Intelligent Data Analysis and Probabilistic Inference

Imperial College London

Lecture 16: Sampling

Recommended reading: Bishop: Chapter 11 MacKay: Chapter 29

Duncan Gillies and Marc Deisenroth

Department of Computing Imperial College London

February 22-24, 2016

Monte Carlo Methods-Motivation

- Monte Carlo methods are computational techniques that make use of random numbers
- Two typical problems:
 - Problem 1: Generate samples {x^(s)} from a given probability distribution p(x)

Monte Carlo Methods-Motivation

- Monte Carlo methods are computational techniques that make use of random numbers
- Two typical problems:
 - Problem 1: Generate samples {x^(s)} from a given probability distribution p(x)
 - 2. Problem 2: Estimate expectations of functions under that distribution:

$$\mathbb{E}[f(\boldsymbol{x})] = \int f(\boldsymbol{x}) p(\boldsymbol{x}) d\boldsymbol{x}$$

Monte Carlo Methods-Motivation

- Monte Carlo methods are computational techniques that make use of random numbers
- Two typical problems:
 - Problem 1: Generate samples {x^(s)} from a given probability distribution p(x)
 - 2. Problem 2: Estimate expectations of functions under that distribution:

$$\mathbb{E}[f(\mathbf{x})] = \int f(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

► Example: Means/variances of distributions, marginal likelihood

Complication: Integral cannot be evaluated analytically

Monte Carlo Estimation

Statistical sampling can be applied to compute expectations

$$\mathbb{E}[f(\mathbf{x})] = \int f(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$
$$\approx \frac{1}{S} \sum_{s=1}^{S} f(\mathbf{x}^{(s)}), \quad \mathbf{x}^{(s)} \sim p(\mathbf{x})$$

Monte Carlo Estimation

Statistical sampling can be applied to compute expectations

$$\mathbb{E}[f(\mathbf{x})] = \int f(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$
$$\approx \frac{1}{S} \sum_{s=1}^{S} f(\mathbf{x}^{(s)}), \quad \mathbf{x}^{(s)} \sim p(\mathbf{x})$$

Example: Making predictions (e.g., Bayesian linear regression with a training set D = {X, y} at test input x_{*})

$$\begin{split} p(\boldsymbol{y}_* | \boldsymbol{x}_*, \mathcal{D}) &= \int p(\boldsymbol{y}_* | \boldsymbol{\theta}, \boldsymbol{x}_*) p(\boldsymbol{\theta} | \mathcal{D}) d\boldsymbol{\theta} \\ &\approx \frac{1}{S} \sum_{s=1}^{S} p(\boldsymbol{y}_* | \boldsymbol{\theta}^{(s)}, \boldsymbol{x}_*), \quad \boldsymbol{\theta}^{(s)} \sim p(\boldsymbol{\theta} | \mathcal{D}) \end{split}$$

Monte Carlo Estimation

Statistical sampling can be applied to compute expectations

$$\mathbb{E}[f(\mathbf{x})] = \int f(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$
$$\approx \frac{1}{S} \sum_{s=1}^{S} f(\mathbf{x}^{(s)}), \quad \mathbf{x}^{(s)} \sim p(\mathbf{x})$$

Example: Making predictions (e.g., Bayesian linear regression with a training set D = {X, y} at test input x_{*})

$$p(\boldsymbol{y}_*|\boldsymbol{x}_*, \mathcal{D}) = \int p(\boldsymbol{y}_*|\boldsymbol{\theta}, \boldsymbol{x}_*) p(\boldsymbol{\theta}|\mathcal{D}) d\boldsymbol{\theta}$$
$$\approx \frac{1}{S} \sum_{s=1}^{S} p(\boldsymbol{y}_*|\boldsymbol{\theta}^{(s)}, \boldsymbol{x}_*), \quad \boldsymbol{\theta}^{(s)} \sim p(\boldsymbol{\theta}|\mathcal{D})$$

• If we can sample from p(x) (or $p(\theta)$) we can approximate these integrals

Properties of Monte Carlo Sampling

$$\mathbb{E}[f(\mathbf{x})] = \int f(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$
$$\approx \frac{1}{S} \sum_{s=1}^{S} f(\mathbf{x}^{(s)}), \quad \mathbf{x}^{(s)} \sim p(\mathbf{x})$$

- Estimator is unbiased
- Variance shrinks $\propto 1/S$, regardless of the dimensionality of *x*

Alternatives to Monte Carlo

$$\mathbb{E}[f(\mathbf{x})] = \int f(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

To evaluate these expectations we can use other methods than Monte Carlo:

