Intelligent Data Analysis and Probabilistic Inference

Lecture 12: Graphical Models

Recommended reading:
Bishop, Chapter 8

Duncan Gillies and Marc Deisenroth
Department of Computing
Imperial College London
February 15, 2016

Imperial College London

Probabilistic Graphical Models

Three types of probabilistic graphical models

- Bayesian networks (directed graphical models)
- Markov random fields (undirected graphical models)
- Factor graphs

Probabilistic Graphical Models

Three types of probabilistic graphical models

- Bayesian networks (directed graphical models)
- Markov random fields (undirected graphical models)
- Factor graphs
- Nodes: Random variables
- Edges: Probabilistic relations between variables

Probabilistic Graphical Models

Three types of probabilistic graphical models

- Bayesian networks (directed graphical models)
- Markov random fields (undirected graphical models)
- Factor graphs
- Nodes: Random variables
- Edges: Probabilistic relations between variables
- Graph captures the way in which the joint distribution over all random variables can be decomposed into a product of factors depending only on a subset of these variables

Why are they useful?

- Simple way to visualize the structure of a probabilistic model
- Can be used to design/motivate new models
- Insights into properties of the model (e.g., conditional independence) by inspection of the graph
- Complex computations for inference and learning can be expressed in terms of graphical manipulations

Importance of Visualization

$$
\begin{aligned}
& \operatorname{Pr}\left(\left\{y_{g}, \gamma_{g}, t_{g k}, \beta_{g k}, l_{d}, f_{g}, z_{n}, i_{n g}\right\} \mid\left\{w_{n d}\right\}\right)=\prod_{g}^{G} p\left(y_{g} \mid \rho\right) p\left(\gamma_{g} \mid \sigma\right) p\left(f_{g} \mid \alpha\right) . \\
& \quad\left[\prod_{k}^{K} p\left(t_{g k} \mid \gamma_{g}\right) p\left(\beta_{g k} \mid t_{g k}, y_{g}\right)\right] p(\kappa \mid \alpha) \prod_{d}^{D} p\left(l_{d} \mid \kappa\right) p(\pi \mid \alpha) \prod_{n}^{N} p\left(z_{n} \mid \pi\right) \\
& \left.\quad \prod_{n}^{N} \prod_{g}^{G} p\left(i_{n g} \mid \beta, z_{n}\right) \prod_{n}^{N} \prod_{d}^{D} p\left(w_{n d} \mid i_{n g}, f, l_{d}\right)\right]
\end{aligned}
$$

From Kim et al. (NIPS, 2015)

Importance of Visualization

$$
\begin{aligned}
& \operatorname{Pr}\left(\left\{y_{g}, \gamma_{g}, t_{g k}, \beta_{g k}, l_{d}, f_{g}, z_{n}, i_{n g}\right\} \mid\left\{w_{n d}\right\}\right)=\prod_{g}^{G} p\left(y_{g} \mid \rho\right) p\left(\gamma_{g} \mid \sigma\right) p\left(f_{g} \mid \alpha\right) . \\
& \quad\left[\prod_{k}^{K} p\left(t_{g k} \mid \gamma_{g}\right) p\left(\beta_{g k} \mid t_{g k}, y_{g}\right)\right] p(\kappa \mid \alpha) \prod_{d}^{D} p\left(l_{d} \mid \kappa\right) p(\pi \mid \alpha) \prod_{n}^{N} p\left(z_{n} \mid \pi\right) \\
& \left.\quad \prod_{n}^{N} \prod_{g}^{G} p\left(i_{n g} \mid \beta, z_{n}\right) \prod_{n}^{N} \prod_{d}^{D} p\left(w_{n d} \mid i_{n g}, f, l_{d}\right)\right]
\end{aligned}
$$

From Kim et al. (NIPS, 2015)

From Kim et al. (NIPS, 2015)

Bayesian Networks (Directed Graphical Models)

From Joints to Graphs

Consider the joint distribution

$$
p(a, b, c)=p(c \mid a, b) p(b \mid a) p(a)
$$

Building the corresponding graphical model:

1. Create a node for all random variables

- Graph layout depends on the choice of factorization

From Joints to Graphs

Consider the joint distribution

$$
p(a, b, c)=p(c \mid a, b) p(b \mid a) p(a)
$$

Building the corresponding graphical model:

