Intelligent Data Analysis and Probabilistic Inference

Imperial College London

Lecture 15:
 Linear Discriminant Analysis

Recommended reading:
Bishop, Chapter 4.1
Hastie et al., Chapter 4.3

Duncan Gillies and Marc Deisenroth
Department of Computing Imperial College London

February 22, 2016

Classification

Adapted from PRML (Bishop, 2006)

- Input vector $\boldsymbol{x} \in \mathbb{R}^{D}$, assign it to one of K discrete classes
$C_{k}, k=1, \ldots, K$.
- Assumption: classes are disjoint, i.e., input vectors are assigned to exactly one class
- Idea: Divide input space into decision regions whose boundaries are called decision boundaries/surfaces

Linear Classification

From PRML (Bishop, 2006)

- Focus on linear classification model, i.e., the decision boundary is a linear function of x
\rightarrow Defined by $(D-1)$-dimensional hyperplane
- If the data can be separated exactly by linear decision surfaces, they are called linearly separable
- Implicit assumption: Classes can be modeled well by Gaussians
\checkmark Here: Treat classification as a projection problem

Example

- Measurements for 150 Iris flowers from three different species.

Example

- Measurements for 150 Iris flowers from three different species.
- Four features (petal length/width, sepal length/width)

Example

- Measurements for 150 Iris flowers from three different species.
- Four features (petal length/width, sepal length/width)
- Given a new measurement of these features, predict the Iris species based on a projection onto a low-dimensional space.

Example

- Measurements for 150 Iris flowers from three different species.
- Four features (petal length/width, sepal length/width)
- Given a new measurement of these features, predict the Iris species based on a projection onto a low-dimensional space.
- PCA may not be ideal to separate the classes well

Example

- Measurements for 150 Iris flowers from three different species.
- Four features (petal length/width, sepal length/width)
- Given a new measurement of these features, predict the Iris species based on a projection onto a low-dimensional space.
- PCA may not be ideal to separate the classes well

Orthogonal Projections (Repetition)

- Project input vector $x \in \mathbb{R}^{D}$ down to a 1-dimensional subspace with basis vector \boldsymbol{w}
- With $\|\boldsymbol{w}\|=1$, we get

$$
\begin{array}{cl}
\boldsymbol{P}=\boldsymbol{w} \boldsymbol{w}^{\top} & \text { Projection matrix, such that } \boldsymbol{P} \boldsymbol{x}=\boldsymbol{p} \\
\boldsymbol{p}=y \boldsymbol{w} \in \mathbb{R}^{D} & \text { Projection point } \mapsto \text { Discussed in Lecture 14 } \\
y=\boldsymbol{w}^{\top} \boldsymbol{x} \in \mathbb{R} & \text { Coordinates with respect to basis } \boldsymbol{w} \mapsto \text { Today }
\end{array}
$$

Orthogonal Projections (Repetition)

- Project input vector $x \in \mathbb{R}^{D}$ down to a 1-dimensional subspace with basis vector \boldsymbol{w}
- With $\|\boldsymbol{w}\|=1$, we get

$$
\begin{array}{cl}
\boldsymbol{P}=\boldsymbol{w} \boldsymbol{w}^{\top} & \text { Projection matrix, such that } \boldsymbol{P} \boldsymbol{x}=\boldsymbol{p} \\
\boldsymbol{p}=y \boldsymbol{w} \in \mathbb{R}^{D} & \text { Projection point } \mapsto \text { Discussed in Lecture 14 } \\
y=\boldsymbol{w}^{\top} \boldsymbol{x} \in \mathbb{R} & \text { Coordinates with respect to basis } w \mapsto \text { Today }
\end{array}
$$

- We will largely focus on the coordinates y in the following
- Projection points equally apply to concepts discussed today
- Coordinates equally apply to PCA (see Lecture 14)

Classification as Projection

- Assume we know the basis vector \boldsymbol{w}, we can compute the projection of any point $x \in \mathbb{R}^{D}$ onto the one-dimensional subspace spanned by w

