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Problem Statement

§ Often, we are given a set of points whose density we wish to
model

§ Example: Find mean, variance of a Gaussian
MLE/MAP estimation

§ Gaussians (or similarly all other distributions we encountered so
far) have very limited modeling capabilities.

Mixture models are more flexible
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Gaussian Mixtures

ppxq “
K
ÿ

k“1

πkN
`

x | µk, Σk
˘

0 ď πk ď 1
ÿ

k

πk “ 1

§ Individual components are Gaussian distributions
§ Each component is weighted by πk
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Parameter Learning for GMMs

§ Objective: Maximum likelihood estimate of model parameters θ

§ θ :“ tπk, µk, Σk, k “ 1, . . . , Ku

§ Maximum likelihood estimate:

θ˚ “ arg max
θ

ppx|θq “ arg max
θ

K
ÿ

k“1

πkN
`

x | µk, Σk
˘

log
“ arg max

θ
log

K
ÿ

k“1

πkN
`

x | µk, Σk
˘

§ Problem: We cannot move the log into the sum
Nasty optimization problem

Iterative scheme (EM Algorithm) for learning parameters

Gaussian Mixture Models, EM, Model Selection IDAPI, Lecture 13 February 17, 2016 4



Parameter Learning for GMMs

§ Objective: Maximum likelihood estimate of model parameters θ

§ θ :“ tπk, µk, Σk, k “ 1, . . . , Ku

§ Maximum likelihood estimate:

θ˚ “ arg max
θ

ppx|θq “ arg max
θ

K
ÿ

k“1

πkN
`

x | µk, Σk
˘

log
“ arg max

θ
log

K
ÿ

k“1

πkN
`

x | µk, Σk
˘

§ Problem: We cannot move the log into the sum
Nasty optimization problem

Iterative scheme (EM Algorithm) for learning parameters

Gaussian Mixture Models, EM, Model Selection IDAPI, Lecture 13 February 17, 2016 4



Parameter Learning for GMMs

§ Objective: Maximum likelihood estimate of model parameters θ

§ θ :“ tπk, µk, Σk, k “ 1, . . . , Ku

§ Maximum likelihood estimate:

θ˚ “ arg max
θ

ppx|θq “ arg max
θ

K
ÿ

k“1

πkN
`

x | µk, Σk
˘

log
“ arg max

θ
log

K
ÿ

k“1

πkN
`

x | µk, Σk
˘

§ Problem: We cannot move the log into the sum
Nasty optimization problem

Iterative scheme (EM Algorithm) for learning parameters

Gaussian Mixture Models, EM, Model Selection IDAPI, Lecture 13 February 17, 2016 4



Parameter Learning for GMMs

§ Objective: Maximum likelihood estimate of model parameters θ

§ θ :“ tπk, µk, Σk, k “ 1, . . . , Ku

§ Maximum likelihood estimate:

θ˚ “ arg max
θ

ppx|θq “ arg max
θ

K
ÿ

k“1

πkN
`

x | µk, Σk
˘

log
“ arg max

θ
log

K
ÿ

k“1

πkN
`

x | µk, Σk
˘

§ Problem: We cannot move the log into the sum
Nasty optimization problem

Iterative scheme (EM Algorithm) for learning parameters

Gaussian Mixture Models, EM, Model Selection IDAPI, Lecture 13 February 17, 2016 4



GMM Likelihood

Assume an i.i.d. data set x “ x1, . . . , xN is given, and we want to
determine the optimal parameters θ˚ of the GMM via Maximum
Likelihood

1. Likelihood:

ppx|θq “
źN

i“1
ppxi|θq , ppxi|θq “

ÿK

k“1
πkN

`

xi | µk, Σk
˘

2. Log-likelihood:

log ppx|θq “
ÿN

i“1
log ppxi|θq “

ÿN

i“1
log

ÿK

k“1
πkN

`

xi | µk, Σk
˘

loooooooooooooooooooomoooooooooooooooooooon

“:L
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Necessary Optimality Conditions