1. Create a node for all random variables
2. For each conditional distribution, we add a directed link (arrow) to the graph from the nodes corresponding to the variables on which the distribution is conditioned on

- Graph layout depends on the choice of factorization

From Graphs to Joints

- Joint distribution is the product of a set of conditionals, one for each node in the graph
- Each conditional is conditioned only on the parents of the corresponding node in the graph

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=p\left(x_{1}\right) p\left(x_{5}\right) p\left(x_{2} \mid x_{5}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{4} \mid x_{2}\right)
$$

In general: $\quad p(\boldsymbol{x})=\prod_{k=1}^{K} p\left(x_{k} \mid \mathrm{pa}_{k}\right)$

Example: Bayesian Regression

We are given a data set $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$ where

$$
y_{i}=f\left(x_{i}\right)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

with f unknown.
\rightarrow Find a (regression) model that explains the data

From PRML (Bishop, 2006)

Example: Bayesian Regression

We are given a data set $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$ where

$$
y_{i}=f\left(x_{i}\right)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

with f unknown.
\rightarrow Find a (regression) model that explains the data

From PRML (Bishop, 2006)

- Consider polynomials $f(x)=\sum_{j=0}^{M} w_{j} x^{j}$ with parameters $\boldsymbol{w}=\left[w_{0}, \ldots, w_{M}\right]^{\top}$.
- Bayesian regression: Place a conjugate Gaussian prior on the parameters: $p(\boldsymbol{w})=\mathcal{N}\left(\mathbf{0}, \alpha^{2} \boldsymbol{I}\right)$

Graphical Models for Bayesian Regression

From PRML (Bishop, 2006)

$$
\begin{aligned}
y & =f(x)+\varepsilon \\
p(\varepsilon) & =\mathcal{N}\left(0, \sigma^{2}\right) \\
f(x) & =\sum_{j=0}^{M} w_{j} x^{j} \\
p(\boldsymbol{w}) & =\mathcal{N}\left(\mathbf{0}, \alpha^{2} \boldsymbol{I}\right)
\end{aligned}
$$

Graphical Models for Bayesian Regression

From PRML (Bishop, 2006)

$$
\begin{aligned}
y & =f(x)+\varepsilon \\
p(\varepsilon) & =\mathcal{N}\left(0, \sigma^{2}\right) \\
f(x) & =\sum_{j=0}^{M} w_{j} x^{j} \\
p(\boldsymbol{w}) & =\mathcal{N}\left(\mathbf{0}, \alpha^{2} \boldsymbol{I}\right)
\end{aligned}
$$

Graphical Models for Bayesian Regression

From PRML (Bishop, 2006)

$$
\begin{aligned}
y & =f(x)+\varepsilon \\
p(\varepsilon) & =\mathcal{N}\left(0, \sigma^{2}\right) \\
f(x) & =\sum_{j=0}^{M} w_{j} x^{j} \\
p(\boldsymbol{w}) & =\mathcal{N}\left(\mathbf{0}, \alpha^{2} \boldsymbol{I}\right)
\end{aligned}
$$

Conditional Independence

$$
\begin{aligned}
a \Perp b \mid c & \Leftrightarrow p(a \mid b, c)
\end{aligned}=p(a \mid c), ~\{p(a, b \mid c)=p(a \mid c) p(b \mid c) .
$$

- Conditional independence properties of the joint distribution can be read directly from the graph
- No analytical manipulations required.
d-separation (Pearl, 1988)

D-Separation (Directed Graphs)

Directed, acyclic graph in which A, B, C are arbitrary, non-intersecting sets of nodes.
Does $A \Perp B \mid C$ hold?

