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Classification

x1

x2

Adapted from PRML (Bishop, 2006)

§ Input vector x P RD, assign it to one of K discrete classes
Ck, k “ 1, . . . , K.

§ Assumption: classes are disjoint, i.e., input vectors are assigned
to exactly one class

§ Idea: Divide input space into decision regions whose boundaries
are called decision boundaries/surfaces
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Linear Classification
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From PRML (Bishop, 2006)

§ Focus on linear classification model, i.e., the decision boundary is
a linear function of x

Defined by pD´ 1q-dimensional hyperplane
§ If the data can be separated exactly by linear decision surfaces,

they are called linearly separable
§ Implicit assumption: Classes can be modeled well by Gaussians
Here: Treat classification as a projection problem
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Example

§ Measurements for 150 Iris flowers from three different species.

§ Four features (petal length/width, sepal length/width)
§ Given a new measurement of these features, predict the Iris

species based on a projection onto a low-dimensional space.
§ PCA may not be ideal to separate the classes well

Linear Discriminant Analysis IDAPI, Lecture 15 February 22, 2016 4



Example

§ Measurements for 150 Iris flowers from three different species.
§ Four features (petal length/width, sepal length/width)

§ Given a new measurement of these features, predict the Iris
species based on a projection onto a low-dimensional space.

§ PCA may not be ideal to separate the classes well

Linear Discriminant Analysis IDAPI, Lecture 15 February 22, 2016 4



Example

§ Measurements for 150 Iris flowers from three different species.
§ Four features (petal length/width, sepal length/width)
§ Given a new measurement of these features, predict the Iris

species based on a projection onto a low-dimensional space.

§ PCA may not be ideal to separate the classes well

Linear Discriminant Analysis IDAPI, Lecture 15 February 22, 2016 4



Example

4 3 2 1 0 1 2 3 4 5
PC1

4

3

2

1

0

1

2

3

4

PC
2

PCA: Iris projection onto the first 2 principal axes

setosa
versicolor
virginica
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LDA: Iris projection onto the first 2 linear discriminants

setosa
versicolor
virginica

§ Measurements for 150 Iris flowers from three different species.
§ Four features (petal length/width, sepal length/width)
§ Given a new measurement of these features, predict the Iris

species based on a projection onto a low-dimensional space.
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Orthogonal Projections (Repetition)

§ Project input vector x P RD down to a 1-dimensional subspace
with basis vector w

§ With }w} “ 1, we get

P “ wwJ Projection matrix, such that Px “ p

p “ yw P RD Projection point Discussed in Lecture 14

y “ wJx P R Coordinates with respect to basis w Today

§ We will largely focus on the coordinates y in the following

§ Projection points equally apply to concepts discussed today

§ Coordinates equally apply to PCA (see Lecture 14)
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Classification as Projection

w

w0

§ Assume we know the basis vector w, we can compute the
projection of any point x P RD onto the one-dimensional
subspace spanned by w

§ Threshold w0, such that we decide on C1 if y ě w0 and C2

otherwise

Linear Discriminant Analysis IDAPI, Lecture 15 February 22, 2016 6



Classification as Projection

w

w0

§ Assume we know the basis vector w, we can compute the
projection of any point x P RD onto the one-dimensional
subspace spanned by w

§ Threshold w0, such that we decide on C1 if y ě w0 and C2

otherwise
Linear Discriminant Analysis IDAPI, Lecture 15 February 22, 2016 6



The Linear Decision Boundary of LDA

§ Look at the log-probability ratio

log
ppC1|xq
ppC2|xq

“ log
ppx|C1q

ppx|C2q
` log

ppC1q

ppC2q

where the decision boundary (for C1 or C2) is at 0.

§ Assume Gaussian likelihood ppx|Ciq “ N
`

x |mi, Σ
˘

with the
same covariance in both classes. Decision boundary:

log
ppC1|xq
ppC2|xq

“ 0

ô log
ppC1q

ppC2q
´

1
2
pmJ

1 Σ´1m1 ´m2Σ´1m2q ` pm1 ´m2q
JΣ´1x “ 0

ô pm1 ´m2q
JΣ´1x “

1
2
pmJ

1 Σ´1m1 ´m2Σ´1m2q ´ log
ppC1q

ppC2q

Of the form Ax “ b Decision boundary linear in x
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Potential Issues
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From PRML (Bishop, 2006)

§ Considerable loss of information when projecting

§ Even if data was linearly separable in RD, we may lose this
separability (see figure)

Find good basis vector w that spans the subspace we project onto
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Approach: Maximize Class Separation

§ Adjust components of basis vector w
Select projection that maximizes the class separation