Classification as Projection

- Assume we know the basis vector \boldsymbol{w}, we can compute the projection of any point $x \in \mathbb{R}^{D}$ onto the one-dimensional subspace spanned by \boldsymbol{w}
- Threshold w_{0}, such that we decide on C_{1} if $y \geqslant w_{0}$ and C_{2} otherwise

The Linear Decision Boundary of LDA

- Look at the log-probability ratio

$$
\log \frac{p\left(\mathcal{C}_{1} \mid \boldsymbol{x}\right)}{p\left(\mathcal{C}_{2} \mid \boldsymbol{x}\right)}=\log \frac{p\left(x \mid \mathcal{C}_{1}\right)}{p\left(x \mid \mathcal{C}_{2}\right)}+\log \frac{p\left(\mathcal{C}_{1}\right)}{p\left(\mathcal{C}_{2}\right)}
$$

where the decision boundary (for \mathcal{C}_{1} or \mathcal{C}_{2}) is at 0 .

The Linear Decision Boundary of LDA

- Look at the log-probability ratio

$$
\log \frac{p\left(\mathcal{C}_{1} \mid \boldsymbol{x}\right)}{p\left(\mathcal{C}_{2} \mid \boldsymbol{x}\right)}=\log \frac{p\left(x \mid \mathcal{C}_{1}\right)}{p\left(x \mid \mathcal{C}_{2}\right)}+\log \frac{p\left(\mathcal{C}_{1}\right)}{p\left(\mathcal{C}_{2}\right)}
$$

where the decision boundary (for \mathcal{C}_{1} or \mathcal{C}_{2}) is at 0 .

- Assume Gaussian likelihood $p\left(\boldsymbol{x} \mid \mathcal{C}_{i}\right)=\mathcal{N}\left(\boldsymbol{x} \mid \boldsymbol{m}_{i}, \boldsymbol{\Sigma}\right)$ with the same covariance in both classes. Decision boundary:

$$
\log \frac{p\left(\mathcal{C}_{1} \mid \boldsymbol{x}\right)}{p\left(\mathcal{C}_{2} \mid \boldsymbol{x}\right)}=0
$$

The Linear Decision Boundary of LDA

- Look at the log-probability ratio

$$
\log \frac{p\left(\mathcal{C}_{1} \mid \boldsymbol{x}\right)}{p\left(\mathcal{C}_{2} \mid \boldsymbol{x}\right)}=\log \frac{p\left(x \mid \mathcal{C}_{1}\right)}{p\left(x \mid \mathcal{C}_{2}\right)}+\log \frac{p\left(\mathcal{C}_{1}\right)}{p\left(\mathcal{C}_{2}\right)}
$$

where the decision boundary (for \mathcal{C}_{1} or \mathcal{C}_{2}) is at 0 .

- Assume Gaussian likelihood $p\left(\boldsymbol{x} \mid \mathcal{C}_{i}\right)=\mathcal{N}\left(\boldsymbol{x} \mid \boldsymbol{m}_{i}, \boldsymbol{\Sigma}\right)$ with the same covariance in both classes. Decision boundary:

$$
\begin{aligned}
& \log \frac{p\left(\mathcal{C}_{1} \mid \boldsymbol{x}\right)}{p\left(\mathcal{C}_{2} \mid \boldsymbol{x}\right)}=0 \\
& \Leftrightarrow \log \frac{p\left(\mathcal{C}_{1}\right)}{p\left(\mathcal{C}_{2}\right)}-\frac{1}{2}\left(m_{1}^{\top} \Sigma^{-1} m_{1}-m_{2} \Sigma^{-1} m_{2}\right)+\left(m_{1}-m_{2}\right)^{\top} \Sigma^{-1} x=0
\end{aligned}
$$

The Linear Decision Boundary of LDA

- Look at the log-probability ratio

$$
\log \frac{p\left(\mathcal{C}_{1} \mid \boldsymbol{x}\right)}{p\left(\mathcal{C}_{2} \mid \boldsymbol{x}\right)}=\log \frac{p\left(x \mid \mathcal{C}_{1}\right)}{p\left(\boldsymbol{x} \mid \mathcal{C}_{2}\right)}+\log \frac{p\left(\mathcal{C}_{1}\right)}{p\left(\mathcal{C}_{2}\right)}
$$

where the decision boundary (for \mathcal{C}_{1} or \mathcal{C}_{2}) is at 0 .

