Intelligent Data Analysis and Probabilistic Inference

Imperial College London

Lecture 13: Gaussian Mixture Models, EM, Model Selection

Recommended reading: Bishop, Chapter 1.3, 3.1, 9.2

Duncan Gillies and Marc Deisenroth
Department of Computing
Imperial College London

February 17, 2016

Problem Statement

- Often, we are given a set of points whose density we wish to model
- Example: Find mean, variance of a Gaussian
\rightarrow MLE/MAP estimation

Problem Statement

- Often, we are given a set of points whose density we wish to model
- Example: Find mean, variance of a Gaussian
\rightarrow MLE/MAP estimation
- Gaussians (or similarly all other distributions we encountered so far) have very limited modeling capabilities.
- Mixture models are more flexible

Gaussian Mixtures

$$
\begin{aligned}
& \text { p(x)= } \sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x \mid \boldsymbol{\mu}_{k}, \Sigma_{k}\right) \\
& 0 \leqslant \pi_{k} \leqslant 1 \\
& \sum_{k} \pi_{k}=1
\end{aligned}
$$

- Individual components are Gaussian distributions
- Each component is weighted by π_{k}

Parameter Learning for GMMs

- Objective: Maximum likelihood estimate of model parameters $\boldsymbol{\theta}$
- $\boldsymbol{\theta}:=\left\{\pi_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, k=1, \ldots, K\right\}$
- Maximum likelihood estimate:

Parameter Learning for GMMs

- Objective: Maximum likelihood estimate of model parameters $\boldsymbol{\theta}$
- $\boldsymbol{\theta}:=\left\{\pi_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, k=1, \ldots, K\right\}$
- Maximum likelihood estimate:

$$
\begin{aligned}
\boldsymbol{\theta}^{*}=\arg \max _{\boldsymbol{\theta}} p(\boldsymbol{x} \mid \boldsymbol{\theta}) & =\arg \max _{\boldsymbol{\theta}} \sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k^{\prime}}, \boldsymbol{\Sigma}_{k}\right) \\
& \stackrel{\log }{=} \arg \max _{\boldsymbol{\theta}} \log \sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k^{\prime}}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

Parameter Learning for GMMs

- Objective: Maximum likelihood estimate of model parameters $\boldsymbol{\theta}$
- $\boldsymbol{\theta}:=\left\{\pi_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, k=1, \ldots, K\right\}$
- Maximum likelihood estimate:

$$
\begin{aligned}
\boldsymbol{\theta}^{*}=\arg \max _{\boldsymbol{\theta}} p(\boldsymbol{x} \mid \boldsymbol{\theta}) & =\arg \max _{\boldsymbol{\theta}} \sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k^{\prime}} \boldsymbol{\Sigma}_{k}\right) \\
& \stackrel{\log }{=} \arg \max _{\boldsymbol{\theta}} \log \sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k^{\prime}}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

- Problem: We cannot move the log into the sum
- Nasty optimization problem

Parameter Learning for GMMs

- Objective: Maximum likelihood estimate of model parameters $\boldsymbol{\theta}$
- $\boldsymbol{\theta}:=\left\{\pi_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, k=1, \ldots, K\right\}$
- Maximum likelihood estimate:

$$
\begin{aligned}
\boldsymbol{\theta}^{*}=\arg \max _{\boldsymbol{\theta}} p(\boldsymbol{x} \mid \boldsymbol{\theta}) & =\arg \max _{\boldsymbol{\theta}} \sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k^{\prime}}, \boldsymbol{\Sigma}_{k}\right) \\
& \stackrel{\log }{=} \arg \max _{\boldsymbol{\theta}} \log \sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k^{\prime}}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

- Problem: We cannot move the log into the sum
- Nasty optimization problem
- Iterative scheme (EM Algorithm) for learning parameters

GMM Likelihood

Assume an i.i.d. data set $x=x_{1}, \ldots, x_{N}$ is given, and we want to determine the optimal parameters $\boldsymbol{\theta}^{*}$ of the GMM via Maximum Likelihood

