Variational inference questions

Hugh Salimbeni

February 2016

1. In the lectures it was claimed that

$$
\log \int p(X, Z) d Z=\mathbb{E}_{q(Z)} \log \frac{p(X, Z)}{q(Z)}+\mathbb{E}_{q(Z)} \log \frac{q(Z)}{p(Z \mid X)}
$$

Derive this result
2. You are given that $q(Z)$ factorises, so

$$
q(Z)=q_{1}\left(Z_{1}\right) q_{2}\left(Z_{2}\right) \ldots q_{M}\left(Z_{M}\right) .
$$

Show that the functional derivative of the ELBO wrt one of the factors $q_{i}\left(Z_{i}\right)$ is given by
$\frac{\delta}{\delta q_{i}} \operatorname{ELBO}=\int q_{1} q_{2} \ldots q_{i-1} q_{i+1} \ldots q_{M} \log p(X \mid Z) d Z_{1} d Z_{2} \ldots d Z_{i-1} d Z_{i+1} \ldots d Z_{M}-\log q_{i}\left(Z_{i}^{\prime}\right)+$ const.
3. In this question you are going to derive the results for the bi-variate Gaussian, with a factored variational approximation.
You are given that $\mathbf{z} \sim N\left(\binom{z_{1}}{z_{2}} \left\lvert\,\binom{\mu_{1}}{\mu_{2}}\right.,\left(\begin{array}{ll}\Lambda_{11} & \Lambda_{12} \\ \Lambda_{21} & \Lambda_{22}\end{array}\right)^{-1}\right)$
(a) Write down $\log p(Z)$ in full. Note that you do not need to invert the matrix to calculate the determinant. Leave your answer in terms of things like $\left(z_{1}-\mu_{1}\right)$ etc
(b) Write down all the terms of your previous answer that depend on z_{1}. This time expand all the brackets. You should have only 4 terms.
(c) Show that
$\log q_{1}^{*}\left(z_{1}\right)=-\frac{1}{2} z_{1}^{2} \Lambda_{11}+z_{1} \mu_{1} \Lambda_{11}-z_{1} \Lambda_{12} \mathbb{E}\left(z_{2}\right)+z_{1} \Lambda_{12} \mu_{2}+$ constant terms
(d) Complete the square in the expression above
(e) Explain why

$$
q_{1}^{*} \sim N\left(z_{1} \mid m_{1}, \Lambda_{11}^{-1}\right)
$$

where

$$
m_{1}=\mu_{1}-\Lambda_{11}^{-1} \Lambda_{12}\left(\mathbb{E} z_{2}-\mu_{2}\right)
$$

(f) Use a symmetry argument to write down the other factor. Hence write down the expectations and solve the equations to show the result given in the lecture notes.
4. (a) Write down the definition of $K L(q(Z), p(Z))$
(b) Consider a region where $p(Z)=0$. If you are free to choose q to minimize $K L(q(Z), p(Z))$, explain why $q(Z)$ must also equal zero in this region
(c) Use your previous answer to explain why the variational method is referred to as "zero forcing" and why it typically underestimates the support of p
5. In this question you will derive $q^{*}(\boldsymbol{\mu}, \boldsymbol{\Lambda})$ for the variational GMM. For convenience we define the following:

$$
\begin{aligned}
& N_{k}=\sum_{i=1}^{N} r_{i k} \\
& \overline{\mathbf{x}}=\frac{1}{N_{k}} \sum_{i=1}^{N} r_{i k} \mathbf{x}_{i} \\
& \mathbf{S}_{k}=\frac{1}{N_{k}} \sum_{i=1}^{N} r_{i k}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{k}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}_{k}\right)^{T}
\end{aligned}
$$

Note that the second two quantities are just the empirical mean and covariance, weighted by the responsibilities, and the first is just the expected number of points in each cluster.

Using the definitions for the variational GMM in slides, show that

$$
q^{*}\left(\mu_{k}, \Lambda_{k}\right)=\mathcal{N}\left(\mu_{k}, \mathbf{m}_{k},\left(\beta_{k} \Lambda_{k}\right)^{-1}\right) \mathcal{W}\left(\Lambda_{k} \mid \mathbf{W}_{k}, \nu_{k}\right)
$$

where

$$
\begin{aligned}
& \beta_{k}=\beta_{0}+N_{k} \\
& \mathbf{m}_{k}=\frac{1}{\beta_{k}}\left(\beta_{0} \mathbf{m}_{0}+N_{k} \overline{\mathbf{x}}_{k}\right) \\
& \mathbf{W}_{k}^{-1}=\mathbf{W}_{0}^{-1}+N_{k} \mathbf{S}_{k}+\frac{\beta_{0} N_{K}}{\beta_{0}+N_{k}}\left(\overline{\mathbf{x}}_{k}-\mathbf{m}_{0}\right)\left(\overline{\mathbf{x}}_{k}-\mathbf{m}_{0}\right)^{T} \\
& \mu_{k}=\nu_{0}+N_{k}+1
\end{aligned}
$$

You may like to use:

- The cyclic properties of trace: $\operatorname{Tr}(A B C)=\operatorname{Tr}(B C A)=\operatorname{Tr}(C A B)$
- The fact that a scalar can be written as a trace of a 1 x 1 matrix
- The identity:

$$
\sum_{i=1}^{N}\left(a_{i}-b\right)^{2}=N(\bar{a}-b)^{2}+\sum_{i=1}^{N}\left(a_{i}-\bar{a}\right)^{2}
$$

with $\bar{a}=\frac{1}{N} \sum a_{i}$

- Completing the square (for scalars)
$A(x-a)^{2}+B(x-b)^{2}=(A+B)\left(x-\frac{A a+B b}{A+B}\right)^{2}+\frac{A B}{A+B}(a-b)^{2}$
and the equivalent expression for matricies