D-Separation (Directed Graphs)

Directed, acyclic graph in which A, B, C are arbitrary, non-intersecting sets of nodes.
Does $A \Perp B \mid C$ hold?
\rightarrow Consider all possible paths from any node in A to any node in B. Any such path is blocked if it includes a node such that either

- Arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C or
- Arrows meet head-to-head at the node and neither the node nor any of its descendants is in the set C

D-Separation (Directed Graphs)

Directed, acyclic graph in which A, B, C are arbitrary, non-intersecting sets of nodes.
Does $A \Perp B \mid C$ hold?
\rightarrow Consider all possible paths from any node in A to any node in B. Any such path is blocked if it includes a node such that either

- Arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C or
- Arrows meet head-to-head at the node and neither the node nor any of its descendants is in the set C
If all paths are blocked, then A is d-separated from B by C, and the joint distribution satisfies $A \Perp B \mid C$.

Example

(a) $a \Perp b \mid c$?

(b) $a \Perp b \mid d$?

Remember: A path is blocked if it includes a node such that either

- The arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C or
- The arrows meet head-to-head at the node, and neither the node nor any of its descendants is in the set C

Markov Random Fields (Undirected Graphical Models)

Markov Random Fields

- Nodes are sets of random variables
- Links connect these nodes

Joint Distribution

- Express joint distribution $p(\boldsymbol{x})$ as a product of functions defined on subsets of variables that are local to the graph

Joint Distribution

- Express joint distribution $p(\boldsymbol{x})$ as a product of functions defined on subsets of variables that are local to the graph
- If x_{i}, x_{j} are not connected directly by a link then $x_{i} \Perp x_{j} \mid \boldsymbol{x} \backslash\left\{x_{i}, x_{j}\right\}$ (conditionally independent given everything else)

Joint Distribution

- Express joint distribution $p(\boldsymbol{x})$ as a product of functions defined on subsets of variables that are local to the graph
- If x_{i}, x_{j} are not connected directly by a link then $x_{i} \Perp x_{j} \mid \boldsymbol{x} \backslash\left\{x_{i}, x_{j}\right\}$ (conditionally independent given everything else)
- Then: In the factorization x_{i}, x_{j} never appear in a joint factor \rightarrow Cliques (fully connected subgraphs)

Joint Distribution

- Express joint distribution $p(\boldsymbol{x})$ as a product of functions defined on subsets of variables that are local to the graph
- If x_{i}, x_{j} are not connected directly by a link then $x_{i} \Perp x_{j} \mid x \backslash\left\{x_{i}, x_{j}\right\}$ (conditionally independent given everything else)
- Then: In the factorization x_{i}, x_{j} never appear in a joint factor
\rightarrow Cliques (fully connected subgraphs)
- Define factors in the decomposition of the joint to be functions of the variables in (maximum) cliques:

$$
p(x) \propto \prod_{C} \psi_{C}\left(x_{C}\right)
$$

Factorization Properties

$$
p(x)=\frac{1}{Z} \prod_{C} \psi_{C}\left(x_{C}\right)
$$

- C: maximal clique
- x_{C} : all variables in this clique
- $\psi_{C}\left(x_{C}\right)$: clique potential
- $Z=\sum_{x} \Pi_{C} \psi_{C}\left(x_{C}\right)$: normalization constant

Clique Potentials

$$
p(x)=\frac{1}{Z} \prod_{C} \psi_{C}\left(x_{C}\right)
$$

Clique potentials $\psi_{C}\left(x_{C}\right)$:

- $\psi_{C}\left(x_{C}\right) \geqslant 0$
- Unlike directed graphs, no probabilistic interpretation necessary (e.g., marginal or conditional).
- If we convert a directed graph into an MRF, the clique potentials may have a probabilistic interpretation

Normalization Constant

$$
p(x)=\frac{1}{Z} \prod_{C} \psi_{C}\left(x_{C}\right)
$$

- Gives us flexibility in the definition the factorization in an MRF
- Partition function Z is required for parameter learning (not covered in this course)
- In a discrete model with M discrete nodes each having K states, the evaluation Z requires summing over K^{M} states
\rightarrow Exponential in the size of the model
- In a continuous model, we need to solve integrals
\rightarrow Intractable in many cases
- Major limitation of MRFs

Conditional Independence

Two easy checks for conditional independence:

- $A \Perp B \mid C$ if and only if all paths from A to B pass through C. (Then, all paths are blocked)
- Alternative: Remove all nodes in C from the graph. If there is a path from A to B then $A \Perp B \mid C$ does not hold