1. Likelihood:

$$
p(\boldsymbol{x} \mid \boldsymbol{\theta})=\prod_{i=1}^{N} p\left(x_{i} \mid \boldsymbol{\theta}\right), \quad p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x_{i} \mid \mu_{k}, \Sigma_{k}\right)
$$

GMM Likelihood

Assume an i.i.d. data set $x=x_{1}, \ldots, x_{N}$ is given, and we want to determine the optimal parameters $\boldsymbol{\theta}^{*}$ of the GMM via Maximum Likelihood

1. Likelihood:

$$
p(\boldsymbol{x} \mid \boldsymbol{\theta})=\prod_{i=1}^{N} p\left(x_{i} \mid \boldsymbol{\theta}\right), \quad p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

2. Log-likelihood:

$$
\log p(\boldsymbol{x} \mid \boldsymbol{\theta})=\sum_{i=1}^{N} \log p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)=\underbrace{\sum_{i=1}^{N} \log \sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x_{i} \mid \mu_{k}, \Sigma_{k}\right)}_{=: L}
$$

Necessary Optimality Conditions

Learning Objective

Find parameters $\boldsymbol{\theta}^{*}$ that maximize the log-likelihood

$$
\log p(\boldsymbol{x} \mid \boldsymbol{\theta})=\sum_{i=1}^{N} \log p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)=\underbrace{\sum_{i=1}^{N} \log \sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x_{i} \mid \mu_{k}, \Sigma_{k}\right)}_{=: L}
$$

Necessary Optimality Conditions

Learning Objective

Find parameters θ^{*} that maximize the log-likelihood

$$
\begin{gathered}
\log p(\boldsymbol{x} \mid \boldsymbol{\theta})=\sum_{i=1}^{N} \log p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)=\underbrace{\sum_{i=1}^{N} \log \sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x_{i} \mid \mu_{k^{\prime}} \boldsymbol{\Sigma}_{k}\right)}_{=: L} \\
\frac{\partial L}{\partial \boldsymbol{\mu}_{k}}=\mathbf{0} \Leftrightarrow \sum_{i=1}^{N} \frac{\partial \log p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\mu}_{k}}=\mathbf{0} \\
\frac{\partial L}{\partial \boldsymbol{\Sigma}_{k}}=\mathbf{0} \Leftrightarrow \sum_{i=1}^{N} \frac{\partial \log p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\Sigma}_{k}}=\mathbf{0} \\
\frac{\partial L}{\partial \pi_{k}}=\mathbf{0} \Leftrightarrow \sum_{i=1}^{N} \frac{\partial \log p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\pi}_{k}}=\mathbf{0}
\end{gathered}
$$

High-Level Gradients

We need to compute gradients of the form

$$
\frac{\partial \log p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}}
$$

High-Level Gradients

We need to compute gradients of the form

$$
\frac{\partial \log p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}}
$$

In general,

$$
\frac{\partial \log p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}}=\frac{1}{p\left(x_{i} \mid \theta\right)} \frac{\partial p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}}
$$

High-Level Gradients

We need to compute gradients of the form

$$
\frac{\partial \log p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}}
$$

In general,

$$
\frac{\partial \log p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}}=\frac{1}{p\left(x_{i} \mid \boldsymbol{\theta}\right)} \frac{\partial p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}}
$$

With

$$
p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)=\sum_{j=1}^{K} \pi_{j} \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)
$$

we get

$$
\frac{\partial p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\mu}_{k}}=\sum_{j=1}^{K} \pi_{j} \frac{\partial \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}{\partial \boldsymbol{\mu}_{k}}
$$

In More Detail

$$
\frac{\partial p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\mu}_{k}}=\sum_{j=1}^{K} \pi_{j} \frac{\partial \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}{\partial \boldsymbol{\mu}_{k}}=
$$