- Numerical integration (low-dimensional problems)
- Deterministic approximations, e.g., Variational Bayes, Expectation Propagation

Back to Monte Carlo Estimation

$$\mathbb{E}[f(\mathbf{x})] = \int f(\mathbf{x})p(\mathbf{x})d\mathbf{x}$$
$$\approx \frac{1}{S}\sum_{s=1}^{S}f(\mathbf{x}^{(s)}), \quad \mathbf{x}^{(s)} \sim p(\mathbf{x})$$

- How do we get these samples?
- ▶ Need to solve Problem 1
 - Sampling from simple distributions
 - Sampling from complicated distributions

Important Example

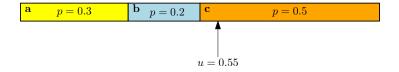
- By specifying the model, we know the prior $p(\theta)$ and the likelihood $p(\mathcal{D}|\theta)$
- The unnormalized posterior is

 $p(\pmb{\theta}|\mathcal{D}) \propto p(\mathcal{D}|\pmb{\theta}) p(\pmb{\theta})$

and there is often no hope to compute the normalization constant

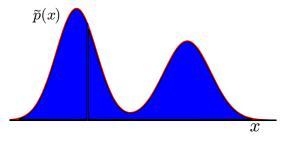
• Samples are a good way to characterize this posterior (important for model comparison, Bayesian predictions, ...)

Sampling Discrete Values



- $u \sim \mathcal{U}[0, 1]$, where \mathcal{U} is the uniform distribution
- $u = 0.55 \Rightarrow x = c$

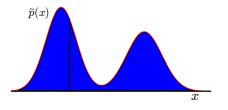
Continuous Variables



More complicated. Geometrically, sample uniformly from the area under the curve

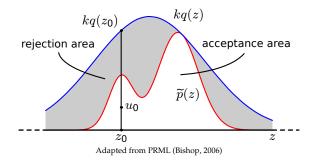
Rejection Sampling

Rejection Sampling: Setting

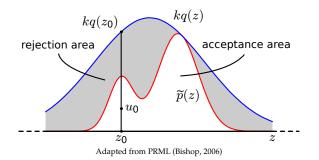


- Assume sampling from p(z) is difficult
- Evaluating $\tilde{p}(z) = Zp(z)$ is easy (and Z may be unknown)
- Find a simpler distribution (proposal distribution) q(z) from which we can easily draw samples (e.g., Gaussian)
- Find an upper bound $kq(z) \ge \tilde{p}(z)$

Algorithm

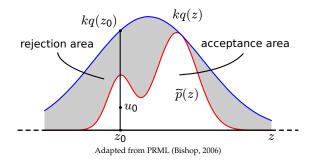


- 1. Generate $z_0 \sim q(z)$
- 2. Generate $u_0 \sim \mathcal{U}[0, kq(z_0)]$
- 3. If $u_0 > \tilde{p}(z_0)$, reject the sample. Otherwise, retain z_0



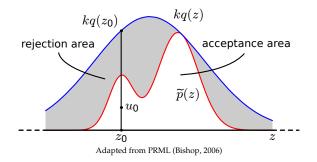
- Probability density of the *z*-coordiantes of accepted points must be proportional to p
 p(*z*)
- Samples are independent samples from p(z)

Shortcomings



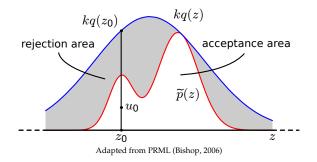
• Finding *k* is tricky

Shortcomings



- Finding *k* is tricky
- In high dimensions the factor *k* is probably huge

Shortcomings



- Finding *k* is tricky
- In high dimensions the factor *k* is probably huge
- Low acceptance rate

$$\mathbb{E}_p[f(\mathbf{x})] = \int f(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

$$\mathbb{E}_p[f(\mathbf{x})] = \int f(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$
$$= \int f(\mathbf{x}) p(\mathbf{x}) \frac{q(\mathbf{x})}{q(\mathbf{x})} d\mathbf{x}$$

$$\mathbb{E}_p[f(\mathbf{x})] = \int f(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

= $\int f(\mathbf{x}) p(\mathbf{x}) \frac{q(\mathbf{x})}{q(\mathbf{x})} d\mathbf{x} = \int f(\mathbf{x}) \frac{p(\mathbf{x})}{q(\mathbf{x})} q(\mathbf{x}) d\mathbf{x}$

$$\mathbb{E}_p[f(\mathbf{x})] = \int f(\mathbf{x})p(\mathbf{x})d\mathbf{x}$$

= $\int f(\mathbf{x})p(\mathbf{x})\frac{q(\mathbf{x})}{q(\mathbf{x})}d\mathbf{x} = \int f(\mathbf{x})\frac{p(\mathbf{x})}{q(\mathbf{x})}q(\mathbf{x})d\mathbf{x}$
= $\mathbb{E}_q\left[f(\mathbf{x})\frac{p(\mathbf{x})}{q(\mathbf{x})}\right]$