§ Consider two classes: C1 with N1 points and C2 with N2 points

§ Corresponding mean vectors:

m1 “
1

N1

ÿ

nPC1

xn , m2 “
1

N2

ÿ

nPC2

xn

§ Measure class separation as the distance of the projected class
means:

m2 ´m1 “ wJm2 ´wJm1 “ wJpm2 ´m1q

and maximize this w.r.t. w with the constraint }w} “ 1
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Maximum Class Separation
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From PRML (Bishop, 2006)

§ Find w 9 pm2 ´m1q

§ Projected classes may still have considerable overlap (because of
strongly non-diagonal covariances of the class distributions)

§ LDA: Large separation of projected class means and small
within-class variation (small overlap of classes)
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Key Idea of LDA

−2 2 6

−2

0

2

4

From PRML (Bishop, 2006)

§ Separate samples of distinct groups by projecting them onto a
space that

§ Maximizes their between-class separability while
§ Minimizing their within-class variability
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Fisher Criterion

§ For each class Ck the within-class scatter (unnormalized variance)
is given as

s2
k “

ÿ

nPCk

pyn ´mkq
2 , yn “ wJxn , mk “ wJmk

§ Maximize the Fisher criterion:

Jpwq “
Between-class scatter
Within-class scatter

“
pm2 ´m1q

2

s2
1 ` s2

2
“

wJSBw
wJSWw

SW “
ÿ

k

ÿ

nPCk
pxn ´mkqpxn ´mkq

J

SB “ pm2 ´m1qpm2 ´m1q
J

§ SW is the total within-class scatter and proportional to the sample
covariance matrix
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Generalization to k Classes

For k classes, we define the between-class scatter matrix as

SB “
ÿ

k
Nkpmk ´ µqpm2 ´ µqJ , µ “

1
N

N
ÿ

i“1

xi

where µ is the global mean of the data set
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Finding the Projection

Objective
Find w˚ that maximizes

Jpwq “
wJSBw
wJSWw

We find w by setting dJ{dw “ 0:

dJ{dw “ 0 ô
`

wJSWw
˘

SBw´
`

wJSBw
˘

SWw “ 0

ô SBw´ JSWw “ 0

ô S´1
W SBw´ Jw “ 0

Eigenvalue problem S´1
W SBw “ Jw

The projection vector w is the eigenvector of S´1
W SB.

Choose the eigenvector that corresponds to the maximum
eigenvalue (similar to PCA) to maximize class separability
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Algorithm

1. Mean normalization

2. Compute mean vectors mi P R
D for all k classes

3. Compute scatter matrices SW , SB

4. Compute eigenvectors and eigenvalues of S´1
W SB

5. Select k eigenvectors wi with the largest eigenvalues to form a
Dˆ k-dimensional matrix W “ rw1, . . . , wks

6. Project samples onto the new subspace using W and compute the
new coordinates as Y “ XW

§ X P RnˆD: ith row represents the ith sample

§ Y P Rnˆk: Coordinate matrix of the n data points w.r.t. eigenbasis
W spanning the k-dimensional subspace
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PCA vs LDA
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LDA: Iris projection onto the first 2 linear discriminants

setosa
versicolor
virginica

§ Similar to PCA, we can use LDA for dimensionality reduction by
looking at an eigenvalue problem

§ LDA: Magnitude of the eigenvalues in LDA describe importance
of the corresponding eigenspace with respect to classification
performance

§ PCA: Magnitude of the eigenvalues in LDA describe importance
of the corresponding eigenspace with respect to minimizing
reconstruction error
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§ LDA: Magnitude of the eigenvalues in LDA describe importance
of the corresponding eigenspace with respect to classification
performance

§ PCA: Magnitude of the eigenvalues in LDA describe importance
of the corresponding eigenspace with respect to minimizing
reconstruction error
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Assumptions in LDA

§ The true covariance matrices of each class are equal

§ Without this assumption: Quadratic discriminant analysis (e.g.
Hastie et al., 2009)

§ Performance of the standard LDA can be seriously degraded if
there are only a limited number of total training observations N
compared to the dimension D of the feature space.

Shrinkage (Copas, 1983)

§ LDA explicitly attempts to model the difference between the
classes of data. PCA on the other hand does not take into account
any difference in class
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Limitations of LDA

§ LDA’s most disriminant features are the means of the data
distributions

§ LDA will fail when the discriminatory information is not the
mean but the variance of the data.

§ If the data distributions are very non-Gaussian, the LDA
projections will not preserve the complex structure of the data
that may be required for classification

Nonlinear LDA (e.g., Mika et al., 1999; Baudat & Anouar, 2000)
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