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Lecture 10:

Propagating Probabilities in a Join Tree
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The story so far

 Data sets with high inter-variable dependency produce 
Bayesian networks with lots of loops. This is bad news 
for probability propagation.

  For these cases we aim to transform the network into a 
singly connected “join tree” where probability 
propagation is possible.
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Building a join tree

 A join tree can always be found from a given causal 
graph as follows:

1. Moralise the graph (join any unjoined parents)

2. Triangulate the graph

3. Identify the cliques of the resulting graph

4. For each clique Cli find the set of its variables {Xi} 
whose parents Pa(Xi) also belong to the clique.  This 
is normally the R set for the clique.

5. Initialise the clique potential function y as follows:
   

(Cli) = (Wi) =  P(X|Pa(X)) 
 {Xi}  

 



Moralising and triangulation
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Finding the Cliques
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Dividing the variables in Cliques

 Each original variable must be in the R set of exactly 
one clique and it's original parents must be in the 
same clique. The moralisation operation ensures that 
this is the case.

 

 We use these constraints to determine the R and S sets 
for each clique.

 

 



Initialising Potential functions

 The potential functions can then be found for each 
clique. They are the product of the conditional or prior 
probability tables with distributions over the variables 
in the R set:



Defining the tree of cliques

 We now find an ordering of the cliques with the 
running intersection property. 

 

 For each clique we search through all the other 
cliques to find any that contain all its S set variables. 
Any of these can be its parent.

 

 One way to proceed is to start from a clique that 
contains a root node and link downwards.



The Join tree

 The join tree is now completed.

 In all future probability calculations we use just the 
join tree, disregarding our original network
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The two possible join trees
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States of a clique

 Each node (or clique) in a join tree is made up of 
several variables, and therefore will have a state for 
each possible combination of those variables.

 Given that clique 3 is made up of two variables C and E

 C has states c1 and c2

 E has states e1 and e2

 then:

 Clique 3 has states {c1,e1}, {c1,e2}, {c2,e1}, {c2,e2}
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Summary of the join tree

 Clique R S States  
1 A,B,C none {a1,b1,c1} {a1,b1,c2}  
   {a1,b2,c1} {a1,b2,c2}  
   {a2,b1,c1} {a2,b1,c2}  
   {a2,b2,c1} {a2,b2,c2}  
2 D B,C {b1,c1,d1} {b1,c2,d1}  
   {b2,c1,d1} {b2,c2,d1}  
   {b1,c1,d2} {b1,c2,d2}  
   {b2,c1,d2} {b2,c2,d2}  
3 E C {c1,e1} {c1,e2}  
   {c2,e1} {c2,e2}  
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Join Tree Probability Tables

 Each node in the join tree has a 
“potential” function (W) which 
allocates a probability to each state 
of the node.

 This is initialised using the link 
matrices of the original Bayesian 
network.
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Calculating initial potential tables

 Given that clique 1 has the potential function:

 (Cl1) = (W1) = P(A)P(B|A)P(C|A)

 we calculate a potential table with an entry for each 
state, thus:

 (a1,b1,c1) = P(a1)P(b1|a1)P(c1|a1)

 (a1,b1,c2) = P(a1)P(b1|a1)P(c1|a2)
 etc.
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Calculating the probabilities

 The basis of the propagation algorithm is to find the 
joint probabilities of the cliques for a given 
instantiation.

 Initially we set the potential functions to:
 (Cl1) = (W1) = P(A)P(B|A)P(C|A)

 (Cl2) = (W2) = P(D|B&C)

 (Cl3) = (W3) = P(E|C)

 And we compute
 P(Cl1) = P(W1) = P(A&B&C)

 P(Cl2) = P(W2) = P(B&C&D)

 P(Cl3) = P(W3) = P(C&E)



Data Analysis and Probabilistic Inference Lecture 10 Slide No15 

Computing probabilities of the cliques

 Each clique has a set of variables, and we have 
divided them into those that have been seen higher in 
the tree (S) and those that have not (R) 

 
Clique Variables (W) Seen (S) New (R) 

1 A,B,C None A,B,C 
2 B,C,D B,C D 
3 C,E C E 

 

 The probability of a clique can be written:
 P(Cli) = P(Wi) = P(Ri&Si) = P(Ri|Si) P(Si)
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Overview