Key idea: Do not throw away all rejected samples, but give them lower weight by rewriting the integral as an expectation under a simpler distribution *q* (proposal distribution):

$$\mathbb{E}_p[f(\mathbf{x})] = \int f(\mathbf{x})p(\mathbf{x})d\mathbf{x}$$

= $\int f(\mathbf{x})p(\mathbf{x})\frac{q(\mathbf{x})}{q(\mathbf{x})}d\mathbf{x} = \int f(\mathbf{x})\frac{p(\mathbf{x})}{q(\mathbf{x})}q(\mathbf{x})d\mathbf{x}$
= $\mathbb{E}_q\left[f(\mathbf{x})\frac{p(\mathbf{x})}{q(\mathbf{x})}\right]$

If we choose *q* in a way that we can easily sample from it, we can approximate this last expectation by Monte Carlo:

$$E_q\left[f(\mathbf{x})\frac{p(\mathbf{x})}{q(\mathbf{x})}\right] \approx \frac{1}{S}\sum_{s=1}^{S}f(\mathbf{x}^{(s)})\frac{p(\mathbf{x}^{(s)})}{q(\mathbf{x}^{(s)})}$$

,
$$x^{(s)} \sim q(x)$$

Key idea: Do not throw away all rejected samples, but give them lower weight by rewriting the integral as an expectation under a simpler distribution *q* (proposal distribution):

$$\mathbb{E}_p[f(\mathbf{x})] = \int f(\mathbf{x})p(\mathbf{x})d\mathbf{x}$$

= $\int f(\mathbf{x})p(\mathbf{x})\frac{q(\mathbf{x})}{q(\mathbf{x})}d\mathbf{x} = \int f(\mathbf{x})\frac{p(\mathbf{x})}{q(\mathbf{x})}q(\mathbf{x})d\mathbf{x}$
= $\mathbb{E}_q\left[f(\mathbf{x})\frac{p(\mathbf{x})}{q(\mathbf{x})}\right]$

If we choose *q* in a way that we can easily sample from it, we can approximate this last expectation by Monte Carlo:

$$E_q\left[f(\mathbf{x})\frac{p(\mathbf{x})}{q(\mathbf{x})}\right] \approx \frac{1}{S} \sum_{s=1}^{S} f(\mathbf{x}^{(s)}) \frac{p(\mathbf{x}^{(s)})}{q(\mathbf{x}^{(s)})} = \frac{1}{S} \sum_{s=1}^{S} w_s f(\mathbf{x}^{(s)}), \quad \mathbf{x}^{(s)} \sim q(\mathbf{x})$$

• Unbiased if q > 0 where p > 0 and if we can evaluate p

- Unbiased if q > 0 where p > 0 and if we can evaluate p
- Breaks down if we do not have enough samples (puts nearly all weight on a single sample)
 - ➤ Degeneracy (see also Particle Filtering)

- Unbiased if q > 0 where p > 0 and if we can evaluate p
- Breaks down if we do not have enough samples (puts nearly all weight on a single sample)
 Degeneracy (see also Particle Filtering)
- Many draws from proposal density *q* required, especially in high dimensions

- Unbiased if q > 0 where p > 0 and if we can evaluate p
- Breaks down if we do not have enough samples (puts nearly all weight on a single sample)
 Degeneracy (see also Particle Filtering)
- Many draws from proposal density *q* required, especially in high dimensions
- Requires to be able to evaluate true *p*. Generalization exists for *p*. This generalization is biased (but consistent).

- Unbiased if q > 0 where p > 0 and if we can evaluate p
- Breaks down if we do not have enough samples (puts nearly all weight on a single sample)
 Degeneracy (see also Particle Filtering)
- Many draws from proposal density *q* required, especially in high dimensions
- Requires to be able to evaluate true *p*. Generalization exists for *p*. This generalization is biased (but consistent).
- Does not scale to interesting problems

- Unbiased if q > 0 where p > 0 and if we can evaluate p
- Breaks down if we do not have enough samples (puts nearly all weight on a single sample)
 Degeneracy (see also Particle Filtering)
- Many draws from proposal density *q* required, especially in high dimensions
- Requires to be able to evaluate true *p*. Generalization exists for *p*. This generalization is biased (but consistent).
- Does not scale to interesting problems
- ▶ Different approach to sample from complicated (high-dimensional) distributions

Markov Chains

Objective

Generate samples from an unknown target distribution.