Potentials as Energy Functions

- Look only at potential functions with $\psi_{C}\left(x_{C}\right)>0$ $\checkmark \psi_{C}\left(\boldsymbol{x}_{C}\right)=\exp \left(-E\left(\boldsymbol{x}_{C}\right)\right)$ for some energy function E

Potentials as Energy Functions

- Look only at potential functions with $\psi_{C}\left(x_{C}\right)>0$
$\checkmark \psi_{C}\left(\boldsymbol{x}_{C}\right)=\exp \left(-E\left(\boldsymbol{x}_{C}\right)\right)$ for some energy function E
- Joint distribution is the product of clique potentials
\rightarrow Total energy is the sum of the energies of the clique potentials

Example: Image Restauration

From PRML (Bishop, 2006)

- Binary image, corrupted by 10% binary noise (pixel values flip with probability 0.1).
- Objective: Restore noise-free image
\rightarrow Pairwise Markov random field that has all its variables joined in cliques of size 2

Image Restauration (2)

- MRF-based approach
- Latent variables $x_{i} \in\{-1,+1\}$ are the binary noise-free pixel values

Image Restauration (2)

- MRF-based approach
- Latent variables $x_{i} \in\{-1,+1\}$ are the binary noise-free pixel values
- Observed variables $y_{i} \in\{-1,+1\}$ are the noise-corrupted pixel values

Clique Potentials

Two types of clique potentials:

- $\psi_{x y}\left(x_{i}, y_{i}\right)=-\eta x_{i} y_{i}, \quad \eta>0$
\rightarrow Strong correlation between observed and latent variables

Clique Potentials

Two types of clique potentials:

- $\psi_{x y}\left(x_{i}, y_{i}\right)=-\eta x_{i} y_{i}, \quad \eta>0$
\rightarrow Strong correlation between observed and latent variables
- $\psi_{x x}\left(x_{i}, x_{j}\right)=-\beta x_{i} x_{j}, \quad \beta>0$ for neighboring pixels x_{i}, x_{j}
\checkmark Favor similar labels for neighboring pixels (smoothness prior)

Energy Function

Total energy:

$$
E(\boldsymbol{x}, \boldsymbol{y})=\underbrace{-\eta \sum_{i} x_{i} y_{i}}_{\text {latent-observed }} \underbrace{-\beta \sum_{\{i, j\}} x_{i} x_{j}}_{\text {latent-latent }}+\underbrace{h \sum_{i} x_{i}}_{\text {bias }}
$$

- Bias term places a prior on the latent pixel values, e.g., +1 .
- Joint distribution $p(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{Z} \exp (-E(\boldsymbol{x}, \boldsymbol{y}))$
- Fix y-values to the observed ones \mapsto Implicitly define $p(\boldsymbol{x} \mid \boldsymbol{y})$
- Example of an Ising model \downarrow Statistical physics

ICM Algorithm for Image Restauration

Noise-corrupted image, ICM, Graph-cut (From PRML (Bishop, 2006))
Iterated Conditional Modes (ICM, Kittler \& Föglein, 1984)

1. Initialize all $x_{i}=y_{i}$
2. Pick any x_{j} : Evaluate total energy $E\left(\boldsymbol{x}^{\backslash} \cup\{+1\}, y\right)$,

$$
E\left(\boldsymbol{x}^{j} \cup\{-1\}, \boldsymbol{y}\right)
$$

3. Set x_{j} to whichever state has the lower energy
4. Repeat

- Local optimum

Directed Graph \rightarrow MRF

- Moralization:
- Add additional undirected links between all pairs of parents for each node in the graph
- Drop arrows on original links
- Identify (maximum) cliques
- Initialize all clique potentials to 1
- Take each conditional distribution factor in the directed graph, multiply it into one of the clique potentials

Relation to Directed Graphs

- Directed and undirected graphs express different conditional independence properties
- Left: $a \Perp b|\varnothing, a \Perp b| c$ has no MRF equivalent
- Center: $a \Perp b|\varnothing, c \Perp d| a \cup b, a \Perp b \mid c \cup d$ has no Bayesnet equivalent

Factor Graphs

Factor Graphs

- (Un)directed graphical models express a global function of several variables as a product of factors over subsets of those variables
- Factor graphs make this decomposition explicit by introducing additional nodes for the factors themselves.

