Imperial College London

Lecture 14:
 Dimensionality Reduction with PCA

Recommended reading: Bishop, Chapter 12.1

Duncan Gillies and Marc Deisenroth
Department of Computing
Imperial College London

17 February 2016

Motivation

3-dimensional representation of 18-dimensional motion capture data (Deisenroth \& Mohamed, 2012)

- High dimensional real data often possesses a lower intrinsic dimensionality $>$ Easier to work with
- Dimensionality reduction: Find this lower dimensional representation
- Visualization
- Data compression

Key Idea of Dimensionality Reduction

- Project data onto a lower-dimensional manifold that preserves as much information as possible
- Think of it as data compression
- Principal Component Analysis (PCA): Find a (linear) projection that
- Minimizes reconstruction error (Pearson, 1901)
- Maximizes the variance (signal) of the projected data (Hotelling, 1933)
- Maximize the mutual information between original and projected data (Linsker 1988)

Illustration: Orthogonal Projection

From PRML (Bishop, 2006)

- Two-dimensional data $\boldsymbol{x}=\left[x_{1}, x_{2}\right]^{\top}$ projected onto a one-dimensional linear manifold (affine subspace) with direction u_{1}.
- Red: Original data, Green: Projected data

Refresher: Orthogonal Projection onto

Sub-Vectorspaces

- Basis u_{1}, \ldots, u_{M} of a subspace $A \subset \mathbb{R}^{D}$
- Define $\boldsymbol{U}=\left[\boldsymbol{u}_{1}|\ldots| \boldsymbol{u}_{M}\right] \in \mathbb{R}^{D \times M}$
- Project $x \in \mathbb{R}^{D}$ onto subspace A :

$$
\boldsymbol{U}\left(\boldsymbol{U}^{\top} \boldsymbol{U}\right)^{-1} \boldsymbol{U}^{\top} \boldsymbol{x}
$$

- If $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{M}$ form an orthonormal basis $\left(\boldsymbol{u}_{i}^{\top} \boldsymbol{u}_{j}=\delta_{i j}\right)$, then the projection simplifies to

$$
U U^{\top} x
$$

How to do it...

- Objective: Find orthogonal projection that minimizes the overall projection error

$$
J=\frac{1}{N} \sum_{n=1}^{N}\left\|x_{n}-\tilde{\boldsymbol{x}}_{n}\right\|^{2}
$$

where \tilde{x}_{n} is the projection of x_{n}

- Define orthonormal basis of $\mathbb{R}^{D}=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{D}\right]$, such that $\boldsymbol{u}_{i}^{\top} \boldsymbol{u}_{j}=\delta_{i j}$

Derivation (1)

- Define orthonormal basis of $\mathbb{R}^{D}=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{D}\right]$, such that $\boldsymbol{u}_{i}^{\top} \boldsymbol{u}_{j}=\delta_{i j}$
- Then, every data point x_{n} can be written as a linear combination of the basis vectors:

$$
\boldsymbol{x}_{n}=\sum_{i=1}^{D} \alpha_{n i} \boldsymbol{u}_{i}
$$

Derivation (1)

- Define orthonormal basis of $\mathbb{R}^{D}=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{D}\right]$, such that $\boldsymbol{u}_{i}^{\top} \boldsymbol{u}_{j}=\delta_{i j}$
- Then, every data point x_{n} can be written as a linear combination of the basis vectors:

$$
\boldsymbol{x}_{n}=\sum_{i=1}^{D} \alpha_{n i} \boldsymbol{u}_{i}
$$

\rightarrow Rotation of the standard coordinates to a new coordinate system defined by the basis $\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{D}\right]$.