Markov Chains

Key idea: Instead of independent samples, use a proposal density q that depends on the state $x^{(t)}$

Markov Chains

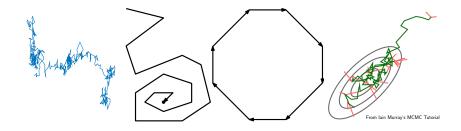
Key idea: Instead of independent samples, use a proposal density q that depends on the state $x^{(t)}$

- Markov property: $p(\mathbf{x}^{(t+1)}|\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(t)}) = T(\mathbf{x}^{(t+1)}|\mathbf{x}^{(t)})$ only depends on the previous setting/state of the chain
- *T* is called a **transition operator**
- Example: $T(\mathbf{x}^{(t+1)}|\mathbf{x}^{(t)}) = \mathcal{N}(\mathbf{x}^{(t+1)}|\mathbf{x}^{(t)}, \sigma^2 \mathbf{I})$

Markov Chains

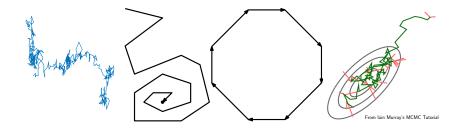
Key idea: Instead of independent samples, use a proposal density q that depends on the state $x^{(t)}$

- Markov property: $p(\mathbf{x}^{(t+1)}|\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(t)}) = T(\mathbf{x}^{(t+1)}|\mathbf{x}^{(t)})$ only depends on the previous setting/state of the chain
- *T* is called a **transition operator**
- Example: $T(\mathbf{x}^{(t+1)}|\mathbf{x}^{(t)}) = \mathcal{N}(\mathbf{x}^{(t+1)}|\mathbf{x}^{(t)}, \sigma^2 \mathbf{I})$
- Samples $x^{(1)}, \ldots, x^{(t)}$ form a Markov chain
- Samples x⁽¹⁾,..., x^(t) are no longer independent, but unbiased
 ▶ We can still average them



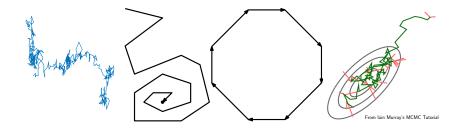
Four different behaviors of Markov chains:

• Diverge (e.g., random walk diffusion where $x^{(t+1)} \sim \mathcal{N}(x^{(t)}, I)$)



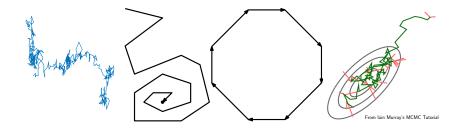
Four different behaviors of Markov chains:

- Diverge (e.g., random walk diffusion where $x^{(t+1)} \sim \mathcal{N}(x^{(t)}, I)$)
- Converge to an absorbing state



Four different behaviors of Markov chains:

- Diverge (e.g., random walk diffusion where $x^{(t+1)} \sim \mathcal{N}(x^{(t)}, I)$)
- Converge to an absorbing state
- Converge to a (deterministic) limit cycle



Four different behaviors of Markov chains:

- Diverge (e.g., random walk diffusion where $x^{(t+1)} \sim \mathcal{N}(x^{(t)}, I)$)
- Converge to an absorbing state
- Converge to a (deterministic) limit cycle
- Converge to an equilibrium distribution *p**: Markov chain remains in a region, bouncing around in a random way

Converging to an Equilibrium Distribution

- Remember objective: Explore/sample parameters that may have generated our data (generate samples from posterior)
 Non-single parameters in a second thing
 - ✤ Bouncing around in an equilibrium distribution is a good thing

Converging to an Equilibrium Distribution

- Remember objective: Explore/sample parameters that may have generated our data (generate samples from posterior)
 Bouncing around in an equilibrium distribution is a good thing
- Design the Markov chain such that the equilibrium distribution is the desired posterior
- We know the equilibrium distribution (the one we want to sample from)
 - ➤ Generate a Markov chain that converges to that equilibrium distribution (independent of start state)
- Although successive samples are dependent we can effectively generate independent samples by running the Markov chain long enough: Discard most of the samples, retain only every *M*th sample

Conditions for Converging to an Equilibrium Distribution

Markov chain conditions:

- **Invariance/Stationarity:** If you run the chain for a long time and you are in the equilibrium distribution, you stay in equilibrium if you take another step.
 - Self-consistency property
- **Ergodicity:** Any state can be reached from any state.
 - Equilibrium distribution is the same no matter where we start