Factorizing the Joint

The joint distribution is a product of factors:

$$
p(\boldsymbol{x})=\prod_{s} f_{s}\left(\boldsymbol{x}_{s}\right)
$$

- $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$
- x_{s} : Subset of variables
- f_{s} : Factor; non-negative function of the variables \boldsymbol{x}_{s}

Factorizing the Joint

The joint distribution is a product of factors:

$$
p(\boldsymbol{x})=\prod_{s} f_{s}\left(\boldsymbol{x}_{s}\right)
$$

- $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$
- x_{s} : Subset of variables
- f_{s} : Factor; non-negative function of the variables \boldsymbol{x}_{s}
- Building a factor graph as a bipartite graph:
- Nodes for all random variables (same as in (un)directed graphical models)
- Additional nodes for factors (black squares) in the joint distribution
- Undirected links connecting each factor node to all of the variable nodes the factor depends on

Example

MRF \rightarrow Factor Graph

1. Take variable nodes from MRF
2. Create additional factor nodes corresponding to the maximal cliques \boldsymbol{x}_{s}
3. The factors $f_{s}\left(\boldsymbol{x}_{s}\right)$ equal the clique potentials
4. Add appropriate links

Not unique

Example: MRF \rightarrow Factor Graph

- MRF with clique potential $\psi\left(x_{1}, x_{2}, x_{3}\right)$
- Factor graph with factor $f\left(x_{1}, x_{2}, x_{3}\right)=\psi\left(x_{1}, x_{2}, x_{3}\right)$
- Factor graph with factors, such that

$$
f_{a}\left(x_{1}, x_{2}, x_{3}\right) f_{b}\left(x_{2}, x_{3}\right)=\psi\left(x_{1}, x_{2}, x_{3}\right)
$$

Directed Graphical Model \rightarrow Factor Graph

1. Take variable nodes from Bayesian network
2. Create additional factor nodes corresponding to the conditional distributions
3. Add appropriate links

Not unique

Example: Directed Graph \rightarrow Factor Graph

- Directed graph with factorization $p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right)$
- Factor graph with factor $f\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right)$
- Factor graph with factors $f_{a}=p\left(x_{1}\right), f_{b}=p\left(x_{2}\right), f_{c}=p\left(x_{3} \mid x_{1}, x_{2}\right)$

Removing Cycles

- Local cycles in an (un)directed graph (due to links connecting parents of a node) can be removed on conversion to a factor graph

Sum-Product Algorithm for Factor Graphs

- Factor graphs give a uniform treatment to message passing
- Two different types of messages:
- Messages $\mu_{x \rightarrow f}(x)$ from variable nodes to factors
- Messages $\mu_{f \rightarrow x}(x)$ from factors to variable nodes
- Factors transform messages into evidence for the receiving node.

Variable-to-Factor Message

- Take the product of all incoming messages along all other links
- A variable node can send a message to a factor node once it has received messages from all other neighboring factors
- The message that a node sends to a factor is made up of the messages that it receives from all other factors.

Factor-to-Variable Message

$$
\mu_{f_{s} \rightarrow x}(x)=\sum_{x_{1}} \cdots \sum_{x_{M}} f_{s}\left(x, x_{1}, \ldots, x_{M}\right) \prod_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)
$$

- Take the product of the incoming messages along all other links coming into the factor node
- Multiply by the factor associated with that node
- Marginalize over all of the variables associated with the incoming messages

Initialization

- If the leaf node is a variable nodes, initialize the corresponding messages to 1 :

$$
\mu_{x \rightarrow f}(x)=1
$$

- If the leaf node is a factor node, the message should be

$$
\mu_{f \rightarrow x}(x)=f(x)
$$

Example (1)

$$
\mu_{x_{1} \rightarrow f_{a}}\left(x_{1}\right)=1
$$

$$
\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right) \cdot 1
$$

$$
\mu_{x_{4} \rightarrow f_{c}}\left(x_{4}\right)=1
$$

$$
\mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{4}} f_{c}\left(x_{2}, x_{4}\right) \cdot 1
$$

$$
\mu_{x_{2} \rightarrow f_{b}}\left(x_{2}\right)=\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right)
$$

$$
\mu_{f_{b} \rightarrow x_{3}}\left(x_{3}\right)=\sum_{x_{2}} f_{b}\left(x_{2}, x_{3}\right) \mu_{x_{2} \rightarrow f_{b}}\left(x_{2}\right)
$$