Derivation (1)

- Define orthonormal basis of $\mathbb{R}^{D}=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{D}\right]$, such that $\boldsymbol{u}_{i}^{\top} \boldsymbol{u}_{j}=\delta_{i j}$
- Then, every data point x_{n} can be written as a linear combination of the basis vectors:

$$
\boldsymbol{x}_{n}=\sum_{i=1}^{D} \alpha_{n i} \boldsymbol{u}_{i}
$$

\rightarrow Rotation of the standard coordinates to a new coordinate system defined by the basis $\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{D}\right]$.
\checkmark Original coordinates $x_{n i}$ are replaced by $\alpha_{n i}, i=1, \ldots, D$

Derivation (1)

- Define orthonormal basis of $\mathbb{R}^{D}=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{D}\right]$, such that $\boldsymbol{u}_{i}^{\top} \boldsymbol{u}_{j}=\delta_{i j}$
- Then, every data point x_{n} can be written as a linear combination of the basis vectors:

$$
\boldsymbol{x}_{n}=\sum_{i=1}^{D} \alpha_{n i} \boldsymbol{u}_{i}
$$

\rightarrow Rotation of the standard coordinates to a new coordinate system defined by the basis $\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{D}\right]$.
\rightarrow Original coordinates $x_{n i}$ are replaced by $\alpha_{n i}, i=1, \ldots, D$

- Exploit orthonormality of \boldsymbol{u}_{i} and obtain $\alpha_{n j}=\boldsymbol{x}_{n}^{\top} \boldsymbol{u}_{j}$, such that

$$
\boldsymbol{x}_{n}=\sum_{i=1}^{D}\left(\boldsymbol{x}_{n}^{\top} \boldsymbol{u}_{i}\right) \boldsymbol{u}_{i}
$$

Derivation (2)

Objective

Approximate

$$
\boldsymbol{x}_{n}=\sum_{i=1}^{D}\left(\boldsymbol{x}_{n}^{\top} \boldsymbol{u}_{i}\right) \boldsymbol{u}_{i}
$$

using a $M \ll D$ many basis vectors
\checkmark Projection onto a lower-dimensional subspace

Derivation (2)

Objective

Approximate

$$
\boldsymbol{x}_{n}=\sum_{i=1}^{D}\left(\boldsymbol{x}_{n}^{\top} \boldsymbol{u}_{i}\right) \boldsymbol{u}_{i}
$$

using a $M \ll D$ many basis vectors
\checkmark Projection onto a lower-dimensional subspace

- Lower-dimensional subspace of dimension M can be represented by $M \ll D$ basis vectors, such that

$$
\tilde{\boldsymbol{x}}_{n}=\underbrace{\sum_{i=1}^{M} z_{n i} \boldsymbol{u}_{i}}_{\text {lower-dim. subspace }}+\underbrace{\sum_{i=M+1}^{D} b_{i} \boldsymbol{u}_{i}}_{\text {rest }}
$$

Derivation (3)

$$
\tilde{\boldsymbol{x}}_{n}=\underbrace{\sum_{i=1}^{M} z_{n i} \boldsymbol{u}_{i}}_{\text {lower-dim. subspace }}+\underbrace{\sum_{i=M+1}^{D} b_{i} \boldsymbol{u}_{i}}_{\text {rest }}
$$

Derivation (3)

$$
\tilde{\boldsymbol{x}}_{n}=\underbrace{\sum_{i=1}^{M} z_{n i} \boldsymbol{u}_{i}}_{\text {lower-dim. subspace }}+\underbrace{\sum_{i=M+1}^{D} b_{i} \boldsymbol{u}_{i}}_{\text {rest }}
$$

- Choose $z_{n i}, \boldsymbol{u}_{i}, b_{i}$ such that the squared reconstruction error

$$
J=\frac{1}{N} \sum_{n=1}^{N}\left\|x_{n}-\tilde{\boldsymbol{x}}_{n}\right\|^{2}
$$

is minimized

Derivation (3)

$$
\tilde{\boldsymbol{x}}_{n}=\underbrace{\sum_{i=1}^{M} z_{n i} \boldsymbol{u}_{i}}_{\text {lower-dim. subspace }}+\underbrace{\sum_{i=M+1}^{D} b_{i} \boldsymbol{u}_{i}}_{\text {rest }}
$$

- Choose $z_{n i}, u_{i}, b_{i}$ such that the squared reconstruction error

$$
J=\frac{1}{N} \sum_{n=1}^{N}\left\|x_{n}-\tilde{x}_{n}\right\|^{2}
$$

is minimized

- Compute gradients of J w.r.t. all variables

Derivation (4)