In More Detail

$$
\frac{\partial p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\mu}_{k}}=\sum_{j=1}^{K} \pi_{j} \frac{\partial \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}{\partial \boldsymbol{\mu}_{k}}=\pi_{k} \frac{\partial \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k^{\prime}} \boldsymbol{\Sigma}_{k}\right)}{\partial \boldsymbol{\mu}_{k}}
$$

In More Detail

$$
\begin{aligned}
\frac{\partial p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\mu}_{k}}=\sum_{j=1}^{K} \pi_{j} \frac{\partial \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}{\partial \boldsymbol{\mu}_{k}} & =\pi_{k} \frac{\partial \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\partial \boldsymbol{\mu}_{k}} \\
& =\pi_{k}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Sigma}_{k}^{-1} \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

In More Detail

$$
\begin{aligned}
\frac{\partial p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\mu}_{k}}=\sum_{j=1}^{K} \pi_{j} \frac{\partial \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}{\partial \boldsymbol{\mu}_{k}} & =\pi_{k} \frac{\partial \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k^{\prime}} \boldsymbol{\Sigma}_{k}\right)}{\partial \boldsymbol{\mu}_{k}} \\
& =\pi_{k}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Sigma}_{k}^{-1} \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k^{\prime}}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

Overall:

$$
\frac{\partial L}{\partial \boldsymbol{\mu}_{k}}=\sum_{i=1}^{N} \frac{\partial \log p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\mu}_{k}}=\sum_{i=1}^{N} \frac{1}{p\left(x_{i} \mid \theta\right)} \frac{\partial p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\mu}_{k}}
$$

In More Detail

$$
\begin{aligned}
\frac{\partial p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\mu}_{k}}=\sum_{j=1}^{K} \pi_{j} \frac{\partial \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}{\partial \boldsymbol{\mu}_{k}} & =\pi_{k} \frac{\partial \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k^{\prime}} \boldsymbol{\Sigma}_{k}\right)}{\partial \boldsymbol{\mu}_{k}} \\
& =\pi_{k}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Sigma}_{k}^{-1} \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k^{\prime}}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

Overall:

$$
\begin{aligned}
\frac{\partial L}{\partial \boldsymbol{\mu}_{k}} & =\sum_{i=1}^{N} \frac{\partial \log p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\mu}_{k}}=\sum_{i=1}^{N} \frac{1}{p\left(x_{i} \mid \theta\right)} \frac{\partial p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\mu}_{k}} \\
& =\sum_{i=1}^{N}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Sigma}_{k}^{-1} \underbrace{\frac{\pi_{k} \mathcal{N}\left(x_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j} \pi_{j} \mathcal{N}\left(x_{i} \mid \mu_{j}, \Sigma_{j}\right)}}_{:=r_{i k}}
\end{aligned}
$$

In More Detail

$$
\begin{aligned}
\frac{\partial p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\mu}_{k}}=\sum_{j=1}^{K} \pi_{j} \frac{\partial \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}{\partial \boldsymbol{\mu}_{k}} & =\pi_{k} \frac{\partial \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k^{\prime}} \boldsymbol{\Sigma}_{k}\right)}{\partial \boldsymbol{\mu}_{k}} \\
& =\pi_{k}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Sigma}_{k}^{-1} \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k^{\prime}}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

Overall:

$$
\begin{aligned}
\frac{\partial L}{\partial \boldsymbol{\mu}_{k}} & =\sum_{i=1}^{N} \frac{\partial \log p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\mu}_{k}}=\sum_{i=1}^{N} \frac{1}{p\left(x_{i} \mid \boldsymbol{\theta}\right)} \frac{\partial p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\mu}_{k}} \\
& =\sum_{i=1}^{N}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Sigma}_{k}^{-1} \underbrace{\frac{\pi_{k} \mathcal{N}\left(x_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j} \pi_{j} \mathcal{N}\left(x_{i} \mid \mu_{j}, \Sigma_{j}\right)}}_{:=r_{i k}}=\sum_{i=1}^{N} r_{i k}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Sigma}_{k}^{-1}=\mathbf{0}
\end{aligned}
$$

