Tutorial 1: Bayesian Decision Trees, λ and π evidence

In lecture 2 we introduced a naive Bayesian network for recognising cats in pictures:

Variable	Interpretation	Value
\mathbf{C}	Cat	c_{1}, c_{2}
E	Eyes	e_{1}, e_{2}, e_{3}
S	Separation of the eyes	$s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}$
D	Difference in eye size	$d_{1}, d_{2}, d_{3}, d_{4}$
F	Fur colour	$f_{1}, f_{2}, \cdots f_{10}$

Suppose that for a given data set we obtain the following link matrices:

$$
\begin{gathered}
P(D \mid E)=\left[\begin{array}{lll}
P\left(d_{1} \mid e_{1}\right) & P\left(d_{1} \mid e_{2}\right) & P\left(d_{1} \mid e_{3}\right) \\
P\left(d_{2} \mid e_{1}\right) & P\left(d_{2} \mid e_{2}\right) & P\left(d_{2} \mid e_{3}\right) \\
P\left(d_{3} \mid e_{1}\right) & P\left(d_{3} \mid e_{2}\right) & P\left(d_{3} \mid e_{3}\right) \\
P\left(d_{4} \mid e_{1}\right) & P\left(d_{4} \mid e_{2}\right) & P\left(d_{4} \mid e_{3}\right)
\end{array}\right]=\left[\begin{array}{ccc}
0.4 & 0.33 & 0.29 \\
0.4 & 0.33 & 0.14 \\
0.2 & 0.34 & 0.14 \\
0 & 0 & 0.43
\end{array}\right] \\
P(S \mid E)=\left[\begin{array}{lll}
P\left(s_{1} \mid e_{1}\right) & P\left(s_{1} \mid e_{2}\right) & P\left(s_{1} \mid e_{3}\right) \\
P\left(s_{2} \mid e_{1}\right) & P\left(s_{2} \mid e_{2}\right) & P\left(s_{2} \mid e_{3}\right) \\
P\left(s_{3} \mid e_{1}\right) & P\left(s_{3} \mid e_{2}\right) & P\left(s_{3} \mid e_{3}\right) \\
P\left(s_{4} \mid e_{1}\right) & P\left(s_{4} \mid e_{2}\right) & P\left(s_{4} \mid e_{3}\right) \\
P\left(s_{5} \mid e_{1}\right) & P\left(s_{5} \mid e_{2}\right) & P\left(s_{5} \mid e_{3}\right) \\
P\left(s_{6} \mid e_{1}\right) & P\left(s_{6} \mid e_{2}\right) & P\left(s_{6} \mid e_{3}\right) \\
P\left(s_{7} \mid e_{1}\right) & P\left(s_{7} \mid e_{2}\right) & P\left(s_{7} \mid e_{3}\right)
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0.33 & 0.14 \\
0.6 & 0 & 0.14 \\
0.4 & 0.34 & 0 \\
0 & 0.33 & 0.14 \\
0 & 0 & 0.14 \\
0 & 0 & 0.14 \\
0 & 0 & 0.28
\end{array}\right] \\
P(F \mid C)=\left[\begin{array}{lll}
P\left(f_{1} \mid c_{1}\right) & P\left(f_{1} \mid c_{2}\right) \\
P\left(f_{2} \mid c_{1}\right) & P\left(f_{2} \mid c_{2}\right) \\
P\left(f_{3} \mid c_{1}\right) & P\left(f_{3} \mid c_{2}\right) \\
P\left(f_{4} \mid c_{1}\right) & P\left(f_{4} \mid c_{2}\right) \\
P\left(f_{5} \mid c_{1}\right) & P\left(f_{5} \mid c_{2}\right) \\
P\left(f_{6} \mid c_{1}\right) & P\left(f_{6} \mid c_{2}\right) \\
P\left(f_{7} \mid c_{1}\right) & P\left(f_{7} \mid c_{2}\right) \\
P\left(f_{8} \mid c_{1}\right) & P\left(f_{8} \mid c_{2}\right) \\
P\left(f_{9} \mid c_{1}\right) & P\left(f_{9} \mid c_{2}\right) \\
P\left(f_{10} \mid c_{1}\right) & P\left(f_{10} \mid c_{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
0 & 0.3 \\
0.125 & 0 \\
0.125 & 0.14 \\
0.25 & 0.14 \\
0.125 & 0 \\
0.125 & 0 \\
0 & 0.14 \\
0.125 & 0.14 \\
0 & 0.14 \\
0.125 & 0
\end{array}\right] \\
P(E \mid C)=\left[\begin{array}{ll}
P\left(e_{1} \mid c_{1}\right) & P\left(e_{1} \mid c_{2}\right) \\
P\left(e_{2} \mid c_{1}\right) & P\left(e_{2} \mid c_{2}\right) \\
P\left(e_{3} \mid c_{1}\right) & P\left(e_{3} \mid c_{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
05 & 0.14 \\
0.25 & 0.14 \\
0.25 & 0.72
\end{array}\right]
\end{gathered}
$$

The prior probability of finding a cat in an image is taken as $P(C)=[0.5,0.5]$.
P.T.O.

1. An image is processed, and the following data extracted: $\left[s_{1}, d_{2}, f_{3}\right]$. Calculate the λ evidence that is propagated and the probability distributions over C.
2. The same image is processed in monochrome. Thus there is no information for F. Re-calculate the probabilities of C for the cases given in question 1 . Remember that the data is $\left[s_{1}, d_{2}\right]$, and since nothing is known about F, the λ value for every state of F is set to 1 .
3. Doubt is expressed about the accuracy of the computer vision algorithms. Thus instead S and D are instantiated with virtual evidence as follows:

State	$\lambda\left(s_{i}\right)$
s_{1}	0.8
s_{2}	0.2
s_{3}	0.0
s_{4}	0.0
s_{5}	0.0
s_{6}	0.0
s_{7}	0.0

State	$\lambda\left(d_{i}\right)$
d_{1}	0.3
d_{2}	0.4
d_{3}	0.3
d_{4}	0.0

There is still no information for node F.
Re-calculate the distributions over C.
4. Given the evidence for C in part 3, calculate the probability distribution over F.