- Assume Gaussian likelihood $p\left(\boldsymbol{x} \mid \mathcal{C}_{i}\right)=\mathcal{N}\left(\boldsymbol{x} \mid \boldsymbol{m}_{i}, \boldsymbol{\Sigma}\right)$ with the same covariance in both classes. Decision boundary:

$$
\begin{aligned}
& \log \frac{p\left(\mathcal{C}_{1} \mid \boldsymbol{x}\right)}{p\left(\mathcal{C}_{2} \mid \boldsymbol{x}\right)}=0 \\
& \Leftrightarrow \log \frac{p\left(\mathcal{C}_{1}\right)}{p\left(\mathcal{C}_{2}\right)}-\frac{1}{2}\left(m_{1}^{\top} \boldsymbol{\Sigma}^{-1} m_{1}-m_{2} \boldsymbol{\Sigma}^{-1} m_{2}\right)+\left(m_{1}-m_{2}\right)^{\top} \boldsymbol{\Sigma}^{-1} x=0 \\
& \Leftrightarrow\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}=\frac{1}{2}\left(\boldsymbol{m}_{1}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{m}_{1}-\boldsymbol{m}_{2} \boldsymbol{\Sigma}^{-1} \boldsymbol{m}_{2}\right)-\log \frac{p\left(\mathcal{C}_{1}\right)}{p\left(\mathcal{C}_{2}\right)}
\end{aligned}
$$

The Linear Decision Boundary of LDA

- Look at the log-probability ratio

$$
\log \frac{p\left(\mathcal{C}_{1} \mid \boldsymbol{x}\right)}{p\left(\mathcal{C}_{2} \mid \boldsymbol{x}\right)}=\log \frac{p\left(x \mid \mathcal{C}_{1}\right)}{p\left(x \mid \mathcal{C}_{2}\right)}+\log \frac{p\left(\mathcal{C}_{1}\right)}{p\left(\mathcal{C}_{2}\right)}
$$

where the decision boundary (for \mathcal{C}_{1} or \mathcal{C}_{2}) is at 0 .

- Assume Gaussian likelihood $p\left(\boldsymbol{x} \mid \mathcal{C}_{i}\right)=\mathcal{N}\left(\boldsymbol{x} \mid \boldsymbol{m}_{i}, \boldsymbol{\Sigma}\right)$ with the same covariance in both classes. Decision boundary:

$$
\begin{aligned}
& \log \frac{p\left(\mathcal{C}_{1} \mid \boldsymbol{x}\right)}{p\left(\mathcal{C}_{2} \mid \boldsymbol{x}\right)}=0 \\
& \Leftrightarrow \log \frac{p\left(\mathcal{C}_{1}\right)}{p\left(\mathcal{C}_{2}\right)}-\frac{1}{2}\left(m_{1}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{m}_{1}-m_{2} \boldsymbol{\Sigma}^{-1} m_{2}\right)+\left(m_{1}-m_{2}\right)^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}=0 \\
& \Leftrightarrow\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}=\frac{1}{2}\left(\boldsymbol{m}_{1}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{m}_{1}-\boldsymbol{m}_{2} \boldsymbol{\Sigma}^{-1} \boldsymbol{m}_{2}\right)-\log \frac{p\left(\mathcal{C}_{1}\right)}{p\left(\mathcal{C}_{2}\right)}
\end{aligned}
$$

\mapsto Of the form $A \boldsymbol{x}=\boldsymbol{b} \rightsquigarrow$ Decision boundary linear in \boldsymbol{x}