In More Detail

$$
\begin{aligned}
\frac{\partial p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\mu}_{k}}=\sum_{j=1}^{K} \pi_{j} \frac{\partial \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}{\partial \boldsymbol{\mu}_{k}} & =\pi_{k} \frac{\partial \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k^{\prime}} \boldsymbol{\Sigma}_{k}\right)}{\partial \boldsymbol{\mu}_{k}} \\
& =\pi_{k}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Sigma}_{k}^{-1} \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

Overall:

$$
\begin{aligned}
\frac{\partial L}{\partial \boldsymbol{\mu}_{k}} & =\sum_{i=1}^{N} \frac{\partial \log p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\mu}_{k}}=\sum_{i=1}^{N} \frac{1}{p\left(x_{i} \mid \theta\right)} \frac{\partial p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\mu}_{k}} \\
& =\sum_{i=1}^{N}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Sigma}_{k}^{-1} \underbrace{\frac{\pi_{k} \mathcal{N}\left(x_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j} \pi_{j} \mathcal{N}\left(x_{i} \mid \mu_{j}, \Sigma_{j}\right)}}_{:=r_{i k}}=\sum_{i=1}^{N} r_{i k}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Sigma}_{k}^{-1}=\mathbf{0} \\
& \Leftrightarrow \sum_{i=1}^{N} r_{i k} \boldsymbol{x}_{i}=\sum_{i=1}^{N} r_{i k} \boldsymbol{\mu}_{k}
\end{aligned}
$$

In More Detail

$$
\begin{aligned}
\frac{\partial p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\mu}_{k}}=\sum_{j=1}^{K} \pi_{j} \frac{\partial \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}{\partial \boldsymbol{\mu}_{k}} & =\pi_{k} \frac{\partial \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k^{\prime}} \boldsymbol{\Sigma}_{k}\right)}{\partial \boldsymbol{\mu}_{k}} \\
& =\pi_{k}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Sigma}_{k}^{-1} \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

Overall:

$$
\begin{aligned}
\frac{\partial L}{\partial \boldsymbol{\mu}_{k}} & =\sum_{i=1}^{N} \frac{\partial \log p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\mu}_{k}}=\sum_{i=1}^{N} \frac{1}{p\left(x_{i} \mid \theta\right)} \frac{\partial p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\mu}_{k}} \\
& =\sum_{i=1}^{N}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Sigma}_{k}^{-1} \underbrace{\frac{\pi_{k} \mathcal{N}\left(x_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j} \pi_{j} \mathcal{N}\left(x_{i} \mid \mu_{j}, \Sigma_{j}\right)}}_{:=r_{i k}}=\sum_{i=1}^{N} r_{i k}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Sigma}_{k}^{-1}=\mathbf{0} \\
& \Leftrightarrow \sum_{i=1}^{N} r_{i k} \boldsymbol{x}_{i}=\sum_{i=1}^{N} r_{i k} \boldsymbol{\mu}_{k} \Leftrightarrow \boldsymbol{\mu}_{k}=\frac{\sum_{i=1}^{N} r_{i k} \boldsymbol{x}_{i}}{\sum_{i=1}^{N} r_{i k}}=\frac{1}{N_{k}} \sum_{i=1}^{N} r_{i k} \boldsymbol{x}_{i}
\end{aligned}
$$

Similarly...

$$
\begin{aligned}
\frac{\partial L}{\partial \boldsymbol{\Sigma}_{k}} & =\mathbf{0} \Leftrightarrow \boldsymbol{\Sigma}_{k}=\frac{1}{N_{k}} \sum_{i=1}^{N} r_{i k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top} \\
\frac{\partial L}{\partial \pi_{k}} & =\mathbf{0} \Leftrightarrow \pi_{k}=\frac{N_{k}}{N} \quad \mapsto \text { Requires Lagrange multipliers }
\end{aligned}
$$

Similarly...