Conditions for Converging to an Equilibrium Distribution

Markov chain conditions:

- **Invariance/Stationarity:** If you run the chain for a long time and you are in the equilibrium distribution, you stay in equilibrium if you take another step.
 - Self-consistency property
- Ergodicity: Any state can be reached from any state.
 Equilibrium distribution is the same no matter where we start

Property

Ergodic Markov chains only have one equilibrium distribution

Conditions for Converging to an Equilibrium Distribution

Markov chain conditions:

- **Invariance/Stationarity:** If you run the chain for a long time and you are in the equilibrium distribution, you stay in equilibrium if you take another step.
 - Self-consistency property
- Ergodicity: Any state can be reached from any state.
 Equilibrium distribution is the same no matter where we start

Property

Ergodic Markov chains only have one equilibrium distribution

➤ Use ergodic and stationary Markov chains to generate samples from the equilibrium distribution

IDAPI, Lecture 16

Invariance and Detailed Balance

• Invariance: Each step leaves the distribution *p** invariant (we stay in *p**):

$$p^*(\mathbf{x}') = \sum_{\mathbf{x}} T(\mathbf{x}'|\mathbf{x}) p^*(\mathbf{x})$$

Invariance and Detailed Balance

• Invariance: Each step leaves the distribution *p** invariant (we stay in *p**):

$$p^*(\mathbf{x}') = \sum_{\mathbf{x}} T(\mathbf{x}'|\mathbf{x}) p^*(\mathbf{x})$$

Once we sample from p^* , the transition operator will not change this, i.e., we do not fall back to some funny distribution $p \neq p^*$

Invariance and Detailed Balance

Invariance: Each step leaves the distribution p* invariant (we stay in p*):

$$p^*(\mathbf{x}') = \sum_{\mathbf{x}} T(\mathbf{x}'|\mathbf{x}) p^*(\mathbf{x})$$

Once we sample from p^* , the transition operator will not change this, i.e., we do not fall back to some funny distribution $p \neq p^*$

Sufficient condition for *p** being invariant:
 Detailed balance:

$$p^*(\boldsymbol{x})T(\boldsymbol{x}|\boldsymbol{x}') = p^*(\boldsymbol{x}')T(\boldsymbol{x}|\boldsymbol{x}')$$

Also ensures that the Markov chain is reversible.

- Assume that $\tilde{p} = Zp$ can be evaluated easily (in practice: $\log \tilde{p}$)
- Proposal density q(x'|x^(t)) depends on last sample x^(t).
 Example: Gaussian centered at x^(t)

- Assume that $\tilde{p} = Zp$ can be evaluated easily (in practice: $\log \tilde{p}$)
- Proposal density q(x'|x^(t)) depends on last sample x^(t).
 Example: Gaussian centered at x^(t)

Metropolis-Hastings Algorithm

1. Generate $\mathbf{x}' \sim q(\mathbf{x}'|\mathbf{x}^{(t)})$

2. If

$$\frac{q(\boldsymbol{x}^{(t)}|\boldsymbol{x}')\tilde{p}(\boldsymbol{x}')}{q(\boldsymbol{x}'|\boldsymbol{x}^{(t)})\tilde{p}(\boldsymbol{x}^{(t)})} \ge u, \qquad u \sim U[0,1]$$

accept the sample $x^{(t+1)} = x'$. Otherwise set $x^{(t+1)} = x^{(t)}$.

- Assume that $\tilde{p} = Zp$ can be evaluated easily (in practice: $\log \tilde{p}$)
- Proposal density q(x'|x^(t)) depends on last sample x^(t).
 Example: Gaussian centered at x^(t)

Metropolis-Hastings Algorithm

1. Generate $\mathbf{x}' \sim q(\mathbf{x}'|\mathbf{x}^{(t)})$

2. If

$$\frac{q(\boldsymbol{x}^{(t)}|\boldsymbol{x}')\tilde{p}(\boldsymbol{x}')}{q(\boldsymbol{x}'|\boldsymbol{x}^{(t)})\tilde{p}(\boldsymbol{x}^{(t)})} \geq u\,, \qquad u \sim U[0,1]$$

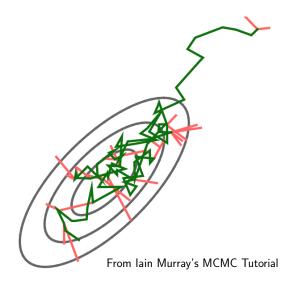
accept the sample $x^{(t+1)} = x'$. Otherwise set $x^{(t+1)} = x^{(t)}$.