 The algorithm consists of two steps:

 1. Start at the bottom of the tree and propagate  
messages up to the top. And at each stage we calculate 
P(R|S).

 2. Go from the top of the tree to the bottom 
propagating  messages. At each stage we calculate 
P(S) and then P(Wi) = P(S) P(R|S)
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Getting the variable probabilities

 The original variable probabilities can be obtained by 
marginalisation from the clique probabilities. For 
example:

 P(B) = ACP(A&B&C)    (Summing over A and C)

 for the individual states of B we have:

 P(b1)=P(a1&b1&c1)+P(a1&b1&c2)+P(a2&b1&c1)

                                                               +P(a2&b1&c2)

 P(b2)=P(a1&b2&c1)+P(a1&b2&c2)+P(a2&b2&c1)

                                                               +P(a2&b2&c2)
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Computing the P(R|S) values

 For a given join tree the algorithm starts at the 
base of the tree and works upwards. 

 For our example we have initially
 (W1) = P(A)P(B|A)P(C|A)

 (W2) = P(D|B&C)

 (W3) = P(E|C)

 And the potential functions are always a 
factorisation of the joint probability of the 
original variables ie:

      P(V) = i (Wi)

 

W3 

W2 

W1 
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Computing P(R|S): 1

 We can calculate the value of P(R|S) from the 
potential function using the formula:

      P(R|S) = (Wi)/R(Wi)

 (The formal proof is in Neapolitan)
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Computing P(R|S): 2

 In general the the clique potential function may just 
represent all the accumulated evidence for that node. 
This will be the case after instantiation of one of the 
clique variables. 

 In this case we can think of the operation:
   (Wi)/R(Wi)

as a normalisation that creates the link matrix P(R|S) 
from the evidence accumulated so far.
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Computing P(R|S): 3

 If the clique potential function is the joint probability 
of the clique variables (Wi) we have that:

 P(R|S) = P(R&S)/P(S) = (Wi)/R(Wi)

as required.

If the clique potential function is already in the form 
P(R|S) then 

     R(Wi) = R P(R|S) = {1,1, . . .1}

(Since the columns of a link matrix sum to 1)
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Sending a  message

 The  message that a clique sends to its parents is:

 R(Wi)

 Note that this is evidence for the S variables of any 
clique.

The potential function of the parent is updated by 
multiplying it by this evidence.
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Updating the potential function of a clique

 The  message updates the potential function of  the 
parent clique by multiplication. For example if it 
contained evidence about a variable C and

 (C) = { (c1), (c2) }

 The entries in (Wi) are multiplied by the evidence 
where the states correspond, thus: 

 (b1,d2,c1) is multiplied by (c1)



Data Analysis and Probabilistic Inference Lecture 10 Slide No24 

Maintaining the potential representation

 During message passing at each node we:

 1. Compute the evidence for the S variables R(Wi)

 2. Divide the potential function of clique by this evidence 
so it becomes P(R|S)

 3.Multiply the potential function of the parent clique by the 
evidence.

 Note that the potential functions still are a 
representation of the joint probability:

 P(V) = i (Wi)



Data Analysis and Probabilistic Inference Lecture 10 Slide No25 

Propagation during Initialisation

 Let us consider the case where none of the variables 
have been instantiated.

 For this case we expect that all  messages will contain 
no evidence, but there will be  evidence from the root 
nodes.
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Applying the formulae to clique 3

 For the bottom clique the  message is:

        R (Wi) = EP(E|C) = {1,1} 

 Which is what we expect since P(R|S)=P(E|C)

 So the potential function of this clique and its parent 
remain unchanged.
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Calculating Clique 2 P(R2|S2)

 As no evidence was propagated the potential function 
of clique 2 is unchanged and we have that:

 P(R2|S2) = (W2)/D(W2) 

                 = P(D|B&C) / DP(D|B&C) 

                 = P(D|B&C)

 Again the  message contains no evidence:

 (B&C) = D(W2) = DP(D|B&C) = {1,1,1,1}
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The Root clique

 Clique 1 has R = {A,B,C} and S = {}

 Initially (W1) = P(A,B,C) = P(A)P(B|A)P(C|A)

 Normally the potential function would be multiplied 
by the messages from below. In this case nothing 
changes as the message contained no evidence.