Learning Objective
Find parameters θ˚ that maximize the log-likelihood

log ppx|θq “
ÿN

i“1
log ppxi|θq “

ÿN

i“1
log

ÿK

k“1
πkN

`

xi | µk, Σk
˘

loooooooooooooooooooomoooooooooooooooooooon

“:L

BL
Bµk

“ 0 ô
ÿN

i“1

B log ppxi|θq

Bµk
“ 0

BL
BΣk

“ 0 ô
ÿN

i“1

B log ppxi|θq

BΣk
“ 0

BL
Bπk

“ 0 ô
ÿN

i“1

B log ppxi|θq

Bπk
“ 0
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High-Level Gradients

We need to compute gradients of the form

B log ppxi|θq

Bθ

In general,

B log ppxi|θq

Bθ
“

1
ppxi|θq

Bppxi|θq

Bθ

With

ppxi|θq “
K
ÿ

j“1

πjN
`

xi | µj, Σj
˘

we get

Bppxi|θq

Bµk
“

K
ÿ

j“1

πj
BN

`

xi | µj, Σj
˘

Bµk
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In More Detail

Bppxi|θq

Bµk
“

K
ÿ

j“1

πj
BN

`

xi | µj, Σj
˘

Bµk
“

πk
BN

`

xi | µk, Σk
˘

Bµk

“ πkpxi ´ µkq
JΣ´1

k N
`

xi | µk, Σk
˘

Overall:

BL
Bµk

“

N
ÿ

i“1

B log ppxi|θq

Bµk
“

N
ÿ

i“1

1
ppxi|θq

Bppxi|θq

Bµk

“

N
ÿ

i“1

pxi ´ µkq
JΣ´1

k
πkN

`

xi | µk , Σk

˘

ř

j πjN
`

xi | µj, Σj

˘

loooooooomoooooooon

:“rik

“

N
ÿ

i“1

rikpxi ´ µkq
JΣ´1

k “ 0

ô

N
ÿ

i“1

rikxi “

N
ÿ

i“1

rikµk ô µk “

řN
i“1 rikxi
řN

i“1 rik
“

1
Nk

N
ÿ

i“1

rikxi
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Similarly...

BL
BΣk

“ 0 ô Σk “
1

Nk

N
ÿ

i“1

rikpxn ´ µkqpxn ´ µkq
J

BL
Bπk

“ 0 ô πk “
Nk

N
Requires Lagrange multipliers

§ Bad news: These results do not constitute a closed-form solution
of the parameters µk, Σk, πk of the mixture model because the
responsibilities rik depend on those parameters in a complex way.

§ Good news: Results suggest a simple iterative scheme for finding
a solution to the MLE problem.
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EM Algorithm

§ Iterative scheme for learning parameters in mixture models and
latent-variable models

1. Choose initial values for µk, Σk, πk
2. Until convergence, alternate between

§ E-step: Evaluate the responsibilities rik (posterior probability of data
point i belonging to mixture component k)

§ M-step: Use the updated responsibilities to re-estimate the
parameters µk, Σk, πk

§ Every step in the EM algorithm increases the likelihood function

§ Convergence: Check log-likelihood or the parameters
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Implementation

1. Initialize µk, Σk, πk

2. E-step: Evaluate responsibilities for every data point xi using
current parameters πk, µk, Σk:

rik “
πkN

`

xi | µk, Σk
˘

ř

j πjN
`

xi | µj, Σj
˘

3. M-step: Re-estimate parameters πk, µk, Σk using the current
responsibilities rik (from E-step):

µk “
1

Nk

ÿN

i“1
rikxi

Σk “
1

Nk

ÿN

i“1
rikpxn ´ µkqpxn ´ µkq

J

πk “
Nk

N
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Example

Demo
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The Latent-Variable Perspective

zn

xn

N

Σµ

π
ppzk “ 1q “ πk, 0 ď πk ď 1,

ÿ

k

πk “ 1

ppx|zk “ 1q “ N
`

x | µk, Σk
˘

ppxq “
ÿ

z
ppzqppx|zq “

K
ÿ

k“1

πkN
`

x | µk, Σk
˘

§ zn “ pz1, . . . , zKq is a discrete latent variable. Exactly one entry of
zn is 1, all others are 0 1-of-K code

