from introducing a hidden node.

However below a certain threshold we are unlikely to benefit from a hidden node and may choose to ignore the dependency.
Other Hidden Node Methodologies

Other more heuristic methods have been suggested for employing hidden nodes.

Starting with a naive network:
Other Hidden Node Methodologies

Other more heuristic methods have been suggested for employing hidden nodes.

Find all significant conditional dependencies:

```
D

S1  S2  S3  S4  S5
```
Other Hidden Node Methodologies

Other more heuristic methods have been suggested for employing hidden nodes.

Model them with hidden nodes:
Other Hidden Node Methodologies

A similar idea can be applied starting with a spanning tree;