 If proposal distribution is symmetric: Metropolis Algorithm (Metropolis et al., 1953); Otherwise Metropolis-Hastings Algorithm (Hastings, 1970)

Sampling

IDAPI, Lecture 16

Example



Step-Size Demo

- Explore $p(x) = \mathcal{N}(x | 0, 1)$ for different step sizes σ .
- We can only evaluate $\log \tilde{p}(x) = -x^2/2$
- Proposal distribution *q*: Gaussian N(x^(t+1) | x^(t), σ²) centered at the current state for various step sizes σ
- ▶ Expect to explore the space between −2, 2.

- Acceptance rate depends on the step size of the proposal distribution
 - ▶ Exploration parameter

- Acceptance rate depends on the step size of the proposal distribution
 - ▶ Exploration parameter
- If we do not reject enough, the method does not work.

- Acceptance rate depends on the step size of the proposal distribution
 - ► Exploration parameter
- If we do not reject enough, the method does not work.
- In rejection sampling we do not like rejections, but in MH rejections tell you where the target distribution is.

- Acceptance rate depends on the step size of the proposal distribution
 - ➤ Exploration parameter
- If we do not reject enough, the method does not work.
- In rejection sampling we do not like rejections, but in MH rejections tell you where the target distribution is.
- Theoretical results: in 1D 44%, in higher dimensions about 25% acceptance rate for good mixing properties

- Acceptance rate depends on the step size of the proposal distribution
 - ➤ Exploration parameter
- If we do not reject enough, the method does not work.
- In rejection sampling we do not like rejections, but in MH rejections tell you where the target distribution is.
- Theoretical results: in 1D 44%, in higher dimensions about 25% acceptance rate for good mixing properties
- Tune the step size

- Unlike rejection sampling, the previous sample is used to reset the chain (if a sample was discarded)
- If q > 0, we will end up in the equilibrium distribution: $p^{(t)}(\mathbf{x}) \xrightarrow{t \to \infty} p^*(\mathbf{x})$
- Explore the state space by random walk
 May take a while in high dimensions
- No further catastrophic problems in high dimensions

Gibbs Sampling

Gibbs Sampling

- Assumption: p(x) is too complicated to draw samples from directly, but its conditionals p(x_i|x_{\i}) are tractable to work with
- Example:

$$y_i \sim \mathcal{N}(\mu, \tau^{-1}), \qquad \mu \sim \mathcal{N}(0, 1), \qquad \tau \sim \text{Gamma}(2, 1)$$

Gibbs Sampling

- Assumption: p(x) is too complicated to draw samples from directly, but its conditionals p(x_i|x_{\i}) are tractable to work with
- Example:

$$y_i \sim \mathcal{N}(\mu, \tau^{-1}), \qquad \mu \sim \mathcal{N}(0, 1), \qquad \tau \sim \text{Gamma}(2, 1)$$

Then

$$p(y, \mu, \tau) = \prod_{i=1}^{n} p(y_i | \mu, \tau) p(\mu) p(\tau)$$

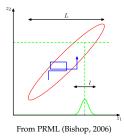
$$\propto \tau^{n/2} \exp(-\frac{\tau}{2} \sum_{i} (y_i - \mu)^2) \exp(-\frac{1}{2}\mu^2) \tau \exp(-\tau)$$

$$p(\mu | \tau) = \mathcal{N}\left(\frac{\tau \sum_i y_i}{1 + n\tau}, (1 + n\tau)^{-1}\right)$$

$$p(\tau | \mu) = \text{Gamma}(2 + \frac{n}{2}, 1 + \frac{1}{2} \sum (y_i - \mu)^2)$$

Sampling

Algorithm

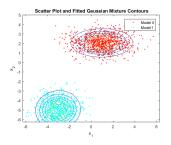


Assuming *n* parameters x_1, \ldots, x_n , Gibbs sampling samples individual variables conditioned on all others:

1.
$$x_1^{(t+1)} \sim p(x_1 | x_2^{(t)}, \dots, x_n^{(t)})$$

2. $x_2^{(t+1)} \sim p(x_2 | x_1^{(t+1)}, x_3^{(t)}, \dots, x_n^{(t)})$
3. :
4. $x_n^{(t+1)} \sim p(x_n | x_1^{(t+1)}, \dots, x_{n-1}^{(t+1)})$

Gibbs Sampling: Ergodicity



- p(x) is invariant
- Ergodicity: Sufficient to show that all conditionals are greater than 0.

➤ Then any point in *x*-space can be reached from any other point (potentially with low probability) in a finite number of steps involving one update of each of the component variables.