Potential Issues

- Considerable loss of information when projecting

Potential Issues

- Considerable loss of information when projecting
- Even if data was linearly separable in \mathbb{R}^{D}, we may lose this separability (see figure)

Potential Issues

- Considerable loss of information when projecting
- Even if data was linearly separable in \mathbb{R}^{D}, we may lose this separability (see figure)
\checkmark Find good basis vector w that spans the subspace we project onto

Approach: Maximize Class Separation

- Adjust components of basis vector w
\rightarrow Select projection that maximizes the class separation

Approach: Maximize Class Separation

- Adjust components of basis vector w
\rightarrow Select projection that maximizes the class separation
- Consider two classes: C_{1} with N_{1} points and C_{2} with N_{2} points

Approach: Maximize Class Separation

- Adjust components of basis vector w
\rightarrow Select projection that maximizes the class separation
- Consider two classes: C_{1} with N_{1} points and C_{2} with N_{2} points
- Corresponding mean vectors:

$$
\boldsymbol{m}_{1}=\frac{1}{N_{1}} \sum_{n \in C_{1}} \boldsymbol{x}_{n}, \quad \boldsymbol{m}_{2}=\frac{1}{N_{2}} \sum_{n \in C_{2}} \boldsymbol{x}_{n}
$$

Approach: Maximize Class Separation

- Adjust components of basis vector w
\rightarrow Select projection that maximizes the class separation
- Consider two classes: C_{1} with N_{1} points and C_{2} with N_{2} points
- Corresponding mean vectors:

$$
\boldsymbol{m}_{1}=\frac{1}{N_{1}} \sum_{n \in C_{1}} \boldsymbol{x}_{n}, \quad \boldsymbol{m}_{2}=\frac{1}{N_{2}} \sum_{n \in C_{2}} \boldsymbol{x}_{n}
$$

- Measure class separation as the distance of the projected class means:

$$
m_{2}-m_{1}=\boldsymbol{w}^{\top} \boldsymbol{m}_{2}-\boldsymbol{w}^{\top} m_{1}=\boldsymbol{w}^{\top}\left(\boldsymbol{m}_{2}-\boldsymbol{m}_{1}\right)
$$

and maximize this w.r.t. \boldsymbol{w} with the constraint $\|\boldsymbol{w}\|=1$

Maximum Class Separation

- Find $\boldsymbol{w} \propto\left(\boldsymbol{m}_{2}-\boldsymbol{m}_{1}\right)$
- Projected classes may still have considerable overlap (because of strongly non-diagonal covariances of the class distributions)

Maximum Class Separation

- Find $\boldsymbol{w} \propto\left(\boldsymbol{m}_{2}-\boldsymbol{m}_{1}\right)$
- Projected classes may still have considerable overlap (because of strongly non-diagonal covariances of the class distributions)
- LDA: Large separation of projected class means and small within-class variation (small overlap of classes)

Key Idea of LDA

- Separate samples of distinct groups by projecting them onto a space that
- Maximizes their between-class separability while
- Minimizing their within-class variability

Fisher Criterion

- For each class C_{k} the within-class scatter (unnormalized variance) is given as

$$
s_{k}^{2}=\sum_{n \in C_{k}}\left(y_{n}-m_{k}\right)^{2}, \quad y_{n}=\boldsymbol{w}^{\top} \boldsymbol{x}_{n}, \quad m_{k}=\boldsymbol{w}^{\top} \boldsymbol{m}_{k}
$$

Fisher Criterion

- For each class C_{k} the within-class scatter (unnormalized variance) is given as

$$
s_{k}^{2}=\sum_{n \in C_{k}}\left(y_{n}-m_{k}\right)^{2}, \quad y_{n}=\boldsymbol{w}^{\top} \boldsymbol{x}_{n}, \quad m_{k}=\boldsymbol{w}^{\top} \boldsymbol{m}_{k}
$$