Necessary condition for optimum:

$$
\begin{aligned}
& \frac{\partial J}{\partial z_{n i}}=0 \quad \Rightarrow \quad z_{n i}=x_{n}^{\top} \boldsymbol{u}_{i}, \quad i=1, \ldots, M \\
& \frac{\partial J}{\partial b_{i}}=0 \quad \Rightarrow \quad b_{i}=\mathbb{E}[x]^{\top} \boldsymbol{u}_{i}, \quad i=M+1, \ldots, D
\end{aligned}
$$

Derivation (4)

Necessary condition for optimum:

$$
\begin{aligned}
\frac{\partial J}{\partial z_{n i}}=0 \quad \Rightarrow \quad z_{n i}=\boldsymbol{x}_{n}^{\top} \boldsymbol{u}_{i}, \quad i=1, \ldots, M \\
\frac{\partial J}{\partial b_{i}}=0 \quad \Rightarrow \quad b_{i}=\mathbb{E}[\boldsymbol{x}]^{\top} \boldsymbol{u}_{i}, \quad i=M+1, \ldots, D
\end{aligned}
$$

Then, the approximation error only plays a role in dimensions $M+1, \ldots, D$:

$$
\boldsymbol{x}_{n}-\tilde{\boldsymbol{x}}_{n}=\sum_{i=M+1}^{D}\left(\left(\boldsymbol{x}_{n}-\mathbb{E}[x]\right)^{\top} \boldsymbol{u}_{i}\right) \boldsymbol{u}_{i}
$$

Derivation (4)

Necessary condition for optimum:

$$
\begin{aligned}
\frac{\partial J}{\partial z_{n i}}=0 \quad \Rightarrow \quad z_{n i}=\boldsymbol{x}_{n}^{\top} \boldsymbol{u}_{i}, \quad i=1, \ldots, M \\
\frac{\partial J}{\partial b_{i}}=0 \quad \Rightarrow \quad b_{i}=\mathbb{E}[\boldsymbol{x}]^{\top} \boldsymbol{u}_{i}, \quad i=M+1, \ldots, D
\end{aligned}
$$

Then, the approximation error only plays a role in dimensions $M+1, \ldots, D$:

$$
\boldsymbol{x}_{n}-\tilde{\boldsymbol{x}}_{n}=\sum_{i=M+1}^{D}\left(\left(\boldsymbol{x}_{n}-\mathbb{E}[x]\right)^{\top} \boldsymbol{u}_{i}\right) \boldsymbol{u}_{i}
$$

- Displacement vector $x_{n}-\tilde{x}_{n}$ lies in space orthogonal to the principal subspace (linear combination of the \boldsymbol{u}_{i} for $i=M+1, \ldots, D$)

Derivation (4)

Necessary condition for optimum:

$$
\begin{aligned}
\frac{\partial J}{\partial z_{n i}}=0 \quad \Rightarrow \quad z_{n i}=\boldsymbol{x}_{n}^{\top} \boldsymbol{u}_{i}, \quad i=1, \ldots, M \\
\frac{\partial J}{\partial b_{i}}=0 \quad \Rightarrow \quad b_{i}=\mathbb{E}[\boldsymbol{x}]^{\top} \boldsymbol{u}_{i}, \quad i=M+1, \ldots, D
\end{aligned}
$$

Then, the approximation error only plays a role in dimensions $M+1, \ldots, D$:

$$
\boldsymbol{x}_{n}-\tilde{\boldsymbol{x}}_{n}=\sum_{i=M+1}^{D}\left(\left(\boldsymbol{x}_{n}-\mathbb{E}[\boldsymbol{x}]\right)^{\top} \boldsymbol{u}_{i}\right) \boldsymbol{u}_{i}
$$

- Displacement vector $x_{n}-\tilde{x}_{n}$ lies in space orthogonal to the principal subspace (linear combination of the \boldsymbol{u}_{i} for $i=M+1, \ldots, D$) \rightarrow Minimum error is given by the orthogonal projection of x_{n} onto the principal subspace spanned by $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{M}$

Derivation (5)

From the previous slide:

$$
\boldsymbol{x}_{n}-\tilde{\boldsymbol{x}}_{n}=\sum_{i=M+1}^{D}\left(\boldsymbol{x}_{n}^{\top} \boldsymbol{u}_{i}-\mathbb{E}[\boldsymbol{x}]^{\top} \boldsymbol{u}_{i}\right) \boldsymbol{u}_{i}
$$

Derivation (5)