 Gibbs is Metropolis-Hastings with acceptance probability 1: Sequence of proposal distributions *q* is defined in terms of <u>conditional</u> distributions of the joint *p*(*x*)

► Converge to equilibrium distribution: $p^{(t)}(\mathbf{x}) \xrightarrow{t \to \infty} p(\mathbf{x})$

▶ Exploration by random walk behavior can be slow

²http://www.mrc-bsu.cam.ac.uk/software/bugs/

³http://mcmc-jags.sourceforge.net/

¹http://mc-stan.org/

- Gibbs is Metropolis-Hastings with acceptance probability 1: Sequence of proposal distributions *q* is defined in terms of <u>conditional</u> distributions of the joint *p*(*x*)
 - ► Converge to equilibrium distribution: $p^{(t)}(\mathbf{x}) \xrightarrow{t \to \infty} p(\mathbf{x})$
 - Exploration by random walk behavior can be slow
- No adjustable parameters (e.g., step size)

¹http://mc-stan.org/

²http://www.mrc-bsu.cam.ac.uk/software/bugs/

³http://mcmc-jags.sourceforge.net/

- Gibbs is Metropolis-Hastings with acceptance probability 1: Sequence of proposal distributions *q* is defined in terms of <u>conditional</u> distributions of the joint *p*(*x*)
 - ► Converge to equilibrium distribution: $p^{(t)}(\mathbf{x}) \xrightarrow{t \to \infty} p(\mathbf{x})$
 - Exploration by random walk behavior can be slow
- No adjustable parameters (e.g., step size)
- Applicability depends on how easy it is to draw samples from the conditionals

```
<sup>3</sup>http://mcmc-jags.sourceforge.net/
```

¹http://mc-stan.org/

²http://www.mrc-bsu.cam.ac.uk/software/bugs/

- Gibbs is Metropolis-Hastings with acceptance probability 1: Sequence of proposal distributions *q* is defined in terms of <u>conditional</u> distributions of the joint *p*(*x*)
 - ► Converge to equilibrium distribution: $p^{(t)}(\mathbf{x}) \xrightarrow{t \to \infty} p(\mathbf{x})$
 - Exploration by random walk behavior can be slow
- No adjustable parameters (e.g., step size)
- Applicability depends on how easy it is to draw samples from the conditionals
- May not work well if the variables are correlated

²http://www.mrc-bsu.cam.ac.uk/software/bugs/

```
<sup>3</sup>http://mcmc-jags.sourceforge.net/
```

¹http://mc-stan.org/

 Gibbs is Metropolis-Hastings with acceptance probability 1: Sequence of proposal distributions *q* is defined in terms of <u>conditional</u> distributions of the joint *p*(*x*)

➤ Converge to equilibrium distribution: p^(t)(x) → p(x)
 ➤ Exploration by random walk behavior can be slow

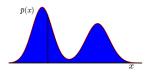
- No adjustable parameters (e.g., step size)
- Applicability depends on how easy it is to draw samples from the conditionals
- May not work well if the variables are correlated
- Statistical software derives the conditionals of the model, and it works out how to do the updates: STAN¹, WinBUGS², JAGS³

```
<sup>2</sup>http://www.mrc-bsu.cam.ac.uk/software/bugs/
```

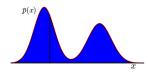
```
<sup>3</sup>http://mcmc-jags.sourceforge.net/
```

¹http://mc-stan.org/

Slice Sampling

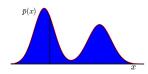


 Idea: Sample point (random walk) uniformly under the curve p̃(x)



- Idea: Sample point (random walk) uniformly under the curve p̃(x)
- Introduce additional variable *u*, define joint $\hat{p}(x, u)$:

$$\hat{p}(x,u) = \begin{cases} 1/Z_p & \text{if } 0 \leq u \leq \tilde{p}(x) \\ 0 & \text{otherwise} \end{cases}, \qquad Z_p = \int \tilde{p}(x) dx$$

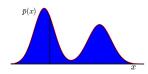


- Idea: Sample point (random walk) uniformly under the curve p̃(x)
- Introduce additional variable *u*, define joint $\hat{p}(x, u)$:

$$\hat{p}(x,u) = \begin{cases} 1/Z_p & \text{if } 0 \leq u \leq \tilde{p}(x) \\ 0 & \text{otherwise} \end{cases}, \qquad Z_p = \int \tilde{p}(x) dx$$

• The marginal distribution over *x* is then

$$\int \hat{p}(x,u)du = \int_0^{\tilde{p}(x)} 1/Z_p du = \tilde{p}(x)/Z_p = p(x)$$



.