- Maximize the Fisher criterion:

$$
\begin{aligned}
J(\boldsymbol{w}) & =\frac{\text { Between-class scatter }}{\text { Within-class scatter }}=\frac{\left(m_{2}-m_{1}\right)^{2}}{s_{1}^{2}+s_{2}^{2}}=\frac{\boldsymbol{w}^{\top} \boldsymbol{S}_{B} \boldsymbol{w}}{\boldsymbol{w}^{\top} \boldsymbol{S}_{W} \boldsymbol{w}} \\
\boldsymbol{S}_{W} & =\sum_{k} \sum_{n \in C_{k}}\left(\boldsymbol{x}_{n}-\boldsymbol{m}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{m}_{k}\right)^{\top} \\
\boldsymbol{S}_{B} & =\left(\boldsymbol{m}_{2}-\boldsymbol{m}_{1}\right)\left(\boldsymbol{m}_{2}-\boldsymbol{m}_{1}\right)^{\top}
\end{aligned}
$$

Fisher Criterion

- For each class C_{k} the within-class scatter (unnormalized variance) is given as

$$
s_{k}^{2}=\sum_{n \in C_{k}}\left(y_{n}-m_{k}\right)^{2}, \quad y_{n}=\boldsymbol{w}^{\top} \boldsymbol{x}_{n}, \quad m_{k}=\boldsymbol{w}^{\top} \boldsymbol{m}_{k}
$$

- Maximize the Fisher criterion:

$$
\begin{aligned}
J(\boldsymbol{w}) & =\frac{\text { Between-class scatter }}{\text { Within-class scatter }}=\frac{\left(m_{2}-m_{1}\right)^{2}}{s_{1}^{2}+s_{2}^{2}}=\frac{\boldsymbol{w}^{\top} \boldsymbol{S}_{B} \boldsymbol{w}}{\boldsymbol{w}^{\top} \boldsymbol{S}_{W} \boldsymbol{w}} \\
\boldsymbol{S}_{W} & =\sum_{k} \sum_{n \in C_{k}}\left(\boldsymbol{x}_{n}-\boldsymbol{m}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{m}_{k}\right)^{\top} \\
\boldsymbol{S}_{B} & =\left(\boldsymbol{m}_{2}-\boldsymbol{m}_{1}\right)\left(\boldsymbol{m}_{\mathbf{2}}-\boldsymbol{m}_{1}\right)^{\top}
\end{aligned}
$$

- S_{W} is the total within-class scatter and proportional to the sample covariance matrix

Generalization to k Classes

For k classes, we define the between-class scatter matrix as

$$
\boldsymbol{S}_{B}=\sum_{k} N_{k}\left(\boldsymbol{m}_{k}-\boldsymbol{\mu}\right)\left(\boldsymbol{m}_{2}-\boldsymbol{\mu}\right)^{\top}, \quad \boldsymbol{\mu}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i}
$$

where μ is the global mean of the data set

Finding the Projection

Objective

Find w^{*} that maximizes

$$
J(\boldsymbol{w})=\frac{\boldsymbol{w}^{\top} \boldsymbol{S}_{B} \boldsymbol{w}}{\boldsymbol{w}^{\top} \boldsymbol{S}_{W} \boldsymbol{w}}
$$

Finding the Projection

Objective

Find w^{*} that maximizes

$$
J(\boldsymbol{w})=\frac{\boldsymbol{w}^{\top} \boldsymbol{S}_{B} \boldsymbol{w}}{\boldsymbol{w}^{\top} \boldsymbol{S}_{W} \boldsymbol{w}}
$$

We find w by setting $d J / d w=0$:

$$
d J / d \boldsymbol{w}=\mathbf{0} \Leftrightarrow\left(\boldsymbol{w}^{\top} \boldsymbol{S}_{W} \boldsymbol{w}\right) \boldsymbol{S}_{B} \boldsymbol{w}-\left(\boldsymbol{w}^{\top} \boldsymbol{S}_{B} \boldsymbol{w}\right) \boldsymbol{S}_{W} \boldsymbol{w}=\mathbf{0}
$$