$$
\begin{aligned}
& \frac{\partial L}{\partial \boldsymbol{\Sigma}_{k}}=\mathbf{0} \Leftrightarrow \boldsymbol{\Sigma}_{k}=\frac{1}{N_{k}} \sum_{i=1}^{N} r_{i k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top} \\
& \frac{\partial L}{\partial \pi_{k}}=\mathbf{0} \Leftrightarrow \pi_{k}=\frac{N_{k}}{N} \quad \text { Requires Lagrange multipliers }
\end{aligned}
$$

- Bad news: These results do not constitute a closed-form solution of the parameters $\mu_{k}, \Sigma_{k}, \pi_{k}$ of the mixture model because the responsibilities $r_{i k}$ depend on those parameters in a complex way.
- Good news: Results suggest a simple iterative scheme for finding a solution to the MLE problem.

EM Algorithm

- Iterative scheme for learning parameters in mixture models and latent-variable models

1. Choose initial values for $\boldsymbol{\mu}_{k}, \Sigma_{k}, \pi_{k}$
2. Until convergence, alternate between

- E-step: Evaluate the responsibilities $r_{i k}$ (posterior probability of data point i belonging to mixture component k)
- M-step: Use the updated responsibilities to re-estimate the parameters $\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, \pi_{k}$
- Every step in the EM algorithm increases the likelihood function
- Convergence: Check log-likelihood or the parameters

Implementation

1. Initialize $\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, \pi_{k}$

Implementation

1. Initialize $\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, \pi_{k}$
2. E-step: Evaluate responsibilities for every data point x_{i} using current parameters $\pi_{k}, \boldsymbol{\mu}_{k}, \Sigma_{k}$:

$$
r_{i k}=\frac{\pi_{k} \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j} \pi_{j} \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}
$$

Implementation

1. Initialize $\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, \pi_{k}$
2. E-step: Evaluate responsibilities for every data point x_{i} using current parameters $\pi_{k}, \boldsymbol{\mu}_{k}, \Sigma_{k}$:

$$
r_{i k}=\frac{\pi_{k} \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j} \pi_{j} \mathcal{N}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}
$$

3. M-step: Re-estimate parameters $\pi_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}$ using the current responsibilities $r_{i k}$ (from E-step):

$$
\begin{aligned}
\boldsymbol{\mu}_{k} & =\frac{1}{N_{k}} \sum_{i=1}^{N} r_{i k} \boldsymbol{x}_{i} \\
\boldsymbol{\Sigma}_{k} & =\frac{1}{N_{k}} \sum_{i=1}^{N} r_{i k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\top} \\
\pi_{k} & =\frac{N_{k}}{N}
\end{aligned}
$$

Example

Demo

The Latent-Variable Perspective

$$
\begin{aligned}
& p\left(z_{k}=1\right)=\pi_{k}, \quad 0 \leqslant \pi_{k} \leqslant 1, \sum_{k} \pi_{k}=1 \\
& p\left(\boldsymbol{x} \mid z_{k}=1\right)=\mathcal{N}\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right) \\
& p(\boldsymbol{x})=\sum_{\boldsymbol{z}} p(\boldsymbol{z}) p(\boldsymbol{x} \mid \boldsymbol{z})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k^{\prime}}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

- $\boldsymbol{z}_{n}=\left(z_{1}, \ldots, z_{K}\right)$ is a discrete latent variable. Exactly one entry of z_{n} is 1 , all others are $0 \mapsto 1$-of- K code

The Latent-Variable Perspective

$$
\begin{aligned}
& p\left(z_{k}=1\right)=\pi_{k}, \quad 0 \leqslant \pi_{k} \leqslant 1, \sum_{k} \pi_{k}=1 \\
& p\left(\boldsymbol{x} \mid z_{k}=1\right)=\mathcal{N}\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right) \\
& p(\boldsymbol{x})=\sum_{\boldsymbol{z}} p(\boldsymbol{z}) p(\boldsymbol{x} \mid \boldsymbol{z})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k^{\prime}}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

