Tutorial 1: Solution

1. An image is processed, and the following data extracted: $\left[s_{1}, d_{2}, f_{3}\right]$. Calculate the λ evidence that is propagated and the probability distributions over C.
$\lambda\left(e_{1}\right)=P\left(s_{1} \mid e_{1}\right) P\left(d_{2} \mid e_{1}\right)=0$
$\lambda\left(e_{2}\right)=P\left(s_{1} \mid e_{2}\right) P\left(d_{2} \mid e_{2}\right)=0.33 \times 0.33=0.11$
$\lambda\left(e_{3}\right)=P\left(s_{1} \mid e_{3}\right) P\left(d_{2} \mid e_{3}\right)=0.14 \times 0.14=0.02$
and to propagate to C we need the conditioning equation
$\lambda\left(c_{1}\right)=\left(0+0.11 P\left(e_{2} \mid c_{1}\right)+0.02 P\left(e_{3} \mid c_{1}\right)\right) \times P\left(f_{3} \mid c_{1}\right)=(0.11 \times 0.25+0.02 \times 0.25) 0.125=.004$
$\lambda\left(c_{2}\right)=\left(0+0.11 P\left(e_{2} \mid c_{2}\right)+0.02 P\left(e_{3} \mid c_{2}\right)\right) \times P\left(f_{3} \mid c_{2}\right)=(0.11 \times 0.14+0.02 \times 0.72) 0.14=.0042$
Normalising over the evidence we have that $P^{\prime}(C)=[0.488,0.512]$ suggesting that the image is not a cat, but with no great certainty. (NB since the prior probabilities for c_{1} and c_{2} are the same we don't need to bother with them.
2. The same image is processed in monochrome. Thus there is no information for F. Re-calculate the probabilities of C.

Since there is no evidence from F, using the conditioning equation gives us that: $\lambda_{F}\left(c_{1}\right)=\lambda_{F}\left(c_{2}\right)=1$ in other words we just consider the λ evidence from E. For: $\left[s_{1}, d_{2}\right]$
$\lambda\left(c_{1}\right)=\left(0+0.11 P\left(e_{2} \mid c_{1}\right)+0.02 P\left(e_{3} \mid c_{1}\right)\right)=(0.11 \times 0.25+0.02 \times 0.25)=.0325$
$\lambda\left(c_{2}\right)=\left(0+0.11 P\left(e_{2} \mid c_{2}\right)+0.02 P\left(e_{3} \mid c_{2}\right)\right)=(0.11 \times 0.14+0.02 \times 0.72)=.0298$
This time the network just favours the cat.
3. Doubt is expressed about the accuracy of the computer vision algorithms. Thus instead S and D are instantiated with virtual evidence. There is still no information for node F. Re-calculate the distributions over E and C.

This time its the evidence for E that changes.

$$
\begin{aligned}
\lambda\left(e_{1}\right) & =\left(0.8 \times P\left(s_{1} \mid e_{1}\right)+0.2 \times P\left(s_{2} \mid e_{1}\right) \times\left(0.3 \times P\left(d_{1} \mid e_{1}\right)+0.4 \times P\left(d_{2} \mid e_{1}\right)+0.3 \times P\left(d_{3} \mid e_{1}\right)\right)\right. \\
& =(0+0.2 \times 0.6) \times(0.3 \times 0.4+0.4 \times 0.4+0.2 \times 0.3)=0.12 \times 0.34=0.041 \\
\lambda\left(e_{2}\right) & =\left(0.8 \times P\left(s_{1} \mid e_{2}\right)+0.2 \times P\left(s_{2} \mid e_{2}\right) \times\left(0.3 \times P\left(d_{1} \mid e_{2}\right)+0.4 \times P\left(d_{2} \mid e_{2}\right)+0.3 \times P\left(d_{3} \mid e_{2}\right)\right)\right. \\
& =(0.8 \times 0.33+0) \times(0.3 \times 0.33+0.4 \times 0.33+0.3 \times 0.34)=0.264 \times 0.33=0.087 \\
\lambda\left(e_{3}\right) & =\left(0.8 \times P\left(s_{1} \mid e_{3}\right)+0.2 \times P\left(s_{2} \mid e_{3}\right) \times\left(0.3 \times P\left(d_{1} \mid e_{3}\right)+0.4 \times P\left(d_{2} \mid e_{3}\right)+0.3 \times P\left(d_{3} \mid e_{3}\right)\right)\right. \\
& =(0.8 \times 0.14+0.2 \times .14) \times(0.3 \times 0.29+0.4 \times 0.14+0.3 \times 0.14)=0.0259
\end{aligned}
$$

since there is no evidence from F this is all that we need to propagate to C.
$\lambda\left(c_{1}\right)=\left(0.041 P\left(e 1 \mid c_{1}\right)+0.087 P\left(e_{2} \mid c_{1}\right)+0.0259 P\left(e_{3} \mid c_{1}\right)\right)=(0.041 \times 0.5+0.087 \times 0.25+0.0259 \times 0.25)=.049$
$\lambda\left(c_{2}\right)=\left(0.041 P\left(e 1 \mid c_{2}\right)+0.087 P\left(e_{2} \mid c_{2}\right)+0.0259 P\left(e_{3} \mid c_{2}\right)\right)=(0.041 \times 0.14+0.087 \times 0.14+0.0259 \times 0.72)=.037$
Normalising now gives us $P(C)=[0.57,0.43]$
4. Given the evidence for C in part 3, calculate the probability distribution over F.
$\mathrm{P}(\mathrm{C})$ does not contain any evidence from F, so:

$$
\pi(F)=\left[\begin{array}{cc}
0 & 0.3 \\
0.125 & 0 \\
0.125 & 0.14 \\
0.25 & 0.14 \\
0.125 & 0 \\
0.125 & 0 \\
0 & 0.14 \\
0.125 & 0.14 \\
0 & 0.14 \\
0.125 & 0
\end{array}\right]\left[\begin{array}{l}
0.57 \\
0.43
\end{array}\right]=\left[\begin{array}{l}
0.129 \\
0.071 \\
0.131 \\
0.203 \\
0.071 \\
0.071 \\
0.060 \\
0.131 \\
0.060 \\
0.071
\end{array}\right]
$$

The result does not need to be normalised in this particular example.

