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Lecture 9:

Exact Inference
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Problems - highly dependent data

Data 
Distribution

a0,b3,c3,d1

a1,b1,c2,d3

a1,b2, c1,d2

&c.

&c.

A

D

CB

Variables
Find most 
dependent 
arcs that form 
a tree

Probability propagation can be difficult
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Problems - highly dependent data

Data 
Distribution

a0,b3,c3,d1

a1,b1,c2,d3
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&c.

&c.
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D

CB

Variables
Find most 
dependent 
arcs that form 
a tree

The network does not exactly represent the data!
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Methods of Exact Inference

 Exact Inference means modelling all the dependencies 
in the data. 

 This is only computationally feasible for relatively 
small or sparse networks.

 Methods:
 Cutset Conditioning (Pearl)

 Node Clustering

 Join Trees (Lauritizen and Speigelhalter)
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Cutset Conditioning

 Pearl suggested a method for propagating 
probabilities in multiply connected networks.

 The first step is to identify a cut set of nodes, which if 
instantiated makes propagation terminate correctly.
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Cutset Conditioning Example 1

 Given the Asia network, the minimum cutset consists 
of node L. If L is instantiated propagation is safe.

X

S

T

X D

T

A

D

L

S

B

A : Asia
B : Bronchitis
D : Dyspnea
L : Lung Cancer
S : Smoking
T : Tuberculosis
X : XRay (Positive)
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Cutset Conditioning Example 2

 If data is not available on L the network can be broken 
into several networks, one for each possible 
instantiated state of L.

 L has 2 states and both networks can be treated as if 
singly connected:

L1

A S

T

X D

BL1 L1 L2

A S

T

X D

BL2 L2



Data Analysis and Probabilistic Inference Lecture 9 Slide No 8

Cutset Conditioning Example 3

 Probabilities can be propagated correctly in both 
networks.

 A final value for the probability can be found by 
weighting the results according to the prior 
probability distribution for L.
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Problems with cutset conditioning 1

 The method relies on finding a small cutset. 

 If the cutset consists of n nodes each with t states then 
the probability propagations need to be carried out tn 
times.

 We see that the computation time expands 
exponentially - it is n-p hard
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Problems with cutset conditioning 2

 To combine the result of the many possible 
instantiations of the cutset we need to find priors each 
one.

 There may not be enough data to do this reliably.
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Joining dependent variables (node clustering)

 If C and D are dependent (given A) we can combine 
them into one new variable by joining them.

A

DCB

A

C&DB
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Instantiating Joined Variables

 If we instantiate one of C or D, but 
not the other, (eg D=d2) we must 
either re-calculate the link matrix:

 P(C&D|A) => P(C|A)D=d2

 or  instantiate several states:

 Given C&D has states 
 {c1d1, c2d1, c3d1,c1d2,c2d2, c3d2 }

 If we instantiate D=d2 we have
 (C&D) = {0,0,0,1,1,1}

A

C&DB

P(C&D|A)
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Limitation of joining variables

 If two variables are to be joined, C having |C| states 
and D having |D| states the new variable C&D will 
have |C|*|D| states.

 The increased number of states is undesirable and 
limits the applicability of this approach

 In the limit a fully connected network degenerates 
into one node!
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Limitation of joining variables

 The number of states in joined variables goes up 
exponentially. This means that the method is again n-p 
hard.

 The number of entries in the conditional probability 
matrices also goes up dramatically, meaning more data 
is needed to estimate them. As with cutset conditioning 
the method is limited by the size of the available data.
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A Second Node Clustering example

In the last lecture we solved the loop problem by 
the introduction of hidden nodes
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A Second Node Clustering example
Node clustering provides a simpler and more 
elegant solution:

However the method still scales badly especially 
if many nodes are involved in the cluster:



Data Analysis and Probabilistic Inference Lecture 9 Slide No 17

Join Trees (also called Junction trees)

 Join trees are a generalisation of the previous method. 

 Given a network, with all dependencies included as 
arcs, the objective is to find a systematic way of 
joining the variables such that propagation is possible 
between groups of variables.

 This idea was originally pioneered by Lauritzen and 
Speigelhalter. 
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Example - Overview

 We shall use the following medical example which is 
taken from Neapolitan’s first book:

A

B C

D E

A {a1,a2} Metastatic Cancer
B {b1,b2} Total Serum Calcium Increase
C {c1,c2} Brain Tumour
D {d1,d2} Coma
E {e1,e2} Papilledema
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The join tree

 We transform the original tree into a join tree.

 The join tree has nodes grouped according to the 
connectivity in the original graph

A

B C

D E

P(D|B&C) P(E|C)

P(C|A)P(C|A)P(B|A)

P(A)

ABC

BCD CE



Data Analysis and Probabilistic Inference Lecture 9 Slide No 20

Join tree nodes

 Each node in the join tree is give a potential table 
which is created from the original conditional 
probability matrices. 

 

 It contains evidence for the variables of that node. 

P(E|C)

P(A)P(B|A)P(C|A)

P(D|B&C)

ABC

BCD CE
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Join tree potential tables

 The potential table associated 
with each node has an entry for 
each joint state.