- $z_{n}=\left(z_{1}, \ldots, z_{K}\right)$ is a discrete latent variable. Exactly one entry of z_{n} is 1 , all others are $0 \mapsto 1$-of- K code
- For every observed data point x_{n} there is a corresponding latent variable \boldsymbol{z}_{n}, which indicates which mixture component generated x_{n}

The Latent-Variable Perspective

$$
\begin{aligned}
& p\left(z_{k}=1\right)=\pi_{k}, \quad 0 \leqslant \pi_{k} \leqslant 1, \sum_{k} \pi_{k}=1 \\
& p\left(\boldsymbol{x} \mid z_{k}=1\right)=\mathcal{N}\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right) \\
& p(\boldsymbol{x})=\sum_{\boldsymbol{z}} p(\boldsymbol{z}) p(\boldsymbol{x} \mid \boldsymbol{z})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k^{\prime}}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

- $z_{n}=\left(z_{1}, \ldots, z_{K}\right)$ is a discrete latent variable. Exactly one entry of z_{n} is 1 , all others are $0 \mapsto 1$-of- K code
- For every observed data point x_{n} there is a corresponding latent variable \boldsymbol{z}_{n}, which indicates which mixture component generated x_{n}
- Posterior $p\left(z_{k}=1 \mid x_{i}\right)=r_{i k}$ corresponds to the "responsibility" (see earlier) that mixture component k generated data point i.

Visualizing the Responsibilities

From PRML (Bishop, 2006)

EM with Latent Variables (see CO-495)

- Latent-variable perspective gives rise to a general EM algorithm for maximum likelihood parameter estimation (regression, classification, dimensionality reduction, density estimation, ...), see Dempster et al., (1977)
- EM iteratively maximizes a lower bound on the log likelihood $\log p(\boldsymbol{X} \mid \boldsymbol{\theta})$
- At the same time, EM iteratively minimizes the KL divergence $\mathrm{KL}(q(\boldsymbol{Z}) \| p(\boldsymbol{Z} \mid \boldsymbol{X}, \boldsymbol{\theta}))$ between an approximate posterior $q(\boldsymbol{Z})$ and the true (but unknown) posterior distribution $p(\boldsymbol{Z} \mid \boldsymbol{X}, \boldsymbol{\theta})$

Model Selection

Model Selection

From PRML (Bishop, 2006)

Sometimes, we have to make high-level decisions about the model we want to use:

- Number of components in a mixture model
- Network architecture of (deep) neural networks
- Type of kernel in a support vector machine
- Degree of a polynomial in a regression problem

Test vs Training Error

From PRML (Bishop, 2006)
General problem:

- Model fits training data perfectly, but may not do well on test data \rightsquigarrow Overfitting (especially with MLE)

Test vs Training Error

From PRML (Bishop, 2006)
General problem:

- Model fits training data perfectly, but may not do well on test data \rightsquigarrow Overfitting (especially with MLE)
- Training performance \neq test performance, but we are largely interested in test performance

Test vs Training Error

From PRML (Bishop, 2006)
General problem:

- Model fits training data perfectly, but may not do well on test data \Vdash Overfitting (especially with MLE)
- Training performance \neq test performance, but we are largely interested in test performance
- Need mechanisms for assessing how a model generalizes to unseen test data Model selection

Occam's Razor
occaM's Razor
(OKHATI'S RAZOR)
EvERTHITINK ELSE BENES EQUKL, CHOOSE THE LESS COMPLEX HYPOTHESIS Fit

OUERRITTING
From crowfly.net

Occam's Razor (2)

From PRML (Bishop, 2006)

- Choose the simplest model that explains the data reasonably well

Cross Validation

- Partition your training data into L subsets
- Train the model on $L-1$ subsets
- Evaluate the model on the other subset

Cross Validation

- Partition your training data into L subsets
- Train the model on $L-1$ subsets
- Evaluate the model on the other subset
- To reduce variability, multiple rounds of cross-validation are performed using different partitions, and the validation results are averaged over the rounds.

