Tutorial 4: Model Accuracy

A data set over four binary variables, A,B, C and D, consists of the following eight data points:

 b_1 d_1 a_1 c_1 a_2 b_1 c_1 d_2 b_1 a_2 c_1 d_2 a_2 b_1 $c_2 \quad d_1$ b_1 $c_1 \quad d_1$ a_2 b_2 a_1 $c_1 \quad d_1$ b_2 $c_1 \quad d_2$ a_2 a_2 b_1 $c_2 \quad d_1$

A Bayesian network is proposed to represent the data set.

The prior probabilities and the link matrices are calculated from the data itself.

- 1. Compute the MDL score for the above network and data set.
- 2. If the data set were duplicated exactly (so it contains 16 points) what would be the new value of the MDL score. (PS Dont try to calculate it directly).
- 3. A different network is proposed with the arc between B and D deleted from the above network. Find the MDL score for this network and determine which of the two is the better network.
- 4. For a four binary variable problem like this there are only sixteen possible different data points. Calculate the probability distribution over these sixteen points given:
 - (a) The data set
 - (b) The Bayesian network defined above.
- 5. Discuss with your friends or the tutors the reasons why these two are different, and why MDL is used as a measure of accuracy rather than calculating a distance (say the Euclidian distance) between the data probability distribution and the network probability distribution