Finding the Projection

Objective

Find w^{*} that maximizes

$$
J(\boldsymbol{w})=\frac{\boldsymbol{w}^{\top} \boldsymbol{S}_{B} \boldsymbol{w}}{\boldsymbol{w}^{\top} \boldsymbol{S}_{W} \boldsymbol{w}}
$$

We find w by setting $d J / d w=0$:

$$
\begin{aligned}
d J / d \boldsymbol{w}=\mathbf{0} & \Leftrightarrow\left(\boldsymbol{w}^{\top} \boldsymbol{S}_{W} \boldsymbol{w}\right) \boldsymbol{S}_{B} \boldsymbol{w}-\left(\boldsymbol{w}^{\top} \boldsymbol{S}_{B} \boldsymbol{w}\right) \boldsymbol{S}_{W} \boldsymbol{w}=\mathbf{0} \\
& \Leftrightarrow \boldsymbol{S}_{B} \boldsymbol{w}-J \boldsymbol{S}_{W} \boldsymbol{w}=\mathbf{0}
\end{aligned}
$$

Finding the Projection

Objective

Find w^{*} that maximizes

$$
J(\boldsymbol{w})=\frac{\boldsymbol{w}^{\top} \boldsymbol{S}_{B} \boldsymbol{w}}{\boldsymbol{w}^{\top} \boldsymbol{S}_{W} \boldsymbol{w}}
$$

We find \boldsymbol{w} by setting $d J / d w=0$:

$$
\begin{aligned}
d J / d \boldsymbol{w}=\mathbf{0} & \Leftrightarrow\left(\boldsymbol{w}^{\top} \boldsymbol{S}_{W} \boldsymbol{w}\right) \boldsymbol{S}_{B} \boldsymbol{w}-\left(\boldsymbol{w}^{\top} \boldsymbol{S}_{B} \boldsymbol{w}\right) \boldsymbol{S}_{W} \boldsymbol{w}=\mathbf{0} \\
& \Leftrightarrow \boldsymbol{S}_{B} \boldsymbol{w}-J S_{W} \boldsymbol{w}=\mathbf{0} \\
& \Leftrightarrow \boldsymbol{S}_{W}^{-1} \boldsymbol{S}_{B} \boldsymbol{w}-J \boldsymbol{w}=\mathbf{0}
\end{aligned}
$$

Finding the Projection

Objective

Find w^{*} that maximizes

$$
J(\boldsymbol{w})=\frac{\boldsymbol{w}^{\top} \boldsymbol{S}_{B} \boldsymbol{w}}{\boldsymbol{w}^{\top} \boldsymbol{S}_{W} \boldsymbol{w}}
$$

We find w by setting $d J / d w=0$:

$$
\begin{aligned}
d J / d \boldsymbol{w}=\mathbf{0} & \Leftrightarrow\left(\boldsymbol{w}^{\top} \boldsymbol{S}_{W} \boldsymbol{w}\right) \boldsymbol{S}_{B} \boldsymbol{w}-\left(\boldsymbol{w}^{\top} \boldsymbol{S}_{B} \boldsymbol{w}\right) \boldsymbol{S}_{W} \boldsymbol{w}=\mathbf{0} \\
& \Leftrightarrow \boldsymbol{S}_{B} \boldsymbol{w}-J S_{W} \boldsymbol{w}=\mathbf{0} \\
& \Leftrightarrow \boldsymbol{S}_{W}^{-1} \boldsymbol{S}_{B} \boldsymbol{w}-J \boldsymbol{w}=\mathbf{0}
\end{aligned}
$$

\rightarrow Eigenvalue problem $S_{W}^{-1} S_{B} w=J w$

Finding the Projection

Objective

Find w^{*} that maximizes

$$
J(\boldsymbol{w})=\frac{\boldsymbol{w}^{\top} \boldsymbol{S}_{B} \boldsymbol{w}}{\boldsymbol{w}^{\top} \boldsymbol{S}_{W} \boldsymbol{w}}
$$