Cross Validation

- Partition your training data into L subsets
- Train the model on $L-1$ subsets
- Evaluate the model on the other subset
- To reduce variability, multiple rounds of cross-validation are performed using different partitions, and the validation results are averaged over the rounds.
- Train many models, compare test error

Cross Validation

- Partition your training data into L subsets
- Train the model on $L-1$ subsets
- Evaluate the model on the other subset
- To reduce variability, multiple rounds of cross-validation are performed using different partitions, and the validation results are averaged over the rounds.
- Train many models, compare test error

Number of training runs increases with the number of partitions

Information Criteria

- Correct for the bias of MLE by addition of a penalty term to compensate for the overfitting of more complex models (with lots of parameters)

Information Criteria

- Correct for the bias of MLE by addition of a penalty term to compensate for the overfitting of more complex models (with lots of parameters)
- Akaike Information Criterion (Akaike 1974):

$$
\ln p\left(x \mid \boldsymbol{\theta}_{\mathrm{ML}}\right)-M
$$

where M is the number of model parameters

Information Criteria

- Correct for the bias of MLE by addition of a penalty term to compensate for the overfitting of more complex models (with lots of parameters)
- Akaike Information Criterion (Akaike 1974):

$$
\ln p\left(x \mid \boldsymbol{\theta}_{\mathrm{ML}}\right)-M
$$

where M is the number of model parameters

- Bayesian Information Criterion/MDL (Schwarz 1978) (for exponential family distributions):

$$
\ln p(\boldsymbol{x})=\ln \int p(\boldsymbol{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta} \approx \ln p\left(\boldsymbol{x} \mid \boldsymbol{\theta}_{\mathrm{ML}}\right)-\frac{1}{2} M \ln N
$$

where N is the number of data points and M is the number of parameters.

Information Criteria

- Correct for the bias of MLE by addition of a penalty term to compensate for the overfitting of more complex models (with lots of parameters)
- Akaike Information Criterion (Akaike 1974):

$$
\ln p\left(\boldsymbol{x} \mid \boldsymbol{\theta}_{\mathrm{ML}}\right)-M
$$

where M is the number of model parameters

- Bayesian Information Criterion/MDL (Schwarz 1978) (for exponential family distributions):

$$
\ln p(\boldsymbol{x})=\ln \int p(\boldsymbol{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta} \approx \ln p\left(\boldsymbol{x} \mid \boldsymbol{\theta}_{\mathrm{ML}}\right)-\frac{1}{2} M \ln N
$$

where N is the number of data points and M is the number of parameters.

- BIC penalizes model complexity more heavily than AIC.

Bayesian Model Comparison

- Place a prior $p(M)$ on the class of models

Bayesian Model Comparison

- Place a prior $p(M)$ on the class of models
- Given a training set \mathcal{D}, we compute the posterior distribution over models as

$$
p\left(M_{i} \mid \mathcal{D}\right) \propto p\left(M_{i}\right) p\left(\mathcal{D} \mid M_{i}\right)
$$

which allows us to express a preference for different models

[^0]
Bayesian Model Comparison

- Place a prior $p(M)$ on the class of models
- Given a training set \mathcal{D}, we compute the posterior distribution over models as

$$
p\left(M_{i} \mid \mathcal{D}\right) \propto p\left(M_{i}\right) p\left(\mathcal{D} \mid M_{i}\right)
$$

which allows us to express a preference for different models

- Model evidence (marginal likelihood):

$$
p\left(\mathcal{D} \mid M_{i}\right)=\int p\left(\mathcal{D} \mid \boldsymbol{\theta}_{M_{i}}\right) p\left(\boldsymbol{\theta}_{M_{i}} \mid M_{i}\right) d \boldsymbol{\theta}_{M_{i}}
$$