Example (2)

From PRML (Bishop, 2006)

$$
\begin{aligned}
& \mu_{x_{3} \rightarrow f_{b}}\left(x_{3}\right)=1 \\
& \mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{3}} f_{b}\left(x_{2}, x_{3}\right) \cdot 1 \\
& \mu_{x_{2} \rightarrow f_{a}}\left(x_{2}\right)=\mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right) \\
& \mu_{f_{a} \rightarrow x_{1}}\left(x_{1}\right)=\sum_{x_{2}} f_{a}\left(x_{1}, x_{2}\right) \mu_{x_{2} \rightarrow f_{a}}\left(x_{2}\right) \\
& \mu_{x_{2} \rightarrow f_{c}}\left(x_{2}\right)=\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right) \\
& \mu_{f_{c} \rightarrow x_{4}}\left(x_{4}\right)=\sum_{x_{2}} f_{c}\left(x_{2}, x_{4}\right) \mu_{x_{2} \rightarrow f_{c}}\left(x_{2}\right)
\end{aligned}
$$

Tutorial

Marginals

For a single variable node the marginal is given as the product of all incoming messages:

$$
p(x)=\prod_{f_{i} \in \operatorname{ne}(x)} \mu_{f_{i} \rightarrow x}(x)
$$

Applications: Message Passing in Graphical Models

- Ranking: TrueSkill (Herbrich et al., 2007)
- Computer vision: de-noising, segmentation, semantic labeling, ... (e.g., Sucar \& Gillies, 1994; Shotton et al., 2006; Szeliski et al., 2008)
- Coding theory: low-density parity-check codes, turbo codes, ... (e.g., McEliece et al., 1998)
- Linear algebra: Solve linear equation systems (Shental et al., 2008)
- Signal processing: Iterative state estimation (e.g., Bickson et al., 2007; Deisenroth \& Mohamed, 2012)

References I

[1] D. Bickson, D. Dolev, O. Shental, P. H. Siegel, and J. K. Wolf. Linear Detection via Belief Propagation. In Proceedings of the Annual Allerton Conference on Communication, Control, and Computing, 2007.
[2] C. M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics. Springer-Verlag, 2006.
[3] M. P. Deisenroth and S. Mohamed. Expectation Propagation in Gaussian Process Dynamical Systems. In Advances in Neural Information Processing Systems, pages 2618-2626, 2012.
[4] R. Herbrich, T. Minka, and T. Graepel. TrueSkill(TM): A Bayesian Skill Rating System. In Advances in Neural Information Processing Systems, pages 569-576. MIT Press, 2007.
[5] B. Kim, J. A. Shah, and F. Doshi-Velez. Mind the Gap: A Generative Approach to Interpretable Feature Selection and Extraction. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems, pages 2251-2259. Curran Associates, Inc., 2015.
[6] J. Kittler and J. Föglein. Contextual Classification of Multispectral Pixel Data. IMage and Vision Computing, 2(1):13-29, 1984.
[7] R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng. Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm. IEEE Journal on Selected Areas in Communications, 16(2):140-152, 1998.
[8] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, 1988.
[9] O. Shental, D. Bickson, J. K. W. P. H. Siegel and, and D. Dolev. Gaussian Belief Propagatio Solver for Systems of Linear Equations. In IEEE International Symposium on Information Theory, 2008.
[10] J. Shotton, J. Winn, C. Rother, and A. Criminisi. TextonBoost: Joint Appearance, Shape and Context Modeling for Mulit-Class Object Recognition and Segmentation. In Proceedings of the European Conference on Computer Vision, 2006.
[11] L. E. Sucar and D. F. Gillies. Probabilistic Reasoning in High-Level Vision. Image and Vision Computing, 12(1):42-60, 1994.
[12] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, A. A. Vladimir Kolmogorov, M. Tappen, and C. Rother. A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-based Priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(6):1068-1080, 2008.