We find w by setting $d J / d w=0$:

$$
\begin{aligned}
d J / d \boldsymbol{w}=\mathbf{0} & \Leftrightarrow\left(\boldsymbol{w}^{\top} \boldsymbol{S}_{W} \boldsymbol{w}\right) \boldsymbol{S}_{B} \boldsymbol{w}-\left(\boldsymbol{w}^{\top} \boldsymbol{S}_{B} \boldsymbol{w}\right) \boldsymbol{S}_{W} \boldsymbol{w}=\mathbf{0} \\
& \Leftrightarrow \boldsymbol{S}_{B} \boldsymbol{w}-J S_{W} \boldsymbol{w}=\mathbf{0} \\
& \Leftrightarrow \boldsymbol{S}_{W}^{-1} \boldsymbol{S}_{B} \boldsymbol{w}-J \boldsymbol{w}=\mathbf{0}
\end{aligned}
$$

\checkmark Eigenvalue problem $S_{W}^{-1} S_{B} w=J w$
\rightarrow The projection vector w is the eigenvector of $S_{W}^{-1} S_{B}$.

Finding the Projection

Objective

Find w^{*} that maximizes

$$
J(\boldsymbol{w})=\frac{\boldsymbol{w}^{\top} \boldsymbol{S}_{B} \boldsymbol{w}}{\boldsymbol{w}^{\top} \boldsymbol{S}_{W} \boldsymbol{w}}
$$

We find \boldsymbol{w} by setting $d J / d w=0$:

$$
\begin{aligned}
d J / d \boldsymbol{w}=\mathbf{0} & \Leftrightarrow\left(\boldsymbol{w}^{\top} \boldsymbol{S}_{W} \boldsymbol{w}\right) \boldsymbol{S}_{B} \boldsymbol{w}-\left(\boldsymbol{w}^{\top} \boldsymbol{S}_{B} \boldsymbol{w}\right) \boldsymbol{S}_{W} \boldsymbol{w}=\mathbf{0} \\
& \Leftrightarrow \boldsymbol{S}_{B} \boldsymbol{w}-J S_{W} \boldsymbol{w}=\mathbf{0} \\
& \Leftrightarrow \boldsymbol{S}_{W}^{-1} \boldsymbol{S}_{B} \boldsymbol{w}-J \boldsymbol{w}=\mathbf{0}
\end{aligned}
$$

\checkmark Eigenvalue problem $S_{W}^{-1} S_{B} w=J w$

- The projection vector w is the eigenvector of $S_{W}^{-1} S_{B}$.
\rightarrow Choose the eigenvector that corresponds to the maximum eigenvalue (similar to PCA) to maximize class separability

Algorithm

1. Mean normalization

- $X \in \mathbb{R}^{n \times D}: i$ th row represents the i th sample

Algorithm

1. Mean normalization
2. Compute mean vectors $\boldsymbol{m}_{i} \in \mathbb{R}^{D}$ for all k classes

- $X \in \mathbb{R}^{n \times D}: i$ th row represents the i th sample

Algorithm

1. Mean normalization
2. Compute mean vectors $\boldsymbol{m}_{i} \in \mathbb{R}^{D}$ for all k classes
3. Compute scatter matrices S_{W}, S_{B}

- $X \in \mathbb{R}^{n \times D}$: i th row represents the i th sample

Algorithm

1. Mean normalization
2. Compute mean vectors $\boldsymbol{m}_{i} \in \mathbb{R}^{D}$ for all k classes
3. Compute scatter matrices S_{W}, S_{B}
4. Compute eigenvectors and eigenvalues of $S_{W}^{-1} S_{B}$