§ For every observed data point xn there is a corresponding latent
variable zn, which indicates which mixture component generated
xn

§ Posterior ppzk “ 1|xiq “ rik corresponds to the “responsibility”
(see earlier) that mixture component k generated data point i.
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Visualizing the Responsibilities
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EM with Latent Variables (see CO-495)

§ Latent-variable perspective gives rise to a general EM algorithm
for maximum likelihood parameter estimation (regression,
classification, dimensionality reduction, density estimation, ...),
see Dempster et al., (1977)

§ EM iteratively maximizes a lower bound on the log likelihood
log ppX|θq

§ At the same time, EM iteratively minimizes the KL divergence
KLpqpZq||ppZ|X, θqq between an approximate posterior qpZq and
the true (but unknown) posterior distribution ppZ|X, θq
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Model Selection
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Model Selection
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From PRML (Bishop, 2006)

Sometimes, we have to make high-level decisions about the model we
want to use:

§ Number of components in a mixture model

§ Network architecture of (deep) neural networks

§ Type of kernel in a support vector machine

§ Degree of a polynomial in a regression problem
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Test vs Training Error
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From PRML (Bishop, 2006)

General problem:
§ Model fits training data perfectly, but may not do well on test

data Overfitting (especially with MLE)

§ Training performance ‰ test performance, but we are largely
interested in test performance

§ Need mechanisms for assessing how a model generalizes to
unseen test data Model selection
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Occam’s Razor

From crowfly.net
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Occam’s Razor (2)

p(D)

DD0

M1

M2

M3

From PRML (Bishop, 2006)

§ Choose the simplest model that explains the data reasonably well
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Cross Validation

Training Test

§ Partition your training data into L subsets
§ Train the model on L´ 1 subsets
§ Evaluate the model on the other subset

§ To reduce variability, multiple rounds of cross-validation are
performed using different partitions, and the validation results
are averaged over the rounds.

§ Train many models, compare test error
Number of training runs increases with the number of partitions
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Information Criteria

§ Correct for the bias of MLE by addition of a penalty term to
compensate for the overfitting of more complex models (with lots
of parameters)

§ Akaike Information Criterion (Akaike 1974):

ln ppx|θMLq ´M

where M is the number of model parameters
§ Bayesian Information Criterion/MDL (Schwarz 1978) (for

exponential family distributions):

ln ppxq “ ln
ż

ppx|θqppθqdθ « ln ppx|θMLq ´
1
2

M ln N

where N is the number of data points and M is the number of
parameters.

§ BIC penalizes model complexity more heavily than AIC.
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Bayesian Model Comparison

§ Place a prior ppMq on the class of models

§ Given a training set D, we compute the posterior distribution
over models as

ppMi|Dq 9 ppMiqppD|Miq

which allows us to express a preference for different models

§ Model evidence (marginal likelihood):

ppD|Miq “

ż

ppD|θMiqppθMi |MiqdθMi

§ Bayes factor for comparing two models: ppD|M1q{ppD|M2q

§ Integral often intractable1

1When would the integral be tractable?
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Bayesian Model Averaging

§ Place a prior ppMq on the class of models

§ Instead of selecting the “best” model, integrate out the
corresponding model parameters θM and average over all
models Mi, i “ 1, . . . , L

ppDq “
L
ÿ

i“1

ppMiq

ż

ppD|θMiqppθMi |MiqdθMi
loooooooooooooooomoooooooooooooooon

“ppD|Miq

§ Computationally expensive

§ Integral often intractable (still...)
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