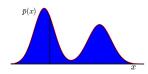
- Idea: Sample point (random walk) uniformly under the curve p̃(x)
- Introduce additional variable u, define joint $\hat{p}(x, u)$:

$$\hat{p}(x,u) = \begin{cases} 1/Z_p & \text{if } 0 \leq u \leq \tilde{p}(x) \\ 0 & \text{otherwise} \end{cases}$$
, $Z_p = \int \tilde{p}(x) dx$

• The marginal distribution over *x* is then

$$\int \hat{p}(x,u)du = \int_0^{\tilde{p}(x)} 1/Z_p du = \tilde{p}(x)/Z_p = p(x)$$

▶ Obtain samples from unknown p(x) by sampling from $\hat{p}(x, u)$ and then ignore *u* values



- Idea: Sample point (random walk) uniformly under the curve p̃(x)
- Introduce additional variable *u*, define joint $\hat{p}(x, u)$:

$$\hat{p}(x,u) = \begin{cases} 1/Z_p & \text{if } 0 \leq u \leq \tilde{p}(x) \\ 0 & \text{otherwise} \end{cases}, \qquad Z_p = \int \tilde{p}(x) dx$$

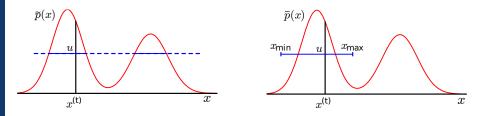
• The marginal distribution over *x* is then

$$\int \hat{p}(x,u)du = \int_0^{\tilde{p}(x)} 1/Z_p du = \tilde{p}(x)/Z_p = p(x)$$

▶ Obtain samples from unknown p(x) by sampling from $\hat{p}(x, u)$ and then ignore *u* values

• Gibbs sampling: Update one variable at a time

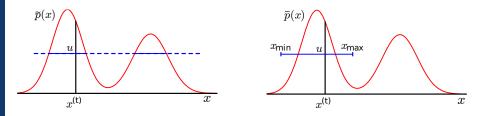
Slice Sampling Algorithm



Adapted from PRML (Bishop, 2006)

- Repeat the following steps:
 - 1. Draw $u|x^{(t)} \sim \mathcal{U}[0, \tilde{p}(x)]$
 - 2. Draw $x^{(t+1)}|u \sim \mathcal{U}[\{x : \tilde{p}(x) > u\}]$ \blacktriangleright slice

Slice Sampling Algorithm



Adapted from PRML (Bishop, 2006)

- Repeat the following steps:
 - 1. Draw $u|x^{(t)} \sim \mathcal{U}[0, \tilde{p}(x)]$
 - 2. Draw $x^{(t+1)}|u \sim \mathcal{U}[\{x : \tilde{p}(x) > u\}]$ \blacktriangleright slice
- In practice, we sample x^(t+1)|u uniformly from an interval [x_{min}, x_{max}] around x^(t).
- The interval is found adaptively (see Neal (2003) for details)

Relation to other Sampling Methods

Similar to:

- Metropolis: Just need to be able to evaluate p̃(x)
 More robust to the choice of parameters (e.g., step size is automatically adapted)
- Gibbs: 1-dimensional transitions in state space
 No longer required that we can easily sample from 1-D conditionals
- Rejection: Asymptotically draw samples from the volume under the curve described by p̃
 No upper-bounding of p̃ required

Properties

- Slice sampling can be applied to multivariate distributions by repeatedly sampling each variable in turn (similar to Gibbs sampling). → See (Neal, 2003; Murray et al., 2010) for more details
- This requires to compute a function that is proportional to $p(x_i|\mathbf{x}_{\setminus i})$ for all variables x_i .

Properties

- Slice sampling can be applied to multivariate distributions by repeatedly sampling each variable in turn (similar to Gibbs sampling). → See (Neal, 2003; Murray et al., 2010) for more details
- This requires to compute a function that is proportional to $p(x_i|\mathbf{x}_{\setminus i})$ for all variables x_i .
- No rejections
- Adaptive step sizes
- Easy to implement
- Broadly applicable

Discussion MCMC

- Asymptotic guarantee to converge to the equilibrium distribution for any kind of model
- Convergence difficult to assess
- Long chains required in high dimensions
- Choice of proposal distribution is hard
- Need to store all samples (subsequent computations require to work with these samples)

References I

- C. M. Bishop. *Pattern Recognition and Machine Learning*. Information Science and Statistics. Springer-Verlag, 2006.
- [2] D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, The Edinburgh Building, Cambridge CB2 2RU, UK, 2003.