 Again it turns out that P(R|S) = (W1).
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Finding the P(Si) values

 The P(Si) values are found from the top downwards.

 (In effect they are  messages)

 Clique 1 has S1={}, so P(S1) = 1

 Clique 2 has S2={B&C} but the probability of clique 
1 is P(A&B&C). Thus we can calculate P(S2) by 
marginalisation:

 P(S2) = P(B&C) = AP(A&B&C)

 eg

 P(b1&c2) = P(a1&b1&c2) + P(a2&b1&c2) etc
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Downward propagation

 The value of P(S2) (which contains evidence) allows 
us to compute the probability of clique 2:

 P(Cl2) = P(R2|S2) P(S2) = P(B&C&D)

 we now marginalise to find P(S3)

 P(S3) = P(C) = BDP(B&C&D)

 Now all the clique probabilities have been found
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Instantiation

 If we instantiate a node in a causal network this will 
change the potential tables in any node of the tree 
containing the instantiated variable.

 Let us consider instantiating the node D in our 
example. Suppose our initial potential table was:
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The new potential function of clique 2

 Since we know D=d1 all the entries for D=d2 become 
zero. Just the values in the old potential function for 
which D=d1 remain, for example:
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Calculating the values of  P(R3|S3)

 Having instantiated D we proceed as before, and 
again we find that clique 3 is unchanged so:

 (W3) = P(E|C) = P(R3|S3)

 As before the message to be propagated upwards will 
be {1,1}, no evidence.

 We proceed to clique 2 without changing  anything
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Calculating the  message at clique 2

 Using  = D(W2) we now have: 

 Thus we have the  message 

 (B&C) = {0.8,0.9,0.7,0.05}
 This evidence is from the instantiation of D which is 

not seen elsewhere in the tree
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Calculating P(R2|S2)

 Having computed the  message we can now update 
the potential function of clique 2 by dividing out the  
evidence to leave P(R|S)

 P(R2|S2) = (W2)/R2(W2) = (W2)/(W2)

                 = 

 This replaces the old potential function
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At the root node:

 We now need to combine the evidence to find the 
posterior probability of the root clique, given:

 (W1) = P(A)P(B|A)P(C|A) from the original link 
matrices and

 (B&C) evidence over the states of B&C following 
the instantiation of D

 '(W1) = (W1)*(B&C)
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Getting the probability of Clique 1

 We now just need to normalise the clique 1 potential 
function to give us the joint probability of clique 1:

P'(W1) = '(W1)/ABC'(W1)

 And now the rest of the propagation is exactly as 
before:

 P'(S2) = P'(B&C) = AP'(A&B&C) = AP'(W1)
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Getting the probability of Clique 2:

 P'(W2) = P'(R2|S2) P'(S2)

   and since, as we saw previously, 

 P'(R2|S2) = 1 for D=d1 

              and 0 for D=d2

 so P'(W2) contains just the entries from P'(S2)

 

we can now calculate 

 P'(S3) = P'(C) = BDP'(W2) (= ABP'(W1))
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Getting the probability of clique 3

 We previously calculated P(R3|S3) which is just:

 P(E|C)     (the link matrix from the original tree)

 So P'(W3) = P'(R3|S3)*P'(S3) = P(E|C)*BP'(W2)
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The probabilities of the variables

 As previously noted we can compute the posterior 
probabilities of the variables by marginalisation:

 For example:

 P'(C) = EP'(W3)

 or

 P'(C) = ABP'(W1)
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Further instantiation

 Having completed the traversal of the tree we have that 
the potential functions at each clique are the 
conditional probability matrices P(R|S).

 Thus propagation is complete and any further 
messages will contain no evidence until another 
variable is instantiated
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Timetable for the near future:

Thurs 8 Feb 9.00   Lecture 11 Graphical Models (Sesh)
Thurs 8 Feb 10.00 Tutorial 6 Graphical Models
Tue    13 Feb 16.00: Lecture 12 (Marc)
Tue    13 Feb 17.00: Lecture 13 (Marc)
Thurs 15 Feb 09.00: Lecture 14 (Marc)
Thurs 15 Feb 10.00: Tutorial 5 (Duncan)
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