[^1]
Bayesian Model Comparison

- Place a prior $p(M)$ on the class of models
- Given a training set \mathcal{D}, we compute the posterior distribution over models as

$$
p\left(M_{i} \mid \mathcal{D}\right) \propto p\left(M_{i}\right) p\left(\mathcal{D} \mid M_{i}\right)
$$

which allows us to express a preference for different models

- Model evidence (marginal likelihood):

$$
p\left(\mathcal{D} \mid M_{i}\right)=\int p\left(\mathcal{D} \mid \boldsymbol{\theta}_{M_{i}}\right) p\left(\boldsymbol{\theta}_{M_{i}} \mid M_{i}\right) d \boldsymbol{\theta}_{M_{i}}
$$

- Bayes factor for comparing two models: $p\left(\mathcal{D} \mid M_{1}\right) / p\left(\mathcal{D} \mid M_{2}\right)$

[^2]
Bayesian Model Comparison

- Place a prior $p(M)$ on the class of models
- Given a training set \mathcal{D}, we compute the posterior distribution over models as

$$
p\left(M_{i} \mid \mathcal{D}\right) \propto p\left(M_{i}\right) p\left(\mathcal{D} \mid M_{i}\right)
$$

which allows us to express a preference for different models

- Model evidence (marginal likelihood):

$$
p\left(\mathcal{D} \mid M_{i}\right)=\int p\left(\mathcal{D} \mid \boldsymbol{\theta}_{M_{i}}\right) p\left(\boldsymbol{\theta}_{M_{i}} \mid M_{i}\right) d \boldsymbol{\theta}_{M_{i}}
$$

- Bayes factor for comparing two models: $p\left(\mathcal{D} \mid M_{1}\right) / p\left(\mathcal{D} \mid M_{2}\right)$
- Integral often intractable ${ }^{1}$
${ }^{1}$ When would the integral be tractable?

Bayesian Model Averaging

- Place a prior $p(M)$ on the class of models
- Instead of selecting the "best" model, integrate out the corresponding model parameters $\boldsymbol{\theta}_{M}$ and average over all models $M_{i}, i=1, \ldots, L$

$$
p(\mathcal{D})=\sum_{i=1}^{L} p\left(M_{i}\right) \underbrace{\int p\left(\mathcal{D} \mid \boldsymbol{\theta}_{M_{i}}\right) p\left(\boldsymbol{\theta}_{M_{i}} \mid M_{i}\right) d \boldsymbol{\theta}_{M_{i}}}_{=p\left(\mathcal{D} \mid M_{i}\right)}
$$

Bayesian Model Averaging

- Place a prior $p(M)$ on the class of models
- Instead of selecting the "best" model, integrate out the corresponding model parameters $\boldsymbol{\theta}_{M}$ and average over all models $M_{i}, i=1, \ldots, L$

$$
p(\mathcal{D})=\sum_{i=1}^{L} p\left(M_{i}\right) \underbrace{\int p\left(\mathcal{D} \mid \boldsymbol{\theta}_{M_{i}}\right) p\left(\boldsymbol{\theta}_{M_{i}} \mid M_{i}\right) d \boldsymbol{\theta}_{M_{i}}}_{=p\left(\mathcal{D} \mid M_{i}\right)}
$$

- Computationally expensive
- Integral often intractable (still...)

References I

[1] H. Akaike. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19(6):716-723, 1974.
[2] C. M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics. Springer-Verlag, 2006.
[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, 39(1):1-38, 1977.
[4] R. M. Neal and G. E. Hinton. A View of the EM Algorithm that Justifies Incremental, Sparse, and Other Variants. In M. I. Jordan, editor, Learning in Graphical Models, pages 355-368. MIT Press, 1999.
[5] G. E. Schwarz. Estimating the Dimension of a Model. Annals of Statistics, 6(2):461-464, 1978.

[^0]: ${ }^{1}$ When would the integral be tractable?

[^1]: ${ }^{1}$ When would the integral be tractable?

[^2]: ${ }^{1}$ When would the integral be tractable?