- $X \in \mathbb{R}^{n \times D}: i$ th row represents the i th sample

Algorithm

1. Mean normalization
2. Compute mean vectors $\boldsymbol{m}_{i} \in \mathbb{R}^{D}$ for all k classes
3. Compute scatter matrices S_{W}, S_{B}
4. Compute eigenvectors and eigenvalues of $S_{W}^{-1} S_{B}$
5. Select k eigenvectors \boldsymbol{w}_{i} with the largest eigenvalues to form a $D \times k$-dimensional matrix $\boldsymbol{W}=\left[\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{k}\right]$

- $X \in \mathbb{R}^{n \times D}$: i th row represents the i th sample

Algorithm

1. Mean normalization
2. Compute mean vectors $\boldsymbol{m}_{i} \in \mathbb{R}^{D}$ for all k classes
3. Compute scatter matrices S_{W}, S_{B}
4. Compute eigenvectors and eigenvalues of $S_{W}^{-1} S_{B}$
5. Select k eigenvectors w_{i} with the largest eigenvalues to form a $D \times k$-dimensional matrix $\boldsymbol{W}=\left[\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{k}\right]$
6. Project samples onto the new subspace using W and compute the new coordinates as $\boldsymbol{Y}=\boldsymbol{X W}$

- $X \in \mathbb{R}^{n \times D}: i$ th row represents the i th sample
- $Y \in \mathbb{R}^{n \times k}$: Coordinate matrix of the n data points w.r.t. eigenbasis W spanning the k-dimensional subspace

PCA vs LDA

- Similar to PCA, we can use LDA for dimensionality reduction by looking at an eigenvalue problem

PCA vs LDA

- Similar to PCA, we can use LDA for dimensionality reduction by looking at an eigenvalue problem
- LDA: Magnitude of the eigenvalues in LDA describe importance of the corresponding eigenspace with respect to classification performance

PCA vs LDA

- Similar to PCA, we can use LDA for dimensionality reduction by looking at an eigenvalue problem
- LDA: Magnitude of the eigenvalues in LDA describe importance of the corresponding eigenspace with respect to classification performance
- PCA: Magnitude of the eigenvalues in LDA describe importance of the corresponding eigenspace with respect to minimizing reconstruction error

Assumptions in LDA

- The true covariance matrices of each class are equal

Assumptions in LDA

- The true covariance matrices of each class are equal
- Without this assumption: Quadratic discriminant analysis (e.g. Hastie et al., 2009)

Assumptions in LDA

- The true covariance matrices of each class are equal
- Without this assumption: Quadratic discriminant analysis (e.g. Hastie et al., 2009)
- Performance of the standard LDA can be seriously degraded if there are only a limited number of total training observations N compared to the dimension D of the feature space.
- Shrinkage (Copas, 1983)

Assumptions in LDA

- The true covariance matrices of each class are equal
- Without this assumption: Quadratic discriminant analysis (e.g. Hastie et al., 2009)
- Performance of the standard LDA can be seriously degraded if there are only a limited number of total training observations N compared to the dimension D of the feature space.
- Shrinkage (Copas, 1983)
- LDA explicitly attempts to model the difference between the classes of data. PCA on the other hand does not take into account any difference in class

Limitations of LDA

- LDA's most disriminant features are the means of the data distributions
- LDA will fail when the discriminatory information is not the mean but the variance of the data.
- If the data distributions are very non-Gaussian, the LDA projections will not preserve the complex structure of the data that may be required for classification
- Nonlinear LDA (e.g., Mika et al., 1999; Baudat \& Anouar, 2000)

References I

[1] G. Baudat and F. Anouar. Generalized Discriminant Analysis using a Kernel Approach. Neural Computation, 12(10):2385-2404, 2000.
[2] C. M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics. Springer-Verlag, 2006.
[3] J. B. Copas. Regression, Prediction and Shrinkage. Journal of the Royal Statistical Society, Series B, 45(3):311-354, 1983.
[4] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning—Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer-Verlag New York, Inc., 175 Fifth Avenue, New York City, NY, USA, 2001.
[5] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher Discriminant Analysis with Kernels. Neural Networks for Signal Processing, IX:41-48, 1999.