From the previous slide:

$$
\boldsymbol{x}_{n}-\tilde{\boldsymbol{x}}_{n}=\sum_{i=M+1}^{D}\left(\boldsymbol{x}_{n}^{\top} \boldsymbol{u}_{i}-\mathbb{E}[\boldsymbol{x}]^{\top} \boldsymbol{u}_{i}\right) \boldsymbol{u}_{i}
$$

Let's compute our reconstruction error:

$$
J=\frac{1}{N} \sum_{n=1}^{N}\left\|x_{n}-\tilde{x}_{n}\right\|^{2}=\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\tilde{x}_{n}\right)^{\top}\left(x_{n}-\tilde{x}_{n}\right)
$$

Derivation (5)

From the previous slide:

$$
\boldsymbol{x}_{n}-\tilde{\boldsymbol{x}}_{n}=\sum_{i=M+1}^{D}\left(\boldsymbol{x}_{n}^{\top} \boldsymbol{u}_{i}-\mathbb{E}[\boldsymbol{x}]^{\top} \boldsymbol{u}_{i}\right) \boldsymbol{u}_{i}
$$

Let's compute our reconstruction error:

$$
\begin{aligned}
J & =\frac{1}{N} \sum_{n=1}^{N}\left\|x_{n}-\tilde{x}_{n}\right\|^{2}=\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\tilde{x}_{n}\right)^{\top}\left(x_{n}-\tilde{x}_{n}\right) \\
& =\frac{1}{N} \sum_{n=1}^{N} \sum_{i=M+1}^{D}\left(x_{n}^{\top} \boldsymbol{u}_{i}-\mathbb{E}[x]^{\top} \boldsymbol{u}_{i}\right)^{2}
\end{aligned}
$$

Derivation (5)

From the previous slide:

$$
\boldsymbol{x}_{n}-\tilde{\boldsymbol{x}}_{n}=\sum_{i=M+1}^{D}\left(\boldsymbol{x}_{n}^{\top} \boldsymbol{u}_{i}-\mathbb{E}[\boldsymbol{x}]^{\top} \boldsymbol{u}_{i}\right) \boldsymbol{u}_{i}
$$

Let's compute our reconstruction error:

$$
\begin{aligned}
J & =\frac{1}{N} \sum_{n=1}^{N}\left\|x_{n}-\tilde{x}_{n}\right\|^{2}=\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\tilde{x}_{n}\right)^{\top}\left(x_{n}-\tilde{x}_{n}\right) \\
& =\frac{1}{N} \sum_{n=1}^{N} \sum_{i=M+1}^{D}\left(x_{n}^{\top} \boldsymbol{u}_{i}-\mathbb{E}[x]^{\top} \boldsymbol{u}_{i}\right)^{2} \\
& =\sum_{i=M+1}^{D} \boldsymbol{u}_{i}^{\top} \boldsymbol{S} \boldsymbol{u}_{i}
\end{aligned}
$$

where $S=\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\mathbb{E}[x]\right)\left(x_{n}-\mathbb{E}[x]\right)^{\top}$ is the data covariance matrix

Derivation (6)

- What remains: Minimize J w.r.t. \boldsymbol{u}_{i} under the constraint that the \boldsymbol{u}_{i} form an orthonormal basis.

Derivation (6)

- What remains: Minimize J w.r.t. \boldsymbol{u}_{i} under the constraint that the \boldsymbol{u}_{i} form an orthonormal basis.

Example:

- $M=1, D=2$
- Choose basis vector \boldsymbol{u}_{2} such that $\boldsymbol{u}_{2}^{\top} \boldsymbol{S} \boldsymbol{u}_{2}$ is minimized and $\boldsymbol{u}_{2}^{\top} \boldsymbol{u}_{2}=1$

Derivation (6)

- What remains: Minimize J w.r.t. \boldsymbol{u}_{i} under the constraint that the \boldsymbol{u}_{i} form an orthonormal basis.