 It could be a conditional 
probability table based on groups 
of nodes

 (B,C,D) = P(D|B,C)

(A,B,C)

ABC

BCD CE

B,C,D) (C,E)
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Join tree nodes - joint probabilities

 For inference, a calculation is made 
of the joint probabilities of each 
node. For example

 P(B&C&D) = P(D|B&C) P(B&C) 
                     = (B,C,D) P(B&C) 

 The probabilities of individual 
variables can then be found by 
marginalisation

P(C&E)

P(A&B&C)

P(B&C&D)

ABC

BCD CE
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Instantiation and propagation

 After an instantiation, computation 
is done by propagation in just two 
passes, up followed by down. 

 In the upward pass the potential 
functions are made into conditional 
probability tables. In the downward 
pass the joint probability tables are 
calculated.

ABC

BCD CE

 
 
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Potential Representations

 A potential representation is a collection of subsets Wi 
of the original variables V (nodes in the original tree). 
Each subset has a potential table (or function)  with 
the property:

 That is to say, the product of all the potential tables is 
the joint probability of the original set of variables.

  P(V) =  (Wi)
i
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Potential Representations

 In our previous example:

 (W1) = P(A)P(B|A)P(C|A)

 (W2) = P(D|B&C)

 (W3) = P(E|C)

 P(V) = P(A&B&C&D&E)

  P(V) =  (Wi)
i

P(E|C)

P(A)P(B|A)P(C|A)

P(D|B&C)

W1

W2 W3

W1 = {A,B,C}

W2 = {B,C,D}
W3 = {C,E}
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Intersections

 For a potential representation, given an ordering, we 
can define some intersection sets at each join tree 
node:

 Si = Wi  (W1  W2   W3 . . . .   Wi-1)
 (The variables in Wi which are in any parent set)

NB Lower index => parent

 Ri = Wi - Si
 (The variables in Wi that have not appeared higher in the 

tree)
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Intersection Sets

P(E|C)

P(A)P(B|A)P(C|A)

P(D|B&C)

W1

W2 W3

W: The variables that belong to a node

S: The variables that appear higher up in the tree

R: The variables that have not been seen before
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The running intersection property

 To permit propagation, the potential representation 
must have the running intersection property:

 Given an ordered set of subsets of our variables V, for 
any adjacent sets i and j such that j is a parent of i 
(j<i):

          Si  Wj

 If this is so we can write:
p

P(V) = P(W1)  P(Ri|Si)
i=2



Data Analysis and Probabilistic Inference Lecture 9 Slide No 29

Running Intersection Property

First Possibility

First Possible Join 
Tree

P(E|C)

P(A)P(B|A)P(C|A)

P(D|B&C)

1

2 3

Everything in set S must also be 
in an immediate parent
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Running Intersection Property

First Possibility

First Possible Join 
Tree

P(E|C)

P(A)P(B|A)P(C|A)

P(D|B&C)

1

2 3

Everything in set S must also be 
in an immediate parent
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Running Intersection Property

First Possibility

First Possible Join 
Tree

P(E|C)

P(A)P(B|A)P(C|A)

P(D|B&C)

1

2 3

Everything in set S must also be 
in an immediate parent
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Running Intersection Property - another tree

P(E|C)

P(A)P(B|A)P(C|A)

P(D|B&C)

1

2

3
Everything in set S must also be 
in an immediate parent
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Running Intersection Property - another tree

P(E|C)

P(A)P(B|A)P(C|A)

P(D|B&C)

1

2

3
Everything in set S must also be 
in an immediate parent
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Running Intersection Property - another tree

P(E|C)

P(A)P(B|A)P(C|A)

P(D|B&C)

1

2

3
Everything in set S must also be 
in an immediate parent
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Summary

 The ordering is set up so that each node of the join 
tree has an associated set of variables RS

 R is a set of variables that have not been seen above

 S is a set of variables which must appear in the 
immediate parents.

 The running intersection property ensures we will 
have a link matrix P(R|S) for each node.
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Finding the ordered subset of the nodes
An ordered subset of the variables can always be found 
from a given causal graph as follows:

1. Moralise the graph (join any unjoined parents)

2. Triangulate the graph

3. Identify the cliques of the resulting graph

4. Find an ordering with the running intersection property

5. For each clique Cli find the set of its variables {Xi} 
whose parents Pa(Xi) also belong to the clique. 
Iinitialise the clique potential function y as follows:

   

(Cli) = (Wi) =  P(X|Pa(X)) 
 {Xi}  
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1,2. Moralising and triangulation

 After moralising this graph is triangulated so there is 
no need for a triangulation step

A

B C

D E

A

B C

D E
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3. Finding the Cliques

 A clique is a maximal set of nodes in which every 
node is connected to every other

A

B C

D E

Clique 1

Clique 3

Clique 2
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4. Ordering the Cliques

 Find an ordering of the cliques that has the running 
intersection property. This can be done in many ways. 
The simplest is a search algorithm.

– Start with a clique containing a root of the original 
network.

– Find all nodes that can be its children – ie those for 
which any variable appearing higher up in the 
evolving tree is in the parent.

– Recursively search from the children till all cliques are 
joined.
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5. Initialising Potential functions

For each clique we find the set of variables whose 
parents are also in the same clique. These will be the 
variables in the R set for the clique

Each variable of the original graph will appear in only 
one R set. The moralisation step ensures that this is the 
case.
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5. Initialising Potential functions

 The potential functions can then be found for each 
clique. They are the product of the conditional or prior 
probability tables with distributions over the variables 
in the R set:
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The Join tree

 The join tree is now completed.

 In all future probability calculations we use just the 
join tree, disregarding our original network

CL3CL2

CL1

CL3

CL2

CL1

The two possible join trees
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