Example:

- $M=1, D=2$
- Choose basis vector \boldsymbol{u}_{2} such that $\boldsymbol{u}_{2}^{\top} \boldsymbol{S} \boldsymbol{u}_{2}$ is minimized and $\boldsymbol{u}_{2}^{\top} \boldsymbol{u}_{2}=1$
- Constrained optimization yields (with Lagrange multiplier)

$$
\begin{aligned}
& \tilde{J}=\boldsymbol{u}_{2}^{\top} \boldsymbol{S} \boldsymbol{u}_{2}+\lambda\left(1-\boldsymbol{u}_{2}^{\top} \boldsymbol{u}_{2}\right) \\
& \Rightarrow \frac{\partial \tilde{J}}{\partial \boldsymbol{u}_{2}}=\mathbf{0} \Leftrightarrow \boldsymbol{S} \boldsymbol{u}_{2}=\lambda \boldsymbol{u}_{2}
\end{aligned}
$$

Derivation (6)

- What remains: Minimize J w.r.t. \boldsymbol{u}_{i} under the constraint that the \boldsymbol{u}_{i} form an orthonormal basis.

Example:

- $M=1, D=2$
- Choose basis vector \boldsymbol{u}_{2} such that $\boldsymbol{u}_{2}^{\top} \boldsymbol{S} \boldsymbol{u}_{2}$ is minimized and $\boldsymbol{u}_{2}^{\top} \boldsymbol{u}_{2}=1$
- Constrained optimization yields (with Lagrange multiplier)

$$
\begin{aligned}
& \tilde{J}=\boldsymbol{u}_{2}^{\top} \boldsymbol{S} \boldsymbol{u}_{2}+\lambda\left(1-\boldsymbol{u}_{2}^{\top} \boldsymbol{u}_{2}\right) \\
& \Rightarrow \frac{\partial \tilde{J}}{\partial \boldsymbol{u}_{2}}=\mathbf{0} \Leftrightarrow \boldsymbol{S} \boldsymbol{u}_{2}=\lambda \boldsymbol{u}_{2}
\end{aligned}
$$

- Eigenvalue problem

Derivation (7)

- In general (arbitrary D and $M<D$), we need solve

$$
\boldsymbol{S} \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{i}, \quad i=1, \ldots, D
$$

which requires finding the eigenvectors \boldsymbol{u}_{i} of the data covariance matrix S

Derivation (7)

- In general (arbitrary D and $M<D$), we need solve

$$
\boldsymbol{S} \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{i}, \quad i=1, \ldots, D
$$

which requires finding the eigenvectors \boldsymbol{u}_{i} of the data covariance matrix S

- Corresponding value of the squared reconstruction error:

$$
J=\sum_{i=M+1}^{D} \lambda_{i}
$$

i.e., the sum of the eigenvalues associated with eigenvectors not in the principle subspace

Derivation (7)

- In general (arbitrary D and $M<D$), we need solve

$$
\boldsymbol{S} \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{i}, \quad i=1, \ldots, D
$$

which requires finding the eigenvectors \boldsymbol{u}_{i} of the data covariance matrix S

- Corresponding value of the squared reconstruction error:

$$
J=\sum_{i=M+1}^{D} \lambda_{i}
$$

i.e., the sum of the eigenvalues associated with eigenvectors not in the principle subspace

- Minimizing J requires us to choose the M eigenvectors as the principle subspace that are associated with the M largest eigenvalues.

Geometric Interpretation

- Objective: Project x onto an affine subspace $\boldsymbol{\mu}+\left[\boldsymbol{u}_{1}\right]$.

Geometric Interpretation

- Shift scenario to the origin (affine subspace \rightsquigarrow subspace)

Geometric Interpretation

- Shift x as well (onto $x-\mu$).

Geometric Interpretation

- Orthogonal projection of $\boldsymbol{x}-\boldsymbol{\mu}$ onto subspace spanned by \boldsymbol{u}_{1}

Geometric Interpretation

- Move projected point $\pi_{U_{1}}(x)$ back into original (affine) setting.

Algorithm

1. Compute the mean $\boldsymbol{\mu}$ of the data matrix $\boldsymbol{X}=\left[x_{1}|\ldots . .| x_{N}\right]^{\top} \in \mathbb{R}^{N \times D}$
2. Mean normalization: Replace all data points \boldsymbol{x}_{i} with $\bar{x}_{i}=\boldsymbol{x}_{i}-\boldsymbol{\mu}$.
3. Compute the eigenvectors and eigenvalues of the data covariance matrix $S=\frac{1}{N} \bar{X}^{\top} \bar{X}$
4. Choose the eigenvectors associated with the M largest eigenvalues to be the basis of the principal subspace.
5. Collect these eigenvectors in a matrix $\boldsymbol{U}=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{M}\right]$
6. Projected vector (in affine setting): $\boldsymbol{U} \boldsymbol{U}^{\top}(\boldsymbol{x}-\boldsymbol{\mu})+\boldsymbol{\mu}$

Example 1

Example 1

Example 1

Example 2

- Transform images into vectors
- Perform PCA \boldsymbol{A} Compression/dimensionality reduction to extract low-dimensional features
- Use these features for face recognition

PCA for High-Dimensional Data

- Fewer data points than dimensions, i.e., $N<D$.
- At least $D-N+1$ eigenvalues 0 .
- Computation time for computing eigenvalues of $S: \mathcal{O}\left(D^{3}\right)$
- Rephrase PCA

Reformulating PCA

- Define \boldsymbol{X} to be the $N \times D$ dimensional centered data matrix, whose nth row is $\left(x_{n}-\mathbb{E}[x]\right)^{\top} \mapsto$ Mean normalization

Reformulating PCA

- Define \boldsymbol{X} to be the $N \times D$ dimensional centered data matrix, whose nth row is $\left(x_{n}-\mathbb{E}[x]\right)^{\top} \mapsto$ Mean normalization
- Corresponding covariance: $S=\frac{1}{N} \boldsymbol{X}^{\top} \boldsymbol{X}$

Reformulating PCA

- Define \boldsymbol{X} to be the $N \times D$ dimensional centered data matrix, whose nth row is $\left(x_{n}-\mathbb{E}[x]\right)^{\top} \mapsto$ Mean normalization
- Corresponding covariance: $S=\frac{1}{N} \boldsymbol{X}^{\top} \boldsymbol{X}$
- Corresponding eigenvector equation:

$$
\boldsymbol{S} \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{i} \Leftrightarrow \frac{1}{N} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{i}
$$

Reformulating PCA

- Define \boldsymbol{X} to be the $N \times D$ dimensional centered data matrix, whose nth row is $\left(x_{n}-\mathbb{E}[x]\right)^{\top} \mapsto$ Mean normalization
- Corresponding covariance: $S=\frac{1}{N} \boldsymbol{X}^{\top} \boldsymbol{X}$
- Corresponding eigenvector equation:

$$
\boldsymbol{S} \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{i} \Leftrightarrow \frac{1}{N} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{i}
$$

- Transformation (left-multiply by \boldsymbol{X}):

$$
\frac{1}{N} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{i} \Leftrightarrow \frac{1}{N} \boldsymbol{X} \boldsymbol{X}^{\top} \underbrace{\boldsymbol{X} u_{i}}_{=: v_{i}}=\lambda_{i} \underbrace{\boldsymbol{X} u_{i}}_{=: v_{i}}
$$

$\checkmark \boldsymbol{v}_{i}$ is an eigenvector of the $N \times N$-matrix $\frac{1}{N} \boldsymbol{X} \boldsymbol{X}^{\top}$, which has the same eigenvalues as the original covariance matrix.
\downarrow Get eigenvalues in $\mathcal{O}\left(N^{3}\right)$ instead of $\mathcal{O}\left(D^{3}\right)$.

Recovering the Original Eigenvectors

- The new eigenvalue/eigenvector equation is

$$
\frac{1}{N} \boldsymbol{X} \boldsymbol{X}^{\top} \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{v}_{i}
$$

where $\boldsymbol{v}_{i}=\boldsymbol{X} \boldsymbol{u}_{i}$

Recovering the Original Eigenvectors

- The new eigenvalue/eigenvector equation is

$$
\frac{1}{N} \boldsymbol{X} \boldsymbol{X}^{\top} \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{v}_{i}
$$

where $\boldsymbol{v}_{i}=\boldsymbol{X} \boldsymbol{u}_{i}$

- We want to recover the original eigenvectors \boldsymbol{u}_{i} of the data covariance matrix $S=\frac{1}{N} \boldsymbol{X}^{\top} \boldsymbol{X}$

Recovering the Original Eigenvectors

- The new eigenvalue/eigenvector equation is

$$
\frac{1}{N} \boldsymbol{X} \boldsymbol{X}^{\top} \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{v}_{i}
$$

where $\boldsymbol{v}_{i}=\boldsymbol{X} \boldsymbol{u}_{i}$

- We want to recover the original eigenvectors \boldsymbol{u}_{i} of the data covariance matrix $S=\frac{1}{N} \boldsymbol{X}^{\top} \boldsymbol{X}$
- Left-multiply eigenvector equation by \boldsymbol{X}^{\top} yields

$$
\underbrace{\frac{1}{N} \boldsymbol{X}^{\top} \boldsymbol{X}}_{=S} \boldsymbol{X}^{\top} \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{X}^{\top} \boldsymbol{v}_{i}
$$

and we recover $\boldsymbol{X}^{\top} \boldsymbol{v}_{i}$ as an eigenvector of S with eigenvalue λ_{i}

Example 3

mean

principal basis 2

principal basis 1

principal basis 3

reconstructed with 2 bases

reconstructed with 100 bases

reconstructed with 506 bases

From "Machine Learning, A Probabilistic Perspective" (Murphy, 2012)

- 25 images of MNIST hand-written digits data set
- Left: Vectors of the eigenbasis
- Right: Reconstructions of the original digit

Interpretations of PCA

- Minimum reconstruction error (this course, Bishop, 12.1.2)
- Maximum variance of the data (Bishop, 12.1.1)
- Maximum mutual information between original and projected data
- Latent variable model where the latent variable is the low-dimensional representation of the data (probabilistic PCA, Bishop, 12.2)

Probabilistic PCA

$$
\begin{aligned}
& x=\boldsymbol{W} z+\boldsymbol{\mu}+\varepsilon \\
& z \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I}) \\
& \varepsilon \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)
\end{aligned}
$$

- Find parameters $\boldsymbol{W}, \boldsymbol{\mu}, \sigma^{2}$ via maximum likelihood
- Integrate out the latent variable \boldsymbol{z}, and obtain

$$
\begin{aligned}
p(\boldsymbol{x}) & =\int p(\boldsymbol{x} \mid \boldsymbol{z}) p(\boldsymbol{z}) d \boldsymbol{z}=\mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{C}) \\
\boldsymbol{C} & =\boldsymbol{W} \boldsymbol{W}^{\top}+\sigma^{2} \boldsymbol{I}
\end{aligned}
$$

- Posterior on low-dimensional latent variable:

$$
\begin{aligned}
p(\boldsymbol{z} \mid \boldsymbol{x}) & =\mathcal{N}\left(\boldsymbol{z} \mid \boldsymbol{M}^{-1} \boldsymbol{W}^{\top}(\boldsymbol{x}-\boldsymbol{\mu}), \sigma^{2} \boldsymbol{M}^{-1}\right) \\
\boldsymbol{M} & =\boldsymbol{W}^{\top} \boldsymbol{W}+\sigma^{2} \boldsymbol{I}
\end{aligned}
$$

Properties

- Linear dimensionality reduction technique
- Original formulation: sensitive to scale of variables
- Global optimum (closed-form solution)
- Nonlinear extensions: Kernel PCA, ngeural network (deep) auto-encoders, Isomap, Laplacian Eigenmaps, ...

Applications

- Computer vision: Image compression, face recognition/identification (e.g., Turk \& Pentland, 1991)
- Data visualization
- Neuroscience, oceanography, ...

References I

[1] C. M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics. Springer-Verlag, 2006.
[2] M. P. Deisenroth and S. Mohamed. Expectation Propagation in Gaussian Process Dynamical Systems. In Advances in Neural Information Processing Systems, pages 2618-2626, 2012.
[3] H. Hotelling. Analysis of a Complex of Statistical Variables into Principal Components. Journal of Educational Psychology, 24:417-441, 1933.
[4] R. Linsker. Self-Organization in a Perceptual Network. IEEE Computer, 21(3):105-117, 1988.
[5] K. P. Murphy. Machine Learning: A Proabilistic Perspective. MIT Press, Cambridge, MA, USA, 2012.

References II

[6] K. Pearson. On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine, 2(11):559-572, 1901.
[7] M. Turk and A. Pentland. Face Recognition Using Eigenfaces. In IEEE International Conference on Computer Vision and Pattern Recognition